Lecture 11: Minimax lower bounds

Announcements

- Homework 2 was due last night, solutions out today
- Please fill out your oral exam availabilities sent out in email, taking place 20.11./21.11. 9 am - 5 pm
- mark all slots where you do not have a strict conflict
- exams are 20 minutes long

Recap: Upper bound for random design

We considered the non-parametric regression setting $Y=f^{\star}(X)+w$
We view X as random and take expectation also over X, i.e. for any $f \in \mathcal{L}^{2}(\mathbb{P})$, we have

$$
\begin{aligned}
\left\|f-f^{\star}\right\|_{2}^{2} & =R(f)-R\left(f^{\star}\right)=\mathbb{E}_{X, W}(Y-f(X))^{2}-\mathbb{E} W^{2} \\
& =\mathbb{E}_{X}\left(f(X)-f^{\star}(X)\right)^{2}=\mathbb{E}_{x_{1}, \ldots, x_{n}}\left\|f-f^{\star}\right\|_{n}^{2}
\end{aligned}
$$

and want to bound $\left\|\hat{f}-f^{\star}\right\|_{2}^{2}$ for an estimator \widehat{f}

Theorem (Localized uniform law, MW Thm 14.1)

For star-shaped and b-uniformly bounded \mathcal{F}^{\star}, let $\bar{\delta}_{n}$ be population critical radius. Then if $\bar{\delta}_{n}^{2}>c \frac{\log \left[4 \log \left(1 / \bar{\delta}_{n}\right)\right]}{n}$ then w.p. at least $1-c_{1} e^{-c_{2} \frac{\bar{\delta}_{n}^{2}}{b^{2}}}$ we have $\sup _{g \in \mathcal{F} *}\|g\|_{2}-\|g\|_{n} \leq c \bar{\delta}_{n}$
For bounded domains, we can then plug in $g=\widehat{f}-f^{\star}$, use the h.p. upper bound for the empirical error $\left\|\widehat{f}-f^{\star}\right\|_{n}^{2} \leq U(n)$ and obtain w.h.p

$$
\left\|\widehat{f}-f^{\star}\right\|_{2}^{2} \leq U(n)+c \bar{\delta}_{n}
$$

Estimation task

- Let \mathcal{P} be a set of probability distributions on $(\mathcal{X}, \mathcal{Y})$, can then view a quantity of interest to be a mapping F acting on a probability distribution (outputting a function or parameter)
- For today, we consider each $\mathbb{P}_{\mathcal{F}} \in \mathcal{P}$ defined via $y=f^{\star}(x)+w$ (either y or both x, y random), for different $f^{\star} \in \mathcal{F}$ but fixed distributions over x and noise w and the object of interest could be $F(\mathbb{P})(x)=\mathbb{E}[Y \mid x]=f^{\star}(x)$.
- View estimating procedure/algorithm for $F(\mathbb{P})$ as a mapping $\mathcal{A}:(\mathcal{X} \times \mathcal{Y})^{n} \rightarrow \mathcal{F}$ from dataset to space of functions, where $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ with $\left(x_{i}, y_{i}\right) \sim \mathbb{P}$, outputting $\widehat{f}_{\mathcal{D}}=\mathcal{A}(\mathcal{D})$
- So far we've seen: Error bounds of the type $\left\|\widehat{f}_{\mathcal{D}}-f^{\star}\right\|_{2}^{2} \leq O\left(n^{-\alpha}\right)$ Pair-Q: Discuss with your neighbor: What is a reasonable notion of optimality of an algorithm that a practitioner might care about?
Today: Compare to what's the best possible (optimal) given the data?

Minimax risk

Definition (Minimax risk)

The minimax risk or error of estimating the mapping $F: \mathcal{P}_{\mathcal{F}} \rightarrow \mathcal{F}$ in some squared metric $\|\cdot\|^{2}$ is defined as

$$
\mathfrak{M}\left(F(\mathcal{P}),\|\cdot\|^{2}\right)=\inf _{\mathcal{A}} \sup _{\mathbb{P} \in \mathcal{P}_{\mathcal{F}}} \mathbb{E}_{\mathcal{D} \sim \mathbb{P}^{n}}\|\mathcal{A}(\mathcal{D})-F(\mathbb{P})\|^{2}
$$

- $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ has i.i.d. samples from $\mathbb{P}^{n} \rightarrow \mathcal{A}(\mathcal{D})$ is random
- Note that more generally \mathcal{F} can also be a parameter space for parameterized function classes (as we will see next lecture)
- Here \mathcal{A} is not constrained to any particular procedure (could be minimization of risk but also something else) but "knows" to search in set \mathcal{F} that induces $\mathcal{P}_{\mathcal{F}}$
- Here we consider deterministic (i.e. not random) algorithms \mathcal{A}
- could use as $\|\cdot\|$ standard metric of \mathcal{F} (see MW Chapter 15)

Minimax lower bounds

What do we learn if we could obtain $\mathfrak{M}\left(F(\mathcal{P}),\|\cdot\|^{2}\right) \geq O\left(n^{-\alpha}\right)$?

- no estimator (knowing $\mathcal{P}_{\mathcal{F}}$ or, equivalently, \mathcal{F} and) can achieve smaller risk (for their resp. hardest case)
- if upper bound of an estimation procedure matches lower bound:
- practically we don't need to waste time looking for "better"
- if we want to do better in the worst case

This class: Find lower bounds for the minimax risk as large as possible for given \mathcal{P}, F

- From estimation to "testing" / classification
- Fano's method: bounding the probability of testing error via mutual information (MI)
- Upper bounding MI using Yang-Barron
- Examples: non-parametric regression on Sobolev functions

Main idea: From estimation to testing (intuition)

- Consider M finite functions f^{i} spread across \mathcal{F} s.t. pairwise distances $>2 \delta$ (e.g. in a packing set of \mathcal{F})
- If \mathcal{A} can find \widehat{f} (black dot) that is δ close to any true $f^{\star} \in \mathcal{F}$ \rightarrow if data is drawn from f^{j}, \mathcal{A} induces a test that correctly identifies f^{j} by choosing the closest f^{i} (blue dot) to the estimated \widehat{f} \rightarrow no "testing" error

- As we want a lower bound on estimation, can reverse the argument
\rightarrow Problem reduces to: given n points, what's the smallest possible δ so that we can distinguish from which f^{i} the data was drawn?

Main idea: from estimation to testing
We sometimes write $\widehat{f}_{\mathcal{D}}=\mathcal{A}(\mathcal{D})$, omitting \mathcal{A} subscript. Define

- For any M let $\left\{f^{i}\right\}_{i=1}^{M}$ be a set of functions in \mathcal{F}
- For each $\tilde{f} \in \mathcal{F}$, define $\mathbb{P}_{\tilde{f}}$ as a unique distribution with $F\left(\mathbb{P}_{\tilde{f}}\right)=\tilde{f}$
- Define the mixture distribution \mathbb{Q}_{M} for \mathcal{D}, J by defining

1. J a uniform R.V. (flat "prior") with values in $[M]=\{1, \ldots, M\}$, i.e. $\mathbb{Q}_{M}(J=j)=\frac{1}{M}$ for all j
2. and drawing random i.i.d. datapoints $\mathcal{D}=\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}$ from $\mathbb{P}_{f j}^{n}$, i.e. $\mathbb{Q}_{M}(\mathcal{D} \mid J=j)=\mathbb{P}_{f j}^{n}$

- Decision / Testing functions of form $\psi:(\mathcal{X} \times \mathcal{Y})^{n} \rightarrow[M]$

Lemma (Estimation vs. testing, MW Prop 15.1)

Choose $\left\{f^{i}\right\}_{i=1}^{M(2 \delta)}$ to be a 2δ-packing of \mathcal{F} in the $\|\cdot\|$ metric so that $M(2 \delta) \leq \mathcal{M}(2 \delta ; \mathcal{F},\|\cdot\|)$, then

$$
\inf _{\mathcal{A}} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathcal{D} \sim \mathbb{P}}\|\mathcal{A}(\mathcal{D})-F(\mathbb{P})\|^{2} \geq \delta^{2} \inf _{\psi} \mathbb{Q}_{M(2 \delta)}(\psi(\mathcal{D}) \neq J)
$$

Proof of Lemma

Omitting \mathbb{Q}_{M} subscript, define $\psi_{\mathcal{A}}(\mathcal{D}):=\arg \min _{i \in[M]}\left\|\mathcal{A}(\mathcal{D})-f^{i}\right\|$

1. Markov's inequality yields

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\|\mathcal{A}(\mathcal{D})-F(\mathbb{P})\|^{2} & \geq \delta^{2} \mathbb{P}\left(\|\mathcal{A}(\mathcal{D})-F(\mathbb{P})\|^{2} \geq \delta^{2}\right) \\
& =\delta^{2} \mathbb{P}(\|\mathcal{A}(\mathcal{D})-F(\mathbb{P})\|>\delta)
\end{aligned}
$$

2. Key link between estimation and "testing" (via intuition sl. 8):

$$
\left.\mathbb{Q}\left(\left\{\| \mathcal{A}(\mathcal{D})-f^{i}\right) \| \leq \delta\right\} \mid J=i\right) \leq \mathbb{Q}\left(\left\{\psi_{\mathcal{A}}(\mathcal{D})=i\right\} \mid J=i\right)
$$

because for any $f \in \mathcal{F}$ such that $\left\|f-f^{i}\right\|<\delta$, for any $j \neq i$ we have $\left\|f-f^{j}\right\|>\left\|f^{j}-f^{i}\right\|-\left\|f-f^{i}\right\|>\delta \rightarrow \psi_{\mathcal{A}}(\mathcal{D})=i$
3. Then the Lemma follows by the distribution of J

$$
\begin{aligned}
& \delta^{-2} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathcal{D} \sim \mathbb{P}}\|\mathcal{A}(\mathcal{D})-F(\mathbb{P})\|^{2} \stackrel{1 .}{\geq} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{P}^{n}(\|\mathcal{A}(\mathcal{D})-F(\mathbb{P})\|>\delta) \\
\geq & \frac{1}{M} \sum_{i \in[M]} \mathbb{P}_{f i}^{n}\left(\left\|\mathcal{A}(\mathcal{D})-f^{i}\right\|>\delta\right)=\sum_{i \in[M]} \mathbb{Q}(J=i) \mathbb{Q}\left(\left\|\mathcal{A}(\mathcal{D})-f^{i}\right\|>\delta \mid J=\right. \\
\geq & \geq \sum_{i \in[M]} \mathbb{Q}(J=i) \mathbb{Q}\left(\left\{\psi_{\mathcal{A}}(\mathcal{D}) \neq i\right\} \mid J=i\right)=\mathbb{Q}\left(\left\{\psi_{\mathcal{A}}(\mathcal{D}) \neq J\right\}\right)
\end{aligned}
$$

Lower bounding $\mathbb{Q}(\psi(\mathcal{D}) \neq J)$ with Fano's method

For simplicity assuming densities of joint and conditional distributions:

Definitions (Entropy and mutual information)

For any two R.V. X, Y with joint probability distribution \mathbb{P} define

- the entropy $H(X, Y)=-\mathbb{E}_{\mathbb{P}} \log p(X, Y)$
- the conditional entropy $H(X \mid Y)=-\mathbb{E}_{\mathbb{P}} \log p(X \mid Y)$
- the mutual information $I(X, Y)=H(X)-H(X \mid Y)$

Intuitively (imprecise):

- $H(X \mid Y)$: uncertainty "left" about X if value of Y were known
- $I(X, Y)$: information of X in Y and vice versa

Theorem (Fano's method, MW Sec 15.4.)

For some $M \in \mathbb{N}$ and $\left\{f^{i}\right\}_{i=1}^{M}$, let \mathbb{Q}_{M} be a mixture distribution as in slide 9. Then for any decision/testing function ψ, it holds that

$$
\mathbb{Q}_{M}(\psi(\mathcal{D}) \neq J) \geq 1-\frac{I(\mathcal{D}, J)+\log 2}{\log M}
$$

Proof of Theorem (Fano's method)

Define Bernoulli $E_{\psi}=\mathbb{1}_{\psi(\mathcal{D}) \neq J}$ with $\mathbb{Q}_{M}\left(E_{\psi}=1\right)=\mathbb{Q}_{M}(\psi(\mathcal{D}) \neq J)$

1. We first establish Fano's inequality after which the proof is trivial

$$
H(J \mid \mathcal{D}) \leq H\left(E_{\psi}\right)+\mathbb{Q}_{M}(\psi(\mathcal{D}) \neq J) \log (M-1)
$$

- Proof: First, by Bayes' theorem and def. of conditional expectations

$$
\underbrace{H\left(E_{\psi} \mid J, \mathcal{D}\right)}_{=0}+H(J \mid \mathcal{D})=H\left(J, E_{\psi} \mid \mathcal{D}\right)=H\left(J \mid E_{\psi}, \mathcal{D}\right)+\underbrace{H\left(E_{\psi} \mid \mathcal{D}\right)}_{\leq H\left(E_{\psi}\right)}
$$

- Proof then follows from

$$
H\left(J \mid E_{\psi}, \mathcal{D}\right)=\underbrace{H\left(J \mid E_{\psi}=0, \mathcal{D}\right)}_{=0} \mathbb{Q}\left(E_{\psi}=0\right)+\underbrace{H\left(J \mid E_{\psi}=1, \mathcal{D}\right)}_{\leq \log (M-1)} \mathbb{Q}\left(E_{\psi}=1\right)
$$

2. Since E_{ψ} Bernoulli $H\left(E_{\psi}\right) \leq \log 2$ for all ψ and since J uniform $H(J)=\log M$
3. Using Fano's inequality and $H(J \mid \mathcal{D})=H(J)-I(\mathcal{D}, J)$ yields Thm.

Fano's method to lower bound minimax risk

- We would like to ultimately plug in Fano's lower bound into the lemma.
- If we choose $\left\{f^{i}\right\}_{i=1}^{M(2 \delta)}$ to be a 2δ-packing as in Lemma we can plug in $M=M(2 \delta) \leq \mathcal{M}(2 \delta ; \mathcal{F},\|\cdot\|)$ to get

$$
\mathbb{Q}_{M(2 \delta)}(\psi(\mathcal{D}) \neq J) \geq 1-\frac{I(\mathcal{D}, J)+\log 2}{\log M(2 \delta)}
$$

- If δ is chosen such that $I(\mathcal{D}, J) \sim \log M(2 \delta)$ then the Lemma implies a lower bound of order δ^{2}
- This might or might not be a tight lower bound (if it matches some algorithm dependent upper bound, you're in luck)

Upper bounding the mutual information

- To bound the mutual information we recall the

Definition (Kullback-Leibler divergence)

The KL divergence between any two probability distributions \mathbb{P}, \mathbb{Q}

$$
K L(\mathbb{P} \| \mathbb{Q})=\mathbb{E}_{\mathbb{P}} \log \frac{d \mathbb{P}}{d \mathbb{Q}}
$$

- We can write $I(\mathcal{D}, J)=K L\left(\mathbb{Q} \| \mathbb{Q}_{\mathcal{D}} \mathbb{Q}_{J}\right)$ and then for q densities of \mathbb{Q}, we have

$$
\begin{aligned}
\mathbb{E}_{J} \mathbb{E}_{\mathcal{D}} \log \frac{q_{\mathcal{D} \mid J}}{q_{\mathcal{D}}} & =\mathbb{E}_{J} K L\left(\mathbb{Q}_{\mathcal{D} \mid J} \| \mathbb{Q}_{\mathcal{D}}\right) \\
& =\frac{1}{M} \sum_{i=1}^{M} K L\left(\mathbb{P}_{f^{i}}^{n} \| \frac{1}{M} \sum_{j=1}^{M} \mathbb{P}_{f j}^{n}\right)
\end{aligned}
$$

- The next theorem bounds the mutual information in Fano's method.

Theorem (Yang-Barron, MW Lemma 15.21)

$$
I(\mathcal{D}, J) \leq \inf _{\epsilon>0} \epsilon^{2}+\log \mathcal{N}\left(\epsilon^{2} ; \mathcal{P}^{n}, K L\right)
$$

Summary: One recipe for minimax lower bounds

Recipe for using Yang-Barron + Fano to get lower bounds:

1. Choose ϵ such that $\epsilon^{2} \geq \log \mathcal{N}\left(\epsilon^{2} ; \mathcal{P}^{n}, K L\right)$
2. Choose δ such that $\log \mathcal{M}(2 \delta ; \mathcal{F},\|\cdot\|) \geq 4 \epsilon^{2}+2 \log 2$
3. Hence $1-\frac{l(\mathcal{D}, J)+\log 2}{\log M(2 \delta)} \geq \frac{1}{2}$ and via Fano's method

$$
\inf _{\mathcal{A}} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}\|\mathcal{A}(\mathcal{D})-F(\mathbb{P})\|^{2} \geq \frac{1}{2} \delta^{2}
$$

Minimax prediction error for estimating Sobolev functions
Example: Sobolev functions $\mathcal{F}=\mathcal{W}_{2}^{\alpha}([0,1])$ with

- Consider the family of distributions $\mathcal{P}_{\mathcal{F}}$ generated via: $X \sim U([0,1])$ and $y=f^{\star}(x)+w$ with standard normal w and $f^{\star} \in \mathcal{W}_{2}^{\alpha}([0,1])$ so that conditional distribution $Y \mid x \sim \mathcal{N}\left(f(x), \sigma^{2}\right.$) (our non-parametric regression setting)
- We're interested in estimating $f^{\star}=\mathbb{E}_{\mathbb{P}}[Y \mid x]$ and evaluate it via the $\mathcal{L}^{2}([0,1])$ norm
- Recall upper bounds for constrained kernel regression
- w.h.p. $\left\|\widehat{f}-f^{\star}\right\|_{n}^{2} \leq O\left(\frac{\sigma^{2}}{n}\right)^{\frac{2 x}{2 \alpha+1}}$ (HW 2)
- $\widehat{f}-f^{\star}$ is uniformly bounded by reproducing property and Hilbert norm constraint \rightarrow MW Thm 14.1. and MW Prop 14.25 yields $\left\|\widehat{f}-f^{\star}\right\|_{\mathcal{L}^{2}([0,1])}^{2} \leq O\left(\frac{\sigma^{2}}{n}\right)^{\frac{2 \alpha}{2 \alpha+1}}$

Minimax prediction error for estimating Sobolev functions

Corollary (Minimax error for Sobolev function estimation)

Writing $\|\cdot\|_{2}:=\|\cdot\|_{\mathcal{L}^{2}([0,1])}^{2}$, we have for $\frac{n}{\sigma^{2}}$ larger than a constant

$$
\mathfrak{M}\left(F(\mathcal{P}),\|\cdot\|_{2}^{2}\right) \geq O\left(\frac{\sigma^{2}}{n}\right)^{\frac{2 \alpha}{2 \alpha+1}}
$$

Proof of Corollary

a) Writing out the conditional distribution we have for $n=1$

$$
\begin{aligned}
& K L\left(\mathbb{P}_{f} \| \mathbb{P}_{g}\right)=\frac{1}{2 \sigma^{2}} \mathbb{E}_{\mathbb{P}_{f}} g^{2}(X)-f^{2}(X)+2(f(X)-g(X)) Y \\
= & \frac{1}{2 \sigma^{2}} \mathbb{E}_{\mathbb{P}_{f}} g^{2}(X)-f^{2}(X)+2(f(X)-g(X)) f(X)=\frac{\|f-g\|_{2}^{2}}{2 \sigma^{2}}
\end{aligned}
$$

b) For n samples we have an extra factor of n, since for $z_{i}=\left(x_{i}, y_{i}\right)$

$$
\begin{aligned}
K L\left(\mathbb{P}_{f}^{n} \| \mathbb{P}_{g}^{n}\right) & =\int \prod_{i=1}^{n} p_{f}\left(z_{i}\right) \log \prod_{i=1}^{n} \frac{p_{f}\left(z_{i}\right)}{p_{g}\left(z_{i}\right)} \mu\left(d z^{n}\right) \\
& =\sum_{i=1}^{n} \int p_{f}\left(z_{i}\right) \log \frac{p_{f}\left(z_{i}\right)}{p_{g}\left(z_{i}\right)} \mu\left(\mathrm{d} z_{i}\right)=n \frac{\|f-g\|_{2}^{2}}{2 \sigma^{2}}
\end{aligned}
$$

Proof ctd'

c) Hence $\mathcal{N}\left(\epsilon^{2} ; \mathcal{P}^{n}, K L\right)=\mathcal{N}\left(\frac{\epsilon \sqrt{2 \sigma^{2}}}{\sqrt{n}} ; \mathcal{W}_{2}^{\alpha}([0,1]),\|\cdot\|_{2}\right)$
d) Using the result in next slide about covering number of Sobolev spaces

- Using $\log \mathcal{N}\left(\delta ; \mathcal{W}_{2}^{\alpha}([0,1]),\|\cdot\|_{2}^{2}\right)=O\left(\frac{1}{\delta}\right)^{1 / \alpha}$ and 1 . in slide 15 we require

$$
\epsilon^{2} \geq\left(\frac{n}{2 \sigma^{2}}\right)^{\frac{1}{2 \alpha}} \epsilon^{-1 / \alpha} \quad \rightarrow \quad \epsilon^{2}=O\left(\frac{n}{\sigma^{2}}\right)^{\frac{1}{2 \alpha+1}}
$$

- Recalling that $\mathcal{M}(2 \delta) \geq \mathcal{N}(2 \delta)$ and using 2 . in slide 15 , it suffices to require

$$
\left(\frac{1}{\delta}\right)^{\frac{1}{\alpha}} \geq c\left[\left(\frac{n}{\sigma^{2}}\right)^{\frac{1}{2 \alpha+1}}+2 \log 2\right] \quad \rightarrow \quad \delta^{2}=O\left(\frac{\sigma^{2}}{n}\right)^{\frac{2 \alpha}{2 \alpha+1}}
$$

for $\frac{\sigma^{2}}{n}$ smaller than a universal constant.
e) Hence by 3. (Fano's method) $\left\|\widehat{f}-f^{\star}\right\|_{\mathcal{L}^{2}([0,1])}^{2} \geq O\left(\frac{\sigma^{2}}{n}\right)^{\frac{2 \alpha}{2 \alpha+1}}$

Metric entropy for higher order Sobolev spaces (bonus)

Lemma (Metric entropy for α-order compact Sobolev spaces)

It holds that $\log \mathcal{N}\left(\delta ; \mathcal{W}_{2}^{\alpha}([0,1]),\|\cdot\|_{2}^{2}\right)=O\left(\frac{1}{\delta}\right)^{\frac{1}{\alpha}}$.

Proof steps

Define $\mathcal{E}_{\alpha}=\left\{\theta \in \ell_{2}(\mathbb{N}): \sum_{j=1}^{\infty} j^{2 \alpha} \theta_{j}^{2} \leq 1\right\}$

1. First observation: $\mathcal{N}\left(\delta ; \mathcal{W}_{2}^{\alpha}([0,1]),\|\cdot\|_{2}^{2}\right)=\mathcal{N}\left(\delta ; \mathcal{E}_{\alpha},\|\cdot\|_{\ell^{2}(\mathbb{N})}\right)$

- Note that by Mercer's Theorem, we can write for some orthonormal basis in $\|\cdot\|_{2} \mathcal{W}_{2}^{\alpha}([0,1])=\left\{f: f=\sum_{j=1}^{\infty} \theta_{j} \phi_{j}\right.$ for $\left.\theta \in \mathcal{E}_{\alpha}\right\}$
- Kernel operator eigenvalues decay as $j^{2 \alpha}$ (hinges on spectra of differential operators that we won't prove)
- Because ϕ_{j} are orthonormal in $\|\cdot\|_{2}$ norm we have $\|f\|_{2}^{2}=\left\|\theta_{f}\right\|_{\ell^{2}(\mathbb{N})}^{2}$

2. MW Example 5.12. proves $\log \mathcal{N}\left(\delta ; \mathcal{E}_{\alpha},\|\cdot\|_{\ell^{2}(\mathbb{N})}\right) \leq O\left(\frac{1}{\delta}\right)^{\frac{1}{\alpha}}$

References

Main source

- MW Chapter 15

Additional reading

- John Duchi Information Theory (Stats 311) Lecture Notes: Lectures 3, 5, 6
- Bin Yu '97: Assouad, Fano and LeCam, "Festschrift for Lucien LeCam" - overview of different minimax methods (including two we did not talk about)
- Yang, Barron '99: Information theoretic determination of minimax rates of convergence.

