
GML Autumn 23 - HW 1: Concentration bounds

Instructions:

• Please upload to gradescope by Thursday, 12.10.23 by 23:59
• Typeset (Latex, Markdown etc.), do not add your name on homeworks and midterms to avoid biases

when grading, start the answer to each question on a new page
• See website for details regarding collaboration and honor code
• MW refers to Martin Wainwright’s book
• You will receive partial points if you attempt a question and zero if you don’t
• Optional means that you will not receive points for the grade for solving this assignment.
• Please de-register if you do not want to solve the homework
• if you solve all questions that are not marked as bonus or optional, you can get full points. However, if

you solve a question marked as bonus you get additional points if you lose some in the other questions

1 Optional Warm-up: Optimality of polynomial Markov
Chernoff’s bound is obtained via Markov’s inequality. In this question we show that Markov’s inequality
is actually tight. Furthermore, the k-th moment Markov bounds are in fact never worse than the Chernoff
bound based on the moment generating function.

a) Find a non-negative random variable X for which Markov’s inequality is met with equality at a point
a > 0.

b) Suppose that X ≥ 0 and that EeλX exists in an interval around zero. Given some δ > 0 and integer
k = 1, 2, . . . show that

inf
k=0,1,...

E|X|k

δk
≤ inf
λ>0

EeλX

eλδ

2 Concentration and kernel density estimation
Let {Xi}ni=1 be an i.i.d. sequence of random variables drawn from a density f on the real line. A standard
estimate of f is the kernel density estimate:

fn(x) := 1
nh

n∑
i=1

K

(
x−Xi

h

)
,

where K : R→ [0,∞) is a kernel function satisfying
∫∞
−∞K(t) dt = 1, and h > 0 is a bandwidth parameter.

Suppose that we assess the quality of fn using the L1-norm:

‖fn − f‖1 :=
∫ ∞
−∞
|fn(t)− f(t)| dt.

Prove that:
P
[
‖fn − f‖1 ≥ E[‖fn − f‖1] + δ

]
≤ e−nδ
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3 Sub-Gaussian maxima
In this exercise we prove an inequality used repeatedly in later lectures.

Let {Xi}ni=1 be a sequence of zero-mean random variables, each subgaussian with parameter σ. The random
variables Xi are not assumed to be independent.

a) Prove that for all n ≥ 1 we have

E max
i=1,...,n

Xi ≤
√

2σ2 logn.

Hint: the exponential is a convex function.
b) Prove that for all n ≥ 2 we have

E max
i=1,...,n

|Xi| ≤
√

2σ2 log(2n) ≤ 2
√
σ2 logn.

4 Bonus: Sharper tail bounds for bounded variables: Bennett’s
inequality

Read MW Chapter 2 and learn about subexponential tail bounds and Bernstein’s inequality, yielding some
more tail bounds for empirical means of random variables satisfying conditions other than the subgaussian
one. Bernstein’s inequality is sometimes tighter for bounded variables than when applying the subgaussian
bound. In this problem we prove an even tighter bound for bounded variables, known as Bennett’s inequality

a) Consider a zero-mean random variable such that |Xi| ≤ b for some b > 0. Prove that

logEeλXi ≤ σ2
i λ

2 eλb − 1− λb
(λb)2

for all λ ≥ 0, where σ2
i = Var(Xi).

b) Given independent random variables X1, . . . , Xn satisfying the condition of part (a), let σ2 := 1
n

∑n
i=1 σ

2
i

be the average variance. Prove Bennett’s inequality

P

 1
n

n∑
i=1

Xi ≥ δ

 ≤ e−
nσ2
b2 h
(
bδ
σ2

)
where h(t) := (1 + t) log(1 + t)− t for t ≥ 0.

c) Show that Bennett’s inequality is at least as good as Bernstein’s inequality.

5 Sharp upper bounds on binomial tails
Let {Xi}ni=1 be an i.i.d. sequence of Bernoulli variables with parameter α ∈ (0, 1

2 ], and consider the binomial
random variable Zn =

∑n
i=1 Xi. The goal of this exercise is to prove, for any δ ∈ (0, α), a sharp upper bound

on the tail probability P [Zn ≤ δn].

a) Show that
P [Zn ≤ δn] ≤ e−nD(δ‖α),

where the quantity
D(δ ‖ α) := δ log δ

α
+ (1− δ) log (1− δ)

(1− α)
is the Kullback–Leibler divergence between the Bernoulli distributions with parameters δ and α,
respectively.

b) Show that the bound from part (a) is strictly better than the Hoeffding bound for all δ ∈ (0, α).
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6 Robust estimation of the mean
Suppose we want to estimate the mean µ of a 1-dimensional random variable X with variance σ2 from a
sample X1, · · · , Xn, drawn independently from the distribution of X. We want an ε-accurate estimate of the
mean, i.e., one that falls with probability ≥ 1− δ in the interval [µ− ε, µ+ ε].

Show that a sample size of N = O
(

log(δ−1)σ
2

ε2

)
suffices to compute an ε-accurate estimate of the mean

with probability at least 1− δ. Hint: Compute the median of log(δ−1) weak estimates.

7 Best-arm identification
We now look at an interesting application of concentration bounds. Assume that we have K newly developed
drugs to cure a disease and denote with µk ∈ [0, 1] the probability of getting cured by the k-th drug, which
is assumed to be unknown. In order to determine the best drug k? with the highest chance of a successful
treatment µ? = µk? = max

k
µk, we treat different volunteers in a clinical trial with one drug each and

record the outcome. We model the observation of the outcome on one patient as sampling from a Bernoulli
distribution with parameter µk. We denote with Xk,i ∈ {0, 1} the random variable indicating whether the
i-th volunteer treated with the k-th drug was successful.

In a randomized control trial, all drugs would have the same probability of getting assigned to any patient
throughout the trial. In this exercise, we want to study an adaptive algorithm that assigns treatment
depending on the outcome of previous treatments. The goal is to assign the drugs in a way such that for
some δ ∈ (0, 1), with probability ≥ 1− δ, the algorithm finds the best drug k? in as few volunteers as possible.
This is ethically more reasonable than assigning a “bad” drug to patients even when their results are clearly
inferior to others in the trial.

Context: This problem is often referred to as a best-arm identification problem. In adaptive or online learning
scenarios, where at each time step we sample from one of k distributions {P1, · · · ,PK} is often called a
multi-armed bandit. Pulling an arm k then corresponds to sampling from Pk. In our case they are Bernoulli
distributions with means {µ1, · · · , µK}.

In this exercise, we analyze a specific type of algorithm to solve the problem called the Successive Elimination
algorithm.

Algorithm 1: Successive Elimination
S0 = {1, · · · ,K} ;
for 1 ≤ t ≤ ∞ do

Pull all arms in St−1 to obtain samples Xk,t ∼ Dk with k ∈ St−1;
Update St = St−1 − {i ∈ St−1 : ∃k ∈ St−1 : µ̂k,t − U(t, δ/K) > µ̂i,t + U(t, δ/K)};
Stop when |St| = 1;

end

Notation:

• St: The active set of arms.
• µ̂k,t := 1

t

∑t
i=1 Xk,i: Estimated mean of the reward µk for arm k after t pulls.

• U(t, δ): An any-time confidence interval, such that for any arm k,

P

 ∞⋃
t=1
{|µ̂k,t − µk| ≥ U(t, δ)}

 ≤ δ.
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The goal of this exercise is to prove Theorem 1 where we show that the Successive Elimination algorithm
is correct and derive an upper bound on the maximum amount of steps needed to for the algorithm to terminate.

Theorem 1. With probability ≥ 1− δ:

1. For any t ≥ 1, the best arm k? is contained in the set St.

2. There exists an any-time confidence interval U such that the Successive Elimination algorithm terminates
after O(

∑K
k 6=k? 4

−2
k log(K4−1

k )) samples with 4k := µ? − µk and the O notation is with respect to K
and 4k for a constant δ.

We first prove that with high probability the best arm stays in the active set St for all t until termination.

a) Define E as the event that for any t ≥ 1, the estimated reward µ̂k,t of any arm k is not contained in the
confidence interval U(t, δ/K) around the true mean µk, i.e.

E :=
K⋃
k=1

∞⋃
t=1
{|µ̂k,t − µk| > U(t, δ/K)}.

Show that P(E) ≤ δ.

b) Prove statement 1 in Theorem 1.

It is not yet shown whether and after how many steps the algorithm terminates. To do so, we derive a
sufficiently tight any-time confidence interval U based on the concentration inequalities discussed in the
lecture.

c) Let {Zt}∞t=1 be i.i.d bounded random variables with Zt ∈ [a, b] with a ≤ b. Show that

U =
√

(b− a)2 log(4t2/δ)
2t

is a valid any-time confidence interval for the random variable Zt. Hint: Use Hoeffding’s bound and
union bound.

d) Bonus: Prove statement 2 in Theorem 1.
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