
GML Fall 23 - HW 2: Generalization bounds

Instructions:

• If you notice any unclear points, please start a thread on Moodle.
• Please upload to gradescope by Friday, 9.11.23 by 23:59.
• Typeset (Latex, Markdown etc.), do not add your name on homeworks and midterms to avoid biases

when grading, start the answer to each question on a new page.
• See website for details regarding collaboration and honor code.
• All questions will be picked and graded by the TAs.
• MW refers to Martin Wainwright’s book, SSBD to Shalev-Schwartz, Ben-David’s book.
• You will receive partial points if you attempt a question and zero if you don’t.
• In order to get full points for your own question, please see detailed instructions. Failure to hand in

will result in zero points.

1 Data-dependent generalization bound for hard-margin SVM
In this exercise, we will derive a refined upper bound on the population risk of the hard-margin SVM (support
vector machine) solution.

Recall the setting of the first in-lecture exercise, where we analyzed max-margin linear classifiers. The
function class of bounded linear functions is given by FB = {f(x) = ⟨w, x⟩ : w ∈ Rd, ∥w∥2 ≤ B}, and we
assume that (x, y) come from a joint distribution P and we are given n training datapoints {(xi, yi), i ∈ [n]}.
We made the following assumption:

Assumption A: Covariates x are bounded, P
(
∥x∥2 ≤ D

)
= 1.

Given γ ≥ 0, we define the margin risk Rγ(f) = P
(
Y f(X) ≤ γ

)
and its empirical version Rγ

n(f) =
1
n

∑n
i=1 1yif(xi)≤γ . In the in-lecture exercise, we proved that with probability at least 1 − δ, it holds that for

all f ∈ FB

R0(f) = P
(
Y f(X) ≤ 0

)
≤ Rγ

n(f) + 2DB

γ
√

n
+ c

√
log(1/δ)

n
(1)

for some constant c > 0. This statement holds for all fixed B and γ. However, the bound eq. 1 becomes less
and less useful as the margin of the data distribution gets smaller, as in this case Rγ

n(f) remains large for
any f . If we make an additional margin assumption on the distribution, and instead of any f , consider the
specific hard-margin SVM solution, we can obtain a more useful bound:

Assumption B: Data is linearly separable, i.e. there exists w∗ with the smallest ℓ2-norm such that
P

(
y⟨w, x⟩ ≥ 1

)
= 1.

Definition 1. The hard-margin SVM solution is

fSV M = ⟨wSV M , ·⟩ where wSV M = arg min
w

∥w∥2 s.t. yi⟨w, xi⟩ ≥ 1

In particular, for the hard-margin SVM solution the following holds:
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Theorem 1 (Distribution-dependent margin bound). Under Assumption A and B, with probability at least
1 − δ it holds that

P
(
Y fSV M (X) < 0

)
≤ 2D∥w∗∥2√

n
+ c

√
log(1/δ)

n
,

where c > 0 is some constant.

a) Prove Theorem 1.

The bound of the preceding theorem depends on ∥w∗∥2, which is unknown. In the following, we will derive a
bound which depends on the norm of the output of SVM; hence it can be calculated from the training set
itself. For some training data data, the margin could be larger, and thus we could instantiate eq. 1 with a
larger γ to get a tighter bound:

Theorem 2 (Data-dependent margin bound). Under Assumptions A and B, with probability at least 1 − δ it
holds that

P
(
Y fSV M (X) < 0

)
≤ 2eD∥wSV M ∥2√

n
+ c

√
log(1/δ) + log(4 log ∥wSV M ∥2)

n
.

Notice that this bound could be tighter than Theorem 1 since ∥wSV M ∥2 ≤ ∥w∗∥2.

The proof of Theorem 2 is based on the principle called Structural Risk Minimization (SRM). SRM aims to
alleviate the problem of overfitting which arises when minimizing the empirical risk within a large preselected
function class F . Instead, we could rewrite a (too) complex function class F as a nested sequence of function
classes with increasing complexity: F1 ⊂ F2 ⊂ ..., F =

⋃∞
k=1 Fk. One then minimizes the empirical risk

penalized by some complexity measure of the function class, so that we can find an optimally complex
predictor f ∈ Fk for some k (e.g. a polynomial of degree 5 when F is the space of all polynomials). For more
context read Shalev-Schwartz, Ben-David Chapter 7.

We first prove a result on SRM in b) and then use it to prove 2.

b) (Structural Risk Minimization) As above, assume we are given a function class F which is a union of
a nested sequence of function spaces, i.e. F =

⋃∞
k=1 Fk and F1 ⊂ F2 ⊂ .... Given a positive sequence

(δ1, δ2, ...) which satisfies
∑∞

i=1 δi ≤ δ, we define for each k and each function f ∈ Fk the event

Ek,f = {R0(f) − R0
n(f) ≤ c

√
log 1/δk

n
+ 2Rn(Fk)}.

Assume that for each k, the intersection of these events holds with probability at least 1 − δk, i.e.

P

 ⋂
f∈Fk

Ekf

 ≥ 1 − δk.

Prove that with probability at least 1 − δ it holds for all f ∈ F that

R(f) − Rn(f) ≤ c

√
log(1/δk(f))

n
+ 2Rn(Fk(f)),

where k(f) is the smallest index k s.t. f is contained in Fk.

c) (Data-dependent generalization bound) Prove Theorem 2. Hint: for the proof, you might want to
utilize b) with an appropriate choice of Fk and δk.
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2 Rates for smooth functions
Read MW Examples 5.10. through Example 5.12. (notice typos in Example 5.11. - it should be δ = ϵα+γ

everywhere). The non-parametric least-squares estimate is defined as

f̂ = arg min
f∈F

Rn(f) := 1
n

n∑
i=1

(yi − f(xi))2.

In this exercise we will derive the prediction error bound for the examples of twice-differentiable functions
F(2) and α-th order Sobolev spaces Wα

2 ([0, 1]) on [0, 1].

F(2) := {f : [0, 1] → R | ∥f∥∞ + ∥f (1)∥∞ + ∥f (2)∥∞ ≤ C < ∞}
Wα

2 ([0, 1]) := {f : [0, 1] → R | f (i) ∈ L2([0, 1]) and f (i)(0) = 0 ∀i = 0, . . . , α − 1}

where f (a) stands for the α-th (weak) derivative. Throughout the problem, we assume that f⋆ ∈ F .

a) Prove that the set {fβ , β ∈ {−1, +1}M } in Example 5.10. forms a 2ϵL-covering in the sup-norm.

b) For the function class

Fα,γ = {f : [0, 1] → R | ∥f (j)∥∞ ≤ Cj ∀j = 0, . . . , α, |f (α)(x) − f (α)(x′)| ≤ L|x − x′|γ ∀x, x′ ∈ [0, 1]}

we have log N (ϵ; Fα,γ , ∥ · ∥∞) = O(( 1
ϵ )

1
α+γ ). Use this fact to establish the following prediction

error bound for the non-parametric least-squares estimate f̂ with F = F(2) for positive constants
c0, c1, c2 which may depend on C but not on n, σ2

P(∥f̂ − f⋆∥2
n ≥ c0(σ2

n
) 4

5 ) ≤ c1e−c2(n/σ2)1/5

c) For α-th order Sobolev kernels, assume that the empirical eigenvalues decay with rate µ̂j = j−2α and
we minimize the square loss in the constrained function class F = {f ∈ Wα

2 ([0, 1]) : ∥f∥F ≤ 1}. Show
that the prediction error of the non-parametric least-squares estimate reads

P
[
∥f̂ − f⋆∥2

n ≥ c0(σ2

n
)

2α
2α+1

]
≤ c1e−c2( n

σ2 )
1

2α+1
.

3 Sparse linear functions
Read MW Sections 7.1 - 7.4. In previous exercises and lectures, we have looked at the complexity of
linear function classes with a margin γ and an ℓ2 norm constraint. In the first part of this exercise, we will
bound the Gaussian complexity of the function class induced by the set of s-sparse, ℓ2-bounded vectors:

FB,s = {f(·) = ⟨θ, x⟩ : ∥θ∥0 ≤ s, ∥θ∥2 ≤ B}.

Gaussian complexity of this function class is a useful quantity, as it gives intuition for why constraining the
function class to sparse linear classifiers (as in the computationally infeasible case of sparse linear regression)
can help to decrease the sample complexity below dimension d.

a) Define X ∈ Rn×d as consisting of rows x1, . . . , xn the sample covariate vectors. Let the matrix
XS ∈ Rn×|S| be the submatrix of X consisting of columns of X that are indexed by S. First show
that the Gaussian complexity G̃n(FB,s(xn

1 )) can be rewritten as 1√
n
E supθ∈FB,s(xn

1 )⟨θ, XT w√
n

⟩. Use this
fact to establish
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G̃n(FB,s(xn
1 )) ≤ BEw max

|S|=s
∥X⊤

S w

n
∥2.

b) Define wS = 1√
n

X⊤
S w. Assuming that for all subsets S of cardinality s we have λmax

( X⊤
S XS

n

)
≤ C2,

prove that
P(∥wS∥2 ≥

√
sC + δ) ≤ e− δ2

2C2

Hint: The Euclidean norm is a Lipschitz function.

c) Use the preceding parts to show that

G̃n(FB,s(xn
1 )) ≤ O(BC

√
s log( ed

s )
n

).

d) In Lecture 8, we have discussed how localized Gaussian complexity enters the prediction error bound in
the regression setting via the critical radius. In this exercise, we will prove an upper bound for the
localized Gaussian complexity which we have used in the lecture to obtain the prediction error bound
for ℓ0-constrained sparse linear regression:

∥f̂ − f∗∥n ≤ O
(

s log(ed/s) log(1/δ)
n

)
.

Define
F̃B,s = {f(·) = ⟨θ, x⟩ : ∥θ∥0 ≤ s,

∥Xθ∥2√
n

≤ B}.

Prove that

G̃n(F̃B,s(xn
1 )) ≤ O

B

√
s log( ed

s )
n

 .

4 Bonus: Classification error bounds for hard margin SVM
In this exercise, we derive upper bounds for the 0 − 1 classification error of hard margin SVMs, also called
max-ℓ2-margin classifiers, and defined by:

θ̂ = arg max
θ∈Rd

min
(x,y)∈D

y
⟨θ, x⟩
∥θ∥2

(2)

where D = {(xi, yi)}n
i=1 is the dataset consisting of n input features/label pairs. We remark that the

hard-margin SVM is obtained when running logistic regression until convergence on separable data.

For this exercise, we assume that the dataset D is generated by drawing iid samples form the following
generative data distribution (x, y) ∼ P where the labels y are uniformly distributed on {−1, +1} and the
input features are in the form of x = [yr, x̃] with x̃ ∼ N (0, Id−1). Furthermore, let γ be the max-ℓ2-margin of
D in its last d − 1 coordinates, defined by

γ = max
θ∈Rd−1

min
(x,y)∈D

y
⟨θ̂, x2:d⟩

∥θ̂∥2
(3)

A simple geometric argument shows that the max-ℓ2-margin classifier (up to rescalings) points in the same
direction as

θ̂ = [r, γθ̃] (4)
where ∥θ̃∥2 = 1.
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a) Compute the test error of the max-ℓ2-margin classifier in function of γ and r, i.e. for (x, y) ∼ P, what is
P [yθ̂⊤x < 0]? What is the dependence on r?

b) Note that γ is a random variable dependent on n and d. We aim to understand the dependence of the
accuracy on n and d. Hence, we want to derive non-asymptotic high probability bounds on γ. Let
X̃ ∈ Rn×(d−1) be the datamatrix in the last d − 1 dimensions, i.e. row i in X̃ equals xi,[2:d]. Show that

γ ≤ smax(X̃)√
n

(5)

where smax(X̃) is the largest singular value of the datamatrix X.

c) Recall that each entry of X̃ is i.i.d. standard normal Gaussian distributed. To achieve non-asymptotic
bounds on smax(X̃), we first prove the following Lemma in two steps.

Lemma 1. Let X ∈ R(n×d) be such that all entries are i.i.d. normal distributed. Then,
E

[
smax(X)

]
<

√
d +

√
n

i) Recall that smax(X) = maxu∈Sd−1,v∈Sn−1⟨Au, v⟩ equals the supremum of the Gaussian process
Xu,v = ⟨Au, v⟩. Define Yu,v = ⟨g, u⟩ + ⟨h, v⟩ where g ∈ Rd and h ∈ Rn are independent standard
normal distributed variables. Show that

E
∣∣Xu,v − Xu′,v′

∣∣2 ≤ E
∣∣Yu,v − Yu′,v′

∣∣2 (6)

ii) To finish the proof of Lemma 1, we use the following important result:

Lemma 2: Slepian’s inequality Consider two Gaussian processes (Xt)t∈T and (Yt)t∈T whose
increments satisfy Equation (4) for all ((u, v), (u′, v′)) ∈ T . Then E[supt∈T Xt] ≤ E[supt∈T Yt]

Prove Lemma 1 using Lemma 2.

d) Use Theorem 2.26 in MW and Lemma 1 to prove that smax(X̃) ≤
√

d +
√

n + t with a probability of at
least 1 − 2e−t2/2.

5 Collective learning: crowdsourcing an answer and collecting
good practice questions from the group

Writing your own problems is a very important way to really learn the material. The famous Bloom’s
Taxonomy that lists the levels of learning is: Remember, Understand, Apply, Analyze, Evaluate, and Create.
Using what you know to create is the top-level. As a practical matter, having some practice at trying to
create problems also helps you to study for the exam. This is because thinking about how to create an
interesting problem forces you to really look at the material from the perspective of those who are going to
create the exams. In this exercise you are asked to come up with your own question related to the material
learned in the first 9 lectures. The open-ended question should offer a bit of a glimpse into how theory
research could feel like in real life. In both cases your answers will help the learning experience of both your
peers and yourself (see details below).

5.1 Instructions for writing your own question
In terms of style, your own question can be a technical problem, one including examples, proof derivations,
extensions or a conceptual question like the one above etc. Anything that deepens the understanding of the
material.
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Please include the question and your answer in your homework submission. In addition, also post
your question on Moodle (see instructions below) so that others can use them to study for the midterm
and engage in discussions. You only receive full points if you post your question on Moodle. In the forum,
anybody can upvote a question if they find it helpful and engage in discussions. Note that peers will thank
you for a good question that helps them to prepare for the exam as well!

Instructions for posting problems: We will use a Moodle forum as the platform to post your proposed
problems. Please post each problem in a separate post, in the category HW2-Own Question. You are
encouraged to engage in discussions in the comments section of each thread and upvote the questions that
you liked.
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