
Guarantees for Machine Learning, Fall 2023

Lecture 1: Introduction and concentration bounds
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Class intro

Objective. Develop graduate students into researchers who can
• understand and criticize papers in ML theory
• conjecture and prove new theorems that with high impact

Prerequisites
• Familiar with core machine learning concepts
• Should be comfortable writing rigorous mathematical proofs
(for D-MATH courses)

Course structure
• First part: classical techniques for non-asymptotic risk bounds

• Core reference: Martin Wainwright: High-dimensional statistics
(available for free online via ETH)

• Second part: projects that review and extend current papers
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Logistics

• Class website sml.inf.ethz.ch/gml23/syllabus.html
• Lecture slides will be uploaded after lectures at the latest
• TAs: Konstantin Donhauser, Julia Kostin (Office hours on request)
• Internet platforms to sign up for: moodle (announcements,
questions, teammate search), Gradescope (assignments)
• Important date announcements: in class and per email
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Evaluation & enrollment
Evaluation
• 2 homeworks (10%), midterm (50%), project (40%)
• HWs:

• randomly select questions graded by TAs
• check HW release schedule on the website

• Project (in groups of two):
• Pick a paper from list according to your interests & background on

(October 13)
• Discussion & extension of one theoretical paper
• 15-20 min Presentation in last four weeks
• ≥ 10 page written report (due January 12)

Enrollment
• Current waitlist: ~75. Admitted: 30. Limit for admissions: 30
• By experience, everybody who wants to take it, can
• Final deadline to de-register: October 11th else no-show
• Others welcome to audit as long as there is space
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Who is here?

Which department?

1. Computer Science
2. Mathematics/Statistics
3. Data Science
4. EE & Robotics
5. Others

What stage of your studies are you?

1. Masters
2. PhD student
3. Bachelors

5 / 20

Plan for today

• Statistical perspective on the supervised learning pipeline
• Evaluation of an estimator using the excess risk
• Concentration bounds of empirical means
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Recap: (Supervised) Machine Learning - Classification
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Classification examples: high-dim

input x

output y

x: X-Ray images

y: pneumonia or healthy

Genome 
(DNA)

Transcriptome 
(RNA)

Proteome Metabolome

Epigenome 
(chromatin)

Microbiome

y: cancer survival

x: multiomics

Figure 1: Classification examples
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Recap: (Supervised) Machine Learning - Regression
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Regression examples II

input x

output y
y: storm speed

x: storm track

y: Probability of click / purchase

x: User data & article/advertisement

Figure 2: Regression examples
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Statistical Perspective on (supervised) Machine Learning
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Statistical perspective on machine learning
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Figure 3: Supervised learning pipeline from statistical point of view

• some examples for P = Ptrain = Ptest include
• regression: marginal dist. over x and y = f ?(x) + ε for random ε
• classification: generative such as Gaussian mixture model or

discriminative: marginal dist. over x and y = sign(f ?(x))
• The estimate f̂n ∈ F depends on (xi , yi)n

i=1 (i.e. is random) and is
in some function class (e.g. linear, neural network etc.)
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Evaluation of an estimator f̂n

Whether f̂n is “good” is decided during test time: On average over
test points (x , y), we’d like the predictions f̂n(x) to be close to y
• We measure “close” via a pointwise loss `,
e.g. `((x , y), f ) = (f (x)− y)2 for regression
or `(x , y ; f ) = 1f (x)=y for classification
• We call the average loss of any function f the population risk
R(f ) := R(f ;P) = E`((x , y); f )
• We further call the training loss of any f the empirical risk
Rn(f ) := R(f ;D) = 1

n
∑n

i=1 `((xi , yi); f ) estimate is
• In the next lectures we’ll consider the empirical risk minimization
paradigm where

f̂n := arg min
f ∈F

Rn(f )
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Evaluation of an estimator f̂n
Q: For classification, is R(f̂n) = 20% bad or good?

A: Depends on how hard the task is! Perhaps it’s not possible to
achieve perfect accuracy!

We should compare population risk of f̂n with that of the best possible
function if we knew the full distribution, i.e. evaluate the excess risk:

ER(n) := R(f̂n)− inf
f
R(f ) ≤ UB(...)

Grab a neighbor: Designate a presenter. Discuss for 5 minutes.

1. How is the population risk of an estimator related to its test error?

2. Which parameters of the problem and algorithm does the excess risk
depend on? What happens to the excess risk of an estimator f̂n
when we vary these parameters? Categorize the phenomena

3. What are tradeoffs when we consider the empirical risk minimizer
f̂n := arg minf ∈F Rn(f )
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Questions on the excess risk
1. Population risk vs. test error
• Test error on n′ new samples follows Rn′(f̂n)→ Rn(f̂n) by law of
large numbers (LLN)

2. Excess risk depends on model class F , dimensionality of the data d ,
sample size n and consists of the following factors and trends
• approximation error (if f ? = arg minf R(f ) is complicated):
larger F , smaller d better

• optimization error (due to optimization algorithm):
Lipschitz, (strong) convex loss ` better

• statistical error (due to finite sample and noise):
larger n (usually) better (depends on F , d as well) of course ← this
course

3. Tradeoffs: Larger F , bigger effect of noise (statistical error) but
smaller approx error (variance vs. bias)
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This course: Non-asymptotic take on statistical
“Guarantees for Machine Learning”

We introduce general frameworks to analyze excess risk and compute
concrete upper (and lower) bounds s.t. with prob. at least 1− δ

R(f̂n)− R(f ?) ≤ UB(n, d ,F , f ?)

where we assume f ? = argminf R(f ) exists.

Questions we’d like to answer:

1. Does UB converge to 0 as n increases? (consistency)

1. If I collect double as much data, how much do I decrease my excess
risk? → boils down to the exponent of n (statistical rate)

This course focuses on 2. We’ll now discuss some probabilistic basics
that give a sense for what to expect from course later.
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Excess risk decomposition
• Recall the population risk R(f ) = E`((X ,Y ); f )
• Recall the empirical risk Rn(f ) = 1

n
∑n

i=1 `((Xi ,Yi); f )
• Remember we want to bound the excess risk

R(f̂n)− R(f ?) = R(f̂n)− Rn(f̂n) +
T3≤0︷ ︸︸ ︷

Rn(f̂n)− Rn(f ?) +Rn(f ?)− R(f ?)
≤ R(f̂n)− Rn(f̂n)︸ ︷︷ ︸

T1

+Rn(f ?)− R(f ?)︸ ︷︷ ︸
T2

Question: Are T1 and T2 qualitatively similarly hard to bound? Is
T3 ≤ 0 always true? Briefly discuss with your neighbor.
• T3 ≤ 0 is only true when f ? ∈ F !
• T1 is harder than T2 since it’s a sum of dependent variables whereas
T2 is difference between an emprical mean and its expectation.
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Concentration bounds for single random variables (R.V.)
• Markov inequality: P(X ≥ t) ≤ EX

t for X ≥ 0;

• Markov used on eλ(X−EX) for λ ≥ 0 yields the Chernoff bound

P(X − EX ≥ t) ≤ inf
λ≥0

E[eλ(X−EX)]
eλt

where the inf is effectively over all λ ≥ 0 where the moment
generating function (MGF) EeλX exists

We can use Chernoff to get tighter bounds for R.V. X with short tails

Definition (Sub-Gaussian random variables)
A random variable X with mean µ is sub-Gaussian w/ parameter σ if

Eeλ(X−µ) ≤ eλ2σ2/2 for all λ ∈ R

• For σ sub-Gaussians using Chernoff we obtain the tail bound

P(X − EX ≥ t) ≤ inf
λ≥0

eλ2σ2
2 −λt = e−

t2
2σ2
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Examples for sub-Gaussian random variables

• Gaussians N (0, σ2) are sub-Gaussian with parameter σ
• Rademacher variables ε = −1,+1 with equal probability 1/2 are
sub-Gaussian with parameter σ = 1
• We can directly compute and bound their MGF

Eeλε = 1
2 (e−λ + eλ) ≤ eλ2/2

• Almost surely bounded in [a, b] (exercise)
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Empirical means of independent subgaussians

Lemma (Hoeffding’s inequality)
For i.i.d sub-Gaussian R.V. Xi , it holds that

P(1n

n∑

i=1
Xi − EX ≥ t) ≤ e−

nt2
2σ2

Neighbor-Q: Prove Hoeffding’s inequality
• Recall sub-Gaussian: Eeλ(X−µ) ≤ eλ2σ2/2 for all λ ∈ R
• Recall Chernoff for sub-Gaussians: P(X − EX ≥ t) ≤ e−

t2
2σ2
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Proof of Hoeffding’s inequality

1. We can apply Chernoff on the mean of n independent random
variables with moment generating function

Eeλ( 1
n

∑n
i=1(Xi−EXi )) =

n∏

i=1
Eeλ

n (Xi−µ) = [Eeλ
n (Xi−µ)]n

1. Hence, the mean of n i.i.d. sub-Gaussian variables is sub-Gaussian
with parameter σ√n since Eeλ( 1

n
∑n

i=1(Xi−EXi )) ≤ e
λ2σ2
2n2 n

1. yielding Hoeffding’s inequality for the mean of iid sub-Gaussians

P(1n

n∑

i=1
Xi − EX ≥ t) ≤ e−

nt2
2σ2

Q: How can we now use Hoeffding’s inequality to bound the term T2?
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Syllabus of course

The courses focuses on bounding T2 using so-called uniform
convergence.

We’ll cover
• uniform convergence using Rademacher and Gaussian complexity
• metric entropy and chaining to bound the complexity
• application to non-parametric regression (kernel methods)
• minimax lower bounds
• theory for overparameterized models
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References
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• MW Chapters 2

Excess risk:
• MW Chapter 4
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