
Lecture 10: NTK and random design
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Announcements

• HW 2 released, due 9.11. 23:59
• HW 1 grades released these days via gradescope

Plan for today
• Prediction error bound for random design
• Add-on: Random features and NTK
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Random design
• So far, we only controlled ‖f̂ − f ?‖2n w.h.p. over observation noise w

‖f̂ − f ?‖2n = R(f̂ )− R(f ?) = Ew
1
n

n∑

i=1
(yi − f̂ (xi ))2 − Ew

1
n

n∑

i=1
w2

i

= 1
n

n∑

i=1
(f̂ (xi )− f ?(xi ))2

• can be bounded using empirical Gaussian complexities via basic
inequality → basic inequality

How does the error look like on the whole domain X ?
Now we view X as random and take expectation also over X , i.e. for
any f ∈ L2(P), we have

‖f − f ?‖22 = R(f )− R(f ?) = EX ,W (Y − f (X ))2 − EW 2

= EX (f (X )− f ?(X ))2 = Ex1,...,xn‖f − f ?‖2n
and want to bound ‖f̂ − f ?‖22 for an estimator f̂
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Prediction error bound for random design - uniform law?
Maybe use ‖f̂ − f ?‖22 − ‖f̂ − f ?‖2n ≤ supf ∈F ‖f − f ?‖22 − ‖f − f ?‖2n
and then plug in previous bound on ‖f̂ − f ?‖2n?
Definition (Rademacher complexity - recap)
Given a function class H and distribution P on its domain Z, we
define the Rademacher complexity as

Rn(H) = Eε,z sup
h∈H

1
n

n∑

i=1
εih(zi )

Theorem (Uniform law - recap)
For b-unif. bounded H with Rn(H) = E supf ∈F

1
n
∑n

i=1 εih(zi )

P(sup
h∈H

Eh − 1
n

n∑

i=1
h(zi ) ≥ 2Rn(H) + t) ≤ e−

nt2
2b2

w/ prob. over the training data. If Rn(H) = o(1), then
suph∈H R(h)− Rn(h) a.s.→ 0.
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Using the uniform law for (uniformly bounded) regression
Partner-Q: Using the uniform law, derive a h.p. upper bound for
‖f̂ − f ?‖22 for linear functions f (x) = 〈w , x〉 with
‖x‖2 ≤ D, ‖w‖2 ≤ B, bounded noise. Use Rademacher contraction

It suffices to bound EX (Y − f̂ (X ))2 = ‖f̂ − f ?‖22 + σ2 using a
uniform law on the generalization error with the square loss

R(f )− Rn(f ) := EX (Y − f̂ (X ))2 − ‖y − f̂ (xn
1 )‖22

First of all, in this setting, by assumption, the loss is uniformly
bounded since |yi − f (xi )| ≤ D′ is bounded by some constant D′.
• Define F̃(zn

1 ) = {(y1 − f (x1), . . . , yn − f (xn)) : f ∈ F} ⊂ Rn

• Then for the square function `sq(u) = u2 for |u| ≤ D′ we have
|`sq(u)− `sq(u′)| ≤ |u2 − u′2| ≤ |u − u′||u + u′| ≤ 2D′|u − u′|,
i.e. `sq is 2D′-Lipschitz

• Then, analogous to the SVM example, we have H(zn
1 ) = `sq ◦ F̃(zn

1 )
and R̃n(H(zn

1 )) ≤ 2D′R̃n(F(zn
1 )) using Rademacher contraction,

and where F is the space of bounded linear functions
5 / 17

Motivating the localized uniform law
• Analogously to the SVM excess risk bound, the uniform law yields a
squared error bound of order O(1/√n) → highly suboptimal!

→ In fact, we can localize the uniform law as well!
• in the sequel, we write g for f − f ? instead of ∆̂ for simplicity
• Indeed, for b-uniformly bounded F?, we can define the critical
inequality on the population localized Rademacher complexity

Rn(F?; δ) = 1
nEX ,ε sup

g∈F ,‖g‖2≤δ

n∑

i=1
εig(xi ) ≤

δ2

16b

• Let δn be a δ that satisfies this inequality.

Now what? Can’t directly use our localization / basic inequality
approach, since that only holds for finite samples!
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Precise statement of localized uniform law
Theorem (Localized uniform law, MW Thm 14.1)
For star-shaped and b−uniformly bounded F?, let δn as defined above.

Then if δ2
n > c log[4 log(1/δn)]

n then w.p. at least 1− c1e−c2
nδ2

n
b2 we have

sup
g∈F?

‖g‖2 − ‖g‖n ≤ cδn

• Note that the condition is not too strong: if δn � 1/n, i.e. we have
the best possible achievable rate, then the inequality is still true for
small enough c (only slightly depending on n), since log log n is
“almost constant”. For δn ≥ ω(1/n), this condition always holds for
large enough n.

Recall in the proof for empirical prediction error:
• For localization we used the basic inequality for the empirical error
• There we had LHS ‖g‖2n with g ∈ F? which we self-bounded by
δn‖g‖n when ‖g‖n > δn
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Proof idea for localized uniform law

• We can do something similar here: we choose ‖g‖22 − ‖g‖2n as our
RHS and will also “self-upper-bound” it
• Observe that the binomial formula yields for any g ∈ F?

‖g‖2 − ‖g‖n = ‖g‖
2
2 − ‖g‖2n

‖g‖2 + ‖g‖n

• Hence the proof goes through either with

a) ‖g‖
2
2−‖g‖2

n
‖g‖2+‖g‖n

≤ δn if ‖g‖2 ≤ δn

b) or supg∈F?,‖g‖2≥δn
‖g‖2

2 − ‖g‖2
n ≤ ‖g‖2δn w.h.p. if ‖g‖2 ≥ δn

(uniformly for all g ∈ F?) yields

We give intuition for the proof of b)
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Proof of b): case ‖g‖2 ≥ δn

For simplicity of the proof, assume b = 1 and hence ‖g‖2 ≤ 1
(general case follows from scaling arguments as last time)

1. Step: For fixed r ≥ δn, bounding supg∈F?,‖g‖2≤r ‖g‖22 − ‖g‖2n (MW
Lemma 14.9.)
• symmetrization and Rademacher contraction for r ≥ δn

E sup
g∈F?,‖g‖2≤r

‖g‖22 − ‖g‖2n ≤ 2E sup
g∈F?,‖g‖2≤r

1
n

n∑

i=1
εig2(xi )

≤ 4E sup
g∈F?,‖g‖2≤r

1
n

n∑

i=1
εig(xi ) ≤ rδn

where the last inequality follows from definition of δn

• we then use Talagrand concentration (MW Thm 3.27) to derive
that w.p ≥ 1− e−cnδ2

n we have supg∈F?,‖g‖2≤r ‖g‖22 − ‖g‖2n ≤ rδn
2
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Proof of b): case ‖g‖2 ≥ δn
2. Step: If we could plug in r = ‖g‖2 we’d be done, but above h.p.

bound only holds for fixed r !
• Use peeling argument like before and split
S := {supg∈F?,‖g‖2≥δn

‖g‖22 − ‖g‖2n ≥ ‖g‖2δn} into sub-events:
Sm = {‖g‖2 ∈ [tm−1, tm]} where tm = 2mδn. In particular, by
uniform boundedness ‖g‖2 ≤ 1, we have that S ⊂ ⋃M

m=1{S ∩ Sm}
with M = 4 log(1/δn)

• using supg∈F?,‖g‖2≤r ‖g‖22 − ‖g‖2n ≤ rδn
2 with r = tm and using

union bound gives

P(S) ≤
M∑

m=1
P(S ∩ Sm) ≤

M∑

m=1
P( sup

g∈F?,‖g‖2≤tm
‖g‖22 − ‖g‖2n ≥

tmδn
2 )

≤
M∑

m=1
e−cnδ2

n ≤ e−cnδ2
n+log M ≤ e−cnδ2

n
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Kernel → feature maps (unbounded, translation-invariant)

We saw some examples for RKHS and their kernels with compact
supports (e.g Sobolev spaces). What if domain is non-compact?

Consider RBF kernels K(x , y) = h(x − y)

Theorem (Bochner: feature maps for translation-invariant kernels)
If K(x , y) = h(x − y) with h continuous and x , y ∈ Rd , then there is
a unique, finite, non-negative measure µ on Rd such that

h(t) =
∫

Rd
e−i〈t,ω〉µ(dω)

Reminiscent of the Fourier basis, we call µ spectral measure, and if it
has a density, we call s(ω)dω = µ(dω) the spectral density
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Kernels as expectations

For Gaussian kernels K(x , y) = e−
‖x−y‖22

2σ2 on Rd where Bochner holds

with s(ω) =
(

2π
σ2

)−d/2
e−

σ2‖ω‖22
2 (Fourier transform)

• For feature maps φ(ω; x) = e−i〈x ,ω〉, we can rewrite the kernel as an
expectation over measure µ(dω) = s(ω)dω, i.e.

K(x , y) = Eω∼µφ(ω; x)φ(ω; y) = 〈φ(·; x), φ(·; y)〉L2(µ)

proof by completing the square

The corresponding kernel space FK can be described as follows:
• kernel space
FK = {f : f (x) =

∫
f̃ (ω)e−i〈x ,ω〉µ(dx) = 〈f̃ , φ〉L2(µ), f̃ ∈ L2(µ)}
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Kernels as expectations → random features

• Instead of the true expectation, can approximate/unbiased estimate
K via empirical expectation P̂m over m samples of ωj from µ

K̂(x , y) = Eω∼P̂m
φ(ω; x)φ(ω; y) := 1

m

m∑

j=1
φ(ωj ; x)φ(ωj ; y)

• w/ (approx) m-dim feature map
φ̂(x) = 1√m (φ(ω1; x), . . . , φ(ωm; x))

• can then again define the induced RKHS
FK̂ = {f : f = 1

m
∑m

j=1 f̃ (ωj)φ(ωj ; x), f̃ ∈ H}
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Random features ’ctd
Theorem (Approximation for random features, Rahimi Recht ’08)
For f = Eω∼µf̃ (ω)φ(ω; ·) ∈ FK with ‖f̃ ‖∞ ≤ C, define
f̂ = Eω∼P̂m

f̃ (ω)φ(ω; ·) ∈ FK̂. Then w/ prob. ≥ 1− δ we have

‖f̂ − f ‖2L2(P) ≤
C√m (1 +

√
2 log 1/δ).

• Proof via McDiarmid + Jensen’s (on the expectation of norms) (see
Percy Liang’s notes)
• ∞-dim to n-dim to m-dim problem, since we can just solve linear
problem by expressing f (xn

1 ) = Φα with α ∈ Rm

→ choosing m too small gets bad approx. error. In practice would
choose ∼ n (statistical error), so no real computational gain if no
additional structural assumptions are made on FK
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Example: two-layer fully-connected NN
• Taylor “linearization” around initialization of width-m 2-layer NN
fNN(x) = 1√m

m∑

j=1
ajσ(〈wj , x〉) ≈

1√m
m∑

j=1
a0,jσ(〈w0,j , x〉)

+
∑

j

(aj − a0,j)√m σ(〈w0,j , x〉)
︸ ︷︷ ︸

T1(x)

+
∑

j
(wj − w0,j)>(a0,jxσ′(〈w0,j , x〉))

︸ ︷︷ ︸
T2(x)

where w0,j
i .i .d .∼ µw , a0,j

i .i .d .∼ µa at initialization, w/ non-linearity σ
• T1 ∈ FRF := {f1 : f1(x) = 1√m

∑m
j=1 sjσ(〈w0,j , x〉), s ∈ Rm}

with feature maps φj(x) = σ(〈w0,j , x〉) → FRF has kernel
K̂(x , y) = 1

m
∑m

j=1 σ(〈w0,j , x〉)σ(〈w0,j , y〉) that approximates
K(x , y) = Eµwσ(〈w0,j , x〉)σ(〈w0,j , y〉) as the layer width m→∞

• T2 ∈ FNTK := {f2 : f2(x) = 1√m
m∑

j=1
v>j (a0,jxσ′(〈w0,j , x〉)), vj ∈

Rd} with feature maps φij = xia0,jσ′(〈w0,j , x〉), i ∈ [d ], j ∈ [m]
→ FNTK has kernel K̂(x , y) = 1

m
∑m

j=1 x>yσ′(〈w0,j , x〉)σ′(〈w0,j , y〉)
that approximates K(x , y) = Eµw x>yσ′(〈w0,j , x〉)σ′(〈w0,j , y〉) 15 / 17

Idea:
• FRF corresponds to class where first layer stays fixed at initialized
value, second layer trainable, and FNTK vice versa
• sum of both kernels yields another kernel and hence forms a “new”
RKHS F = FRF ⊕FNTK

→ You could say, optimizing 2-layer NN ≈ optimizing loss in RKHS
(→ analyzable!)
• linear expansion is only good when ‖wj − w0,j‖ small → people
show for large enough width changes are indeed small
• just showed that infinite-width limit kernels “make sense” (check
out arc-cosine kernel)
• infinite width is far from what we use → people are trying to show

optimization and generalization results for poly or logarithmic in n, d
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