Lecture 10: NTK and random design
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Announcements

® HW 2 released, due 9.11. 23:59
® HW 1 grades released these days via gradescope
Plan for today

® Prediction error bound for random design

® Add-on: Random features and NTK
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Random design
® So far, we only controlled ||f — f*||2 w.h.p. over observation noise w

~ N —~ . 1 n
|f —f H%ZR(f)—R(f)ZEWEZ(y—fx, ~E _ZW

i=1
= L3 (Fla) — ()2
i=1

® can be bounded using empirical Gaussian complexities via basic
inequality — basic inequality

How does the error look like on the whole domain X7

Now we view X as random and take expectation also over X, i.e. for
any f € L2(PP), we have
If = 13 = R(f) = R(f*) = Exw(Y — f(X))* - EW?
= Ex(f(X) = F*(X))* = Exy,..[If = £

and want to bound ||f — £*||2 for an estimator f
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Prediction error bound for random design - uniform law?
Maybe use ||f — F*||3 — | — F*[|2 < supper | — F*[3 = [If — ]2
and then plug in previous bound on ||f — f*||2?

Definition (Rademacher complexity - recap)

Given a function class ‘H and distribution P on its domain Z, we
define the Rademacher complexity as

Rn(H) =E., I?lejft Ze h(z)

G

-

Theorem (Uniform law - recap)
For b-unif. bounded H with Rn(H) = Esuprer = 371 €ih(z;)

nt2
P(sup Eh — = Z h(zi) > 2Ra(H) +t) < e 212
heH i=1

w/ prob. over the training data. If R,(H) = o(1), then
SUPpen R(h) — Rn(h) EE) 0

-
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Using the uniform law for (uniformly bounded) regression

Partner-Q: Using the uniform law, derive a h.p. upper bound for
|f — £*||3 for linear functions f(x) = (w, x) with
|1x||]2 < D, ||w||2 < B, bounded noise. Use Rademacher contraction

It suffices to bound Ex(Y — f(X))2 = ||f — f*||3 + o2 using a
uniform law on the generalization error with the square loss
R(f) = Ra(f) 1= Ex(Y — f(X))* = lly — fF(x0)|I3

First of all, in this setting, by assumption, the loss is uniformly
bounded since |y; — f(x;)| < D’ is bounded by some constant D'.

e Define F(z7) = {(y1 — f(x1),--.,yn— f(xn)) : f € F} CR"

® Then for the square function £s,(u) = u? for |u| < D' we have
[sq(u) = lsg(u)] < |0? — u?| < |u— u'lJu+ /| < 2D'|u — /],
i.e. Usq is 2D'-Lipschitz

® Then, analogous to the SVM example, we have H(z]) = £sg 0 F(2])
and R,(H(z])) < 2D'R,(F(z{)) using Rademacher contraction,

and where F is the space of bounded linear functions 17

Motivating the localized uniform law

® Analogously to the SVM excess risk bound, the uniform law yields a
squared error bound of order O(1/+/n) — highly suboptimal!

— In fact, we can localize the uniform law as well!
® in the sequel, we write g for f — f* instead of A for simplicity

® |ndeed, for b-uniformly bounded F*, we can define the critical
inequality on the population localized Rademacher complexity

1 . 52
Rn(F*0)=—-Ex. sup eig(x) < —
’ D 165
® Let §, be a § that satisfies this inequality.

Now what? Can't directly use our localization / basic inequality
approach, since that only holds for finite samples!
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Precise statement of localized uniform law
Theorem (Localized uniform law, MW Thm 14.1)

For star-shaped and b—uniformly bounded F*, let &, as defined above.
_ - no>
Then if 5- > clog[Moi(l/(S”)] then w.p. at least 1 — cie 25 we have

sup llgll2 — llglln < cd,
geF*

-

® Note that the condition is not too strong: if Op = 1/n, i.e. we have
the best possible achievable rate, then the inequality is still true for
small enough ¢ (only slightly depending on n), since loglog n is
“almost constant”. For §, > w(1/n), this condition always holds for

large enough n.
Recall in the proof for empirical prediction error:
® For localization we used the basic inequality for the empirical error

® There we had LHS ||g||? with g € F* which we self-bounded by
Onl|glln when ||g[[n > dn 1

Proof idea for localized uniform law

® We can do something similar here: we choose ||gl||5 — ||g||? as our
RHS and will also “self-upper-bound” it

® Observe that the binomial formula yields for any g € F~*

gl — llgli3
lgll2 + |lg]ln

lgll2 — llglln =

® Hence the proof goes through either with

a) leli3—llgll2 <3, if gl < 5,

Tell+Tglln ) ) _ —

(uniformly for all g € F*) yields

We give intuition for the proof of b)
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Proof of b): case ||g|]>» > ¢,

For simplicity of the proof, assume b =1 and hence ||g|[» <1
(general case follows from scaling arguments as last time)

1. Step: For fixed r > §,,, bounding SUPgcF+ |lglo<r g3 — llgll? (MW
Lemma 14.9.)

® symmetrization and Rademacher contraction for r > 6,

1 n
E sup gllz—lella<2E  sup =) eig’(xi)
gEF* |gl2<r gEF* |lgl<r M3
1 —
< 4K sup — Ze,-g(x,-) < rd,

gEF* |lgl<r N7

where the last inequality follows from definition of ¢,

® we then use Talagrand concentration (MW Thm 3.27) to derive
_2 j—
—cnd 2 2 5n
that w.p > 1 — e we have sup,cr+ g1,<r €12 — llgll5 < 32
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Proof of b): case ||g|]> > ¢,

2. Step: If we could plug in r = ||g||> we'd be done, but above h.p.
bound only holds for fixed r!

® Use peeling argument like before and split
5 = A{sup ez g5, lgll3 — llgll2 > |lgll20n} into sub-events:
Sm={llgll2 € [tm-1, tm]} wWhere t,, =2™5,. In particular, by
uniform boundedness ||g|» < 1, we have that S c UY_,{Sn S}
with M = 4log(1/6,)

® UsiNg SUPgc r ||g|l<r lgl3 - llgll? < g” with r = t,, and using

union bound gives

M M <

tmo
P(S)< D P(SNSm)< Y P( sup igllz—llgllz = =57)
m=1 m=1 8EF*,|lgl|25tm
% cng2 cng2 +log M cng2
< e T <e W < e “n
m=1
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Kernel — feature maps (unbounded, translation-invariant)

We saw some examples for RKHS and their kernels with compact
supports (e.g Sobolev spaces). What if domain is non-compact?

Consider RBF kernels K(x,y) = h(x — y)

Theorem (Bochner: feature maps for translation-invariant kernels)

If K(x,y) = h(x — y) with h continuous and x,y € RY, then there is
a unique, finite, non-negative measure » on RY such that

h(t) = /R et ()

Reminiscent of the Fourier basis, we call i spectral measure, and if it
has a density, we call s(w)dw = u(dw) the spectral density

J/
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Kernels as expectations

Ix=yl13
For Gaussian kernels IC(x,y) = e 202 * on RY where Bochner holds

d 2 2
_ o\ —d/2 _Plwl3 _
with s(w) = (;) e” 2 (Fourier transform)

® For feature maps ¢(w; x) = e_i<X"”>, we can rewrite the kernel as an
expectation over measure p(dw) = s(w)dw, i.e.

K(x,y) = Eonpd(w; x)p(w; y) = (@ x), &(5 ¥)) c2(p0)
proof by completing the square

The corresponding kernel space Fx can be described as follows:

® kernel space ) _ ) )
Jic = {f : f(X) — f f(w)e_l<x’w>/“l'(dx) — <f7 ¢>L‘2(,u)7 fe ‘62(”)}
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Kernels as expectations — random features

® Instead of the true expectation, can approximate/unbiased estimate
K via empirical expectation [P,, over m samples of w; from p

R(xy) = Byp, 0w )0(wiy) = D 6wy x)0(w5: )
j=1

°* w/ (approx) m-dim feature map
(x

H(x) = o (d(wiix), -, $lwmi x))

® can then again define the induced RKI:IS
Fe=A{f:f==L3" f(w)o(wj;x), f € H}
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Random features 'ctd

Theorem (Approximation for random features, Rahimi Recht '08)

For f = EWNMN(w)qb( .-) € Fic with ||f||ec < C, define
f= p f(w)d(w;-) € Fp. Then w/ prob. > 1 — 4 we have

- C
If = FlIZ2p) < \/—m(l +1/2log1/9).

® Proof via McDiarmid + Jensen's (on the expectation of norms) (see
Percy Liang's notes)

- J

® oo-dim to n-dim to m-dim problem, since we can just solve linear
problem by expressing f(x{') = ®a with a € R™

— choosing m too small gets bad approx. error. In practice would
choose ~ n (statistical error), so no real computational gain if no
additional structural assumptions are made on Fx
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Example: two-layer fully-connected NN
® Taylor I|near|zat|on around |n|t|aI|zat|on of width-m 2-layer NN

fun(x) = Zaj (wj, x ZaO,JU wo j, X))

(aj — a0,) T
+> J\/ﬁ o ((wo,j, x +Z —wo,j) (a0x0"({wo, x)))
j 7 7
j.i.d T;(X)id e T;(X). ,
where wpj '~ pw, a0 '~ pa at initialization, w/ non-linearity o
° Ty € Frr={fi:fi(x) = 7= Y11 s0((moyx)),s € R™}
with feature maps ¢j(x) = o({wo, X)) — Frr has kernel

K(x,y) = im10({woj,x))o({wo,y)) that approximates
K(x,y) = EMWO'(<W0,J,X>)O'(<WOJ',)/>) as the layer width m — oo

* Ta€ Fum = {6 = 5 & e (wnyx)) v €

R} with feature maps ¢;; = X,aoj(f (<W0J, x)), i € [d],j € [m]
— FnTk has kernel IC(X y) = 1 mox'yo "((wo j, x))o" ({wo j, y))
that approximates K(x, y) = Euwx ya’((wo,J, x))o' ({(woj,y)) 1517

Idea:

® Frr corresponds to class where first layer stays fixed at initialized
value, second layer trainable, and FyTxk vice versa

® sum of both kernels yields another kernel and hence forms a “new”
RKHS F = Frr ® FnTK

— You could say, optimizing 2-layer NN = optimizing loss in RKHS
(— analyzable!)

® linear expansion is only good when ||w; — wp j|| small — people
show for large enough width changes are indeed small

® just showed that infinite-width limit kernels “make sense” (check
out arc-cosine kernel)

® infinite width is far from what we use — people are trying to show
optimization and generalization results for poly or logarithmic in n, d
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