L ecture 11: Minimax lower bounds
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Announcements

® Homework 2 was due last night, solutions out today

® Please fill out your oral exam availabilities sent out in email, taking
place 20.11./21.11. 9 am - 5 pm

® mark all slots where you do not have a strict conflict
® exams are 20 minutes long
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Recap: Upper bound for random design

We considered the non-parametric regression setting Y = *(X) + w

We view X as random and take expectation also over X, i.e. for any
f € L2(P), we have

If — F513 = R(F) = R(F) = Exw(Y — F(X))? — EW?
= Ex(f(X) = (X))? = Ex.a|f — F*1I5

and want to bound ||f — f*||3 for an estimator f

Theorem (Localized uniform law, MW Thm 14.1)

For star-shaped and b—uniformly bounded F*, let 0, be population
critical radius. Then ifgi > clogld loi(l/(s”)] then w.p. at least

1—cre @5 we have supger+ |1&ll2 — [1glln < cdn

- J

For bounded domains, we can then plug in g = f— f*, use the h.p.
upper bound for the empirical error ||f — £*||2 < U(n) and obtain
w.h.p

If = £*II5 < U(n) + cd,
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Estimation task

® Let P be a set of probability distributions on (X, )),
can then view a quantity of interest to be a mapping F acting on a
probability distribution (outputting a function or parameter)

® For today, we consider each Pr € P defined via y = f*(x) + w
(either y or both x, y random), for different f* € F but fixed
distributions over x and noise w and the object of interest could be
F(P)(x) = E[Y|x] = f*(x).

® View estimating procedure/algorithm for F(IP) as
a mapping A : (X x ))" — F from dataset to space of functions,
where D = {(x;, yi)}_; with (x;, y;) ~ P, outputting fp = A(D)

® So far we've seen: Error bounds of the type ||fp — F*[|2 < O(n~)

Pair-Q: Discuss with your neighbor: What is a reasonable notion of
optimality of an algorithm that a practitioner might care about?
Today: Compare to what's the best possible (optimal) given the data?
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Minimax risk
Definition (Minimax risk)

The minimax risk or error of estimating the mapping F : Pr — F in
some squared metric || - ||2 is defined as

M(F(P), || - 1) = inf sup Eppn|A(D) — F(P)|*
A PePr

® D ={(xi,yi)}—{ hasi.i.d. samples from P" — A(D) is random

® Note that more generally F can also be a parameter space for
parameterized function classes (as we will see next lecture)

® Here A is not constrained to any particular procedure (could be
minimization of risk but also something else) but “knows” to search
in set F that induces Pr

® Here we consider deterministic (i.e. not random) algorithms A

® could use as || - || standard metric of F (see MW Chapter 15)

5/19

Minimax lower bounds
What do we learn if we could obtain 9(F(P),] - ||?) > O(n=%)?

® no estimator (knowing Pr or, equivalently, F and ) can achieve
smaller risk (for their resp. hardest case)

® if upper bound of an estimation procedure matches lower bound:
® practically we don't need to waste time looking for “better”

® if we want to do better in the worst case

This class: Find lower bounds for the minimax risk as large
as possible for given P, F

® From estimation to “testing” / classification

® Fano's method: bounding the probability of testing error via mutual
information (M)

® Upper bounding Ml using Yang-Barron

® Examples: non-parametric regression on Sobolev functions
6/19




Main idea: From estimation to testing (intuition)

e Consider M finite functions f' spread across F s.t. pairwise
distances > 26 (e.g. in a packing set of F)

e If A can find f (black dot) that is & close to any true f* € F
— if data is drawn from f/, A induces a test that correctly identifies
fi by choosing the closest f' (blue dot) to the estimated f
— no “testing” error

® As we want a lower bound on estimation, can reverse the argument

— Problem reduces to: given n points, what's the smallest possible ¢
so that we can distinguish from which f' the data was drawn?
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Main idea: from estimation to testing
We sometimes write fp = A(D), omitting A subscript. Define

® For any M let {f'}M. be a set of functions in F
® For each f € F, define Pz as a unique distribution with F(Pz) = f

® Define the mixture distribution Qp for D, J by defining

1. J a uniform R.V. (flat “prior") with values in [M] ={1,..., M},

i.e. Qu(J =j) =4 for all j
2. and drawing random i.i.d. datapoints D = {(X;, Y;)}/_; from P7,
i.e. Qu(D|J =j) =P§

® Decision / Testing functions of form ¢ : (X x V)" — [M]
Lemma (Estimation vs. testing, MW Prop 15.1)

Choose {f"},/\i(fé) to be a 20-packing of F in the || - || metric so that
M(20) < M(26; F,| - ||), then

inf sup Ep.p[ A(D) — F(P)[|* > 6% inf Quas) (v(D) # J)
PeP (G
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Proof of Lemma
Omitting Qv subscript, define ¥ 4(D) := arg min;cppy [A(D) — /||

1. Markov's inequality yields
Ep|A(D) — F(P)||* > 6*P(|lA(D) — F(P)|I* > &%)
= 8°P(|lA(D) — F(P)]| > o)
2. Key link between estimation and “testing” (via intuition sl. 8):
QUIAMD) — )] < 6}lJ = i) < Q{a(D) = i}|J = i)

because for any f € F such that ||f — f/|| < &, for any j # i
we have ||[f — || > ||F/ — F'|| = ||[f — F'|| > 6 — Ya(D) =i
3. Then the Lemma follows by the distribution of J

1.
62 sup Ep~ellA(D) — F(P)* > gggp"(\lfl(@) — F(P)[| > 9)

>— ST PLJAMD) — £l > 8) = Y QU = NQUA(D) — f]| > §]J =
’E[M] i€[M]
2 3" QU = )0({1a(D) £ iHJ = ) = Q({pu(D) £ 1) |
ie[M] 9/19

Lower bounding Q(v)(D) # J) with Fano's method

For simplicity assuming densities of joint and conditional distributions:

Definitions (Entropy and mutual information)

For any two R.V. X, Y with joint probability distribution P define
® the entropy H(X,Y) = —Eplog p(X, Y)

® the conditional entropy H(X|Y) = —Ep log p(X|Y)

® the mutual information I(X,Y) = H(X) — H(X]Y)

- J

Intuitively (imprecise):

® H(X|Y): uncertainty “left” about X if value of Y were known
® /(X,Y): information of X in Y and vice versa

Theorem (Fano's method, MW Sec 15.4.)

For some M € N and {f"}M, let Qus be a mixture distribution as in
slide 9. Then for any deCIS/on/test/ng function ), it holds that

(D, J) + log 2
m(D) #J) > 1— og M
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Proof of Theorem (Fano's method)
Define Bernoulli Ey, = 1)y with Qu(Ey = 1) = Qum(¥(D) # J)

1. We first establish Fano's inequality after which the proof is trivial
H(J|D) < H(Ey) + Qum(¢(D) # J) log(M — 1)
® Proof: First, by Bayes' theorem and def. of conditional expectations

H(Ey|J, D) +H(J|D) = H(J, E4|D) = H(J|Ey, D) + H(E,|D)
=0 <H(Ey)

® Proof then follows from
H(J\E¢,D) = f-I(J\Ew = O,D)j@(Ew = O)—I—!‘I(J\E¢ = 1,D)/Q(E¢, =1)

=0 <log(M—-1)

2. Since E;, Bernoulli H(Ey) < log 2 for all ¢
and since J uniform H(J) = log M

3. Using Fano's inequality and H(J|D) = H(J) — I(D, J) yields Thm.
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Fano's method to lower bound minimax risk

® \We would like to ultimately plug in Fano's lower bound into the
lemma.

® |f we choose {f"},l\i(lzé) to be a 26-packing as in Lemma we can plug

in M = M(25) < M(25; F, | - ||) to get

(D, J) + log 2
log M(20)

Qumes)(Y(D) #J) > 1 -

® |If § is chosen such that /(D, J) ~ log M(20) then the Lemma
implies a lower bound of order 62

® This might or might not be a tight lower bound (if it matches some
algorithm dependent upper bound, you're in luck)
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Upper bounding the mutual information
® To bound the mutual information we recall the

Definition (Kullback-Leibler divergence)
The KL divergence between any two probability distributions P,

KL(P || Q) = Eplog -~

® We can write I(D, J) = KL(Q || @pQ,) and then for g densities of

Q, we have .y
E,Ep log q—1|> = E,KL(Qpyy || Qp)

1 M 1 M
= MZ KL(P: || MZ]P)?J')
i=1 j=1

® The next theorem bounds the mutual information in Fano's method.

Theorem (Yang-Barron, MW Lemma 15.21)

(D, J) < inf e + log N'(e?; P", KL)
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Summary: One recipe for minimax lower bounds

Recipe for using Yang-Barron 4+ Fano to get lower bounds:
1. Choose € such that €2 > log N'(e?; P", KL)
2. Choose § such that log M(25; F, || - ||) > 4€® + 2log 2

3. Hence 1 — % > % and via Fano's method

52

N| =

inf sup Ep||A(D) — F(P)[* >
A pep
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Minimax prediction error for estimating Sobolev functions

Example: Sobolev functions 7 = W3 ([0,1]) with

® Consider the family of distributions Px generated via: X ~ U([0, 1])
and y = f*(x) + w with standard normal w and f* € W$([0,1]) so
that conditional distribution Y|x ~ N(f(x),o?) (our
non-parametric regression setting)

® We're interested in estimating f* = Ep[Y|x] and evaluate it via the
£2([0,1]) norm

® Recall upper bounds for constrained kernel regression
~ 2a
o whp. [[f -2 < O(Z)™T (HW 2)

o f—f*is uniformly bounded by reproducing property and Hilbert
norm constraint — MW Thm 14.1. and MW Prop 14.25 yields

1f = 112201y < O )
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Minimax prediction error for estimating Sobolev functions

Corollary (Minimax error for Sobolev function estimation)

Writing || - ||2 :== || - HLQ([O 1) We have for 7 larger than a constant
5 2 22a1
a+
\ M(F(P), |- 1) = O(=) )

Proof of Corollary

a) Writing out the conditional distribution we have for n =1

1
KL(Pr || Pg) = 5 5Er,g°(X) — F2(X) + 2(f(X) — g(X))Y
LBy g2(X) — £2(X) + 2(F(X) — g(X))F(x) = LTl
=5 3 Ee,82(X) — () + 27(X) ~ g(X))F(X) = 1= &

b) For n samples we have an extra factor of n, since for z; = (x;, ;)

n n ZI ;

(e #g) = [T przs 1T 272 (e

j= 1Pg( )

= Z/Pf(z, log 2 Z’; (dzj) = Hf205H2
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Proof ctd’

c) Hence N(¢% P", KL) = N (<22, W5 ([0, 1]), | - [1»)

d) Using the result in next slide about covering number of Sobolev
spaces

® Using log V'(5; W'([0,1]), ] - I3) = O(%)Y/* and 1. in slide 15 we

require
n )%6_1/04 N 6220<1)T1+1

= (202

® Recalling that M(20) > N(29) and using 2. in slide 15, it suffices to
require

1
@

n 2alﬁ 5
>c[(;) —|—2Iog2] =

|
o
~
J/
N
Q
+
=

—

Sa| =
N
|

2 -
for "7 smaller than a universal constant.

e) Hence by 3. (Fano's method) || — 220y 2 O(O'_;) oo
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Metric entropy for higher order Sobolev spaces (bonus)

Lemma (Metric entropy for a-order compact Sobolev spaces)
th holds that log N'(8; W ([0, 1]), || - 2) = O(%)=. J

Proof steps
Define £, = {0 € ¢»(N) : Zj’iljzo@f <1}
1. First observation: N(3; Ws([0,1]), ]| - ||13) = N(5; Ea, || - ()

®* Note that by Mercer's Theorem, we can write for some orthonormal
basis in || - [2 W5 ([0,1]) = {f : f =3 7=, 0;¢; for 0 € E,}

® Kernel operator eigenvalues decay as j2“ (hinges on spectra of
differential operators that we won't prove)

® Because ¢; are orthonormal in | - |2 norm we have [|f]|3 = [|0¢]1%y,

1
o

2. MW Example 5.12. proves log N'(; &, || - [le2qy)) < O(%) O
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