
Lecture 11: Minimax lower bounds
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Announcements

• Homework 2 was due last night, solutions out today
• Please fill out your oral exam availabilities sent out in email, taking
place 20.11./21.11. 9 am - 5 pm
• mark all slots where you do not have a strict conflict
• exams are 20 minutes long
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Recap: Upper bound for random design
We considered the non-parametric regression setting Y = f ?(X ) + w

We view X as random and take expectation also over X , i.e. for any
f ∈ L2(P), we have

‖f − f ?‖22 = R(f )− R(f ?) = EX ,W (Y − f (X ))2 − EW 2

= EX (f (X )− f ?(X ))2 = Ex1,...,xn‖f − f ?‖2n
and want to bound ‖f̂ − f ?‖22 for an estimator f̂

Theorem (Localized uniform law, MW Thm 14.1)
For star-shaped and b−uniformly bounded F?, let δn be population
critical radius. Then if δ2

n > c log[4 log(1/δn)]
n then w.p. at least

1− c1e−c2
nδ2

n
b2 we have supg∈F? ‖g‖2 − ‖g‖n ≤ cδn

For bounded domains, we can then plug in g = f̂ − f ?, use the h.p.
upper bound for the empirical error ‖f̂ − f ?‖2n ≤ U(n) and obtain
w.h.p

‖f̂ − f ?‖22 ≤ U(n) + cδn 3 / 19

Estimation task
• Let P be a set of probability distributions on (X ,Y),

can then view a quantity of interest to be a mapping F acting on a
probability distribution (outputting a function or parameter)
• For today, we consider each PF ∈ P defined via y = f ?(x) + w
(either y or both x , y random), for different f ? ∈ F but fixed
distributions over x and noise w and the object of interest could be
F (P)(x) = E[Y |x ] = f ?(x).
• View estimating procedure/algorithm for F (P) as
a mapping A : (X × Y)n → F from dataset to space of functions,
where D = {(xi , yi)}ni=1 with (xi , yi) ∼ P, outputting f̂D = A(D)
• So far we’ve seen: Error bounds of the type ‖f̂D − f ?‖22 ≤ O(n−α)

Pair-Q: Discuss with your neighbor: What is a reasonable notion of
optimality of an algorithm that a practitioner might care about?
Today: Compare to what’s the best possible (optimal) given the data?

4 / 19



Minimax risk
Definition (Minimax risk)
The minimax risk or error of estimating the mapping F : PF → F in
some squared metric ‖ · ‖2 is defined as

M(F (P), ‖ · ‖2) = inf
A

sup
P∈PF

ED∼Pn‖A(D)− F (P)‖2

• D = {(xi , yi)}ni=1 has i.i.d. samples from Pn → A(D) is random
• Note that more generally F can also be a parameter space for
parameterized function classes (as we will see next lecture)
• Here A is not constrained to any particular procedure (could be

minimization of risk but also something else) but “knows” to search
in set F that induces PF
• Here we consider deterministic (i.e. not random) algorithms A
• could use as ‖ · ‖ standard metric of F (see MW Chapter 15)

5 / 19

Minimax lower bounds
What do we learn if we could obtain M(F (P), ‖ · ‖2) ≥ O(n−α)?
• no estimator (knowing PF or, equivalently, F and ) can achieve
smaller risk (for their resp. hardest case)
• if upper bound of an estimation procedure matches lower bound:

• practically we don’t need to waste time looking for “better”
• if we want to do better in the worst case

This class: Find lower bounds for the minimax risk as large
as possible for given P, F
• From estimation to “testing” / classification
• Fano’s method: bounding the probability of testing error via mutual
information (MI)
• Upper bounding MI using Yang-Barron
• Examples: non-parametric regression on Sobolev functions
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Main idea: From estimation to testing (intuition)
• Consider M finite functions f i spread across F s.t. pairwise
distances > 2δ (e.g. in a packing set of F)
• If A can find f̂ (black dot) that is δ close to any true f ? ∈ F
→ if data is drawn from f j , A induces a test that correctly identifies
f j by choosing the closest f i (blue dot) to the estimated f̂
→ no “testing” error

• As we want a lower bound on estimation, can reverse the argument

→ Problem reduces to: given n points, what’s the smallest possible δ
so that we can distinguish from which f i the data was drawn?
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Main idea: from estimation to testing
We sometimes write f̂D = A(D), omitting A subscript. Define
• For any M let {f i}Mi=1 be a set of functions in F
• For each f̃ ∈ F , define Pf̃ as a unique distribution with F (Pf̃ ) = f̃
• Define the mixture distribution QM for D, J by defining

1. J a uniform R.V. (flat “prior”) with values in [M] = {1, . . . ,M},
i.e. QM(J = j) = 1

M for all j
2. and drawing random i.i.d. datapoints D = {(Xi ,Yi)}n

i=1 from Pn
f j ,

i.e. QM(D|J = j) = Pn
f j

• Decision / Testing functions of form ψ : (X × Y)n → [M]

Lemma (Estimation vs. testing, MW Prop 15.1)
Choose {f i}M(2δ)

i=1 to be a 2δ-packing of F in the ‖ · ‖ metric so that
M(2δ) ≤M(2δ;F , ‖ · ‖), then

inf
A

sup
P∈P

ED∼P‖A(D)− F (P)‖2 ≥ δ2 inf
ψ
QM(2δ)(ψ(D) 6= J)
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Proof of Lemma
Omitting QM subscript, define ψA(D) := arg mini∈[M] ‖A(D)− f i‖

1. Markov’s inequality yields
ED‖A(D)− F (P)‖2 ≥ δ2P(‖A(D)− F (P)‖2 ≥ δ2)

= δ2P(‖A(D)− F (P)‖ > δ)
2. Key link between estimation and “testing” (via intuition sl. 8):

Q({‖A(D)− f i)‖ ≤ δ}|J = i) ≤ Q({ψA(D) = i}|J = i)
because for any f ∈ F such that ‖f − f i‖ < δ, for any j 6= i
we have ‖f − f j‖ > ‖f j − f i‖ − ‖f − f i‖ > δ → ψA(D) = i

3. Then the Lemma follows by the distribution of J
δ−2 sup

P∈P
ED∼P‖A(D)− F (P)‖2

1.
≥ sup

P∈P
Pn(‖A(D)− F (P)‖ > δ)

≥ 1
M

∑

i∈[M]
Pn

f i (‖A(D)− f i‖ > δ) =
∑

i∈[M]
Q(J = i)Q(‖A(D)− f i‖ > δ|J = i)

2.
≥
∑

i∈[M]
Q(J = i)Q({ψA(D) 6= i}|J = i) = Q({ψA(D) 6= J})
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Lower bounding Q(ψ(D) 6= J) with Fano’s method
For simplicity assuming densities of joint and conditional distributions:

Definitions (Entropy and mutual information)
For any two R.V. X ,Y with joint probability distribution P define
• the entropy H(X ,Y ) = −EP log p(X ,Y )
• the conditional entropy H(X |Y ) = −EP log p(X |Y )
• the mutual information I(X ,Y ) = H(X )− H(X |Y )

Intuitively (imprecise):
• H(X |Y ): uncertainty “left” about X if value of Y were known
• I(X ,Y ): information of X in Y and vice versa

Theorem (Fano’s method, MW Sec 15.4.)
For some M ∈ N and {f i}Mi=1, let QM be a mixture distribution as in
slide 9. Then for any decision/testing function ψ, it holds that

QM(ψ(D) 6= J) ≥ 1− I(D, J) + log 2
log M
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Proof of Theorem (Fano’s method)
Define Bernoulli Eψ = 1ψ(D) 6=J with QM(Eψ = 1) = QM(ψ(D) 6= J)

1. We first establish Fano’s inequality after which the proof is trivial

H(J |D) ≤ H(Eψ) + QM(ψ(D) 6= J) log(M − 1)

• Proof: First, by Bayes’ theorem and def. of conditional expectations

H(Eψ|J ,D)
︸ ︷︷ ︸

=0

+H(J |D) = H(J ,Eψ|D) = H(J |Eψ,D) + H(Eψ|D)
︸ ︷︷ ︸
≤H(Eψ)

• Proof then follows from
H(J |Eψ,D) = H(J |Eψ = 0,D)

︸ ︷︷ ︸
=0

Q(Eψ = 0)+H(J |Eψ = 1,D)
︸ ︷︷ ︸
≤log(M−1)

Q(Eψ = 1)

2. Since Eψ Bernoulli H(Eψ) ≤ log 2 for all ψ
and since J uniform H(J) = log M

3. Using Fano’s inequality and H(J |D) = H(J)− I(D, J) yields Thm.
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Fano’s method to lower bound minimax risk

• We would like to ultimately plug in Fano’s lower bound into the
lemma.
• If we choose {f i}M(2δ)

i=1 to be a 2δ-packing as in Lemma we can plug
in M = M(2δ) ≤M(2δ;F , ‖ · ‖) to get

QM(2δ)(ψ(D) 6= J) ≥ 1− I(D, J) + log 2
log M(2δ)

• If δ is chosen such that I(D, J) ∼ log M(2δ) then the Lemma
implies a lower bound of order δ2

• This might or might not be a tight lower bound (if it matches some
algorithm dependent upper bound, you’re in luck)
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Upper bounding the mutual information
• To bound the mutual information we recall the
Definition (Kullback-Leibler divergence)
The KL divergence between any two probability distributions P,Q

KL(P ‖ Q) = EP log dP
dQ

• We can write I(D, J) = KL(Q ‖ QDQJ) and then for q densities of
Q, we have

EJED log
qD|J
qD

= EJKL(QD|J ‖ QD)

= 1
M

M∑

i=1
KL(Pn

f i ‖ 1
M

M∑

j=1
Pn

f j )

• The next theorem bounds the mutual information in Fano’s method.
Theorem (Yang-Barron, MW Lemma 15.21)

I(D, J) ≤ inf
ε>0

ε2 + logN (ε2;Pn,KL)
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Summary: One recipe for minimax lower bounds

Recipe for using Yang-Barron + Fano to get lower bounds:

1. Choose ε such that ε2 ≥ logN (ε2;Pn,KL)

2. Choose δ such that logM(2δ;F , ‖ · ‖) ≥ 4ε2 + 2 log 2

3. Hence 1− I(D,J)+log 2
log M(2δ) ≥ 1

2 and via Fano’s method

inf
A

sup
P∈P

EP‖A(D)− F (P)‖2 ≥ 1
2δ

2
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Minimax prediction error for estimating Sobolev functions

Example: Sobolev functions F =Wα
2 ([0, 1]) with

• Consider the family of distributions PF generated via: X ∼ U([0, 1])
and y = f ?(x) + w with standard normal w and f ? ∈ Wα

2 ([0, 1]) so
that conditional distribution Y |x ∼ N (f (x), σ2) (our
non-parametric regression setting)
• We’re interested in estimating f ? = EP[Y |x ] and evaluate it via the
L2([0, 1]) norm
• Recall upper bounds for constrained kernel regression

• w.h.p. ‖f̂ − f ?‖2
n ≤ O

(
σ2

n
) 2α

2α+1 (HW 2)

• f̂ − f ? is uniformly bounded by reproducing property and Hilbert
norm constraint → MW Thm 14.1. and MW Prop 14.25 yields
‖f̂ − f ?‖2

L2([0,1]) ≤ O
(
σ2

n
) 2α

2α+1
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Minimax prediction error for estimating Sobolev functions
Corollary (Minimax error for Sobolev function estimation)
Writing ‖ · ‖2 := ‖ · ‖2L2([0,1]), we have for n

σ2 larger than a constant

M(F (P), ‖ · ‖22) ≥ O
(σ2

n
) 2α

2α+1

Proof of Corollary

a) Writing out the conditional distribution we have for n = 1

KL(Pf ‖ Pg) = 1
2σ2EPf g2(X )− f 2(X ) + 2(f (X )− g(X ))Y

= 1
2σ2EPf g2(X )− f 2(X ) + 2(f (X )− g(X ))f (X ) = ‖f − g‖22

2σ2
b) For n samples we have an extra factor of n, since for zi = (xi , yi)

KL(Pn
f ‖ Pn

g) =
∫ n∏

i=1
pf (zi) log

n∏

i=1

pf (zi)
pg(zi)

µ(dzn)

=
n∑

i=1

∫
pf (zi) log pf (zi)

pg(zi)
µ(dzi) = n‖f − g‖22

2σ2
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Proof ctd’
c) Hence N (ε2;Pn,KL) = N ( ε

√
2σ2√n ;Wα

2 ([0, 1]), ‖ · ‖2)

d) Using the result in next slide about covering number of Sobolev
spaces
• Using logN (δ;Wα

2 ([0, 1]), ‖ · ‖2
2) = O( 1

δ )1/α and 1. in slide 15 we
require

ε2 ≥
( n
2σ2 ) 1

2α ε−1/α → ε2 = O
( n
σ2
) 1

2α+1

• Recalling thatM(2δ) ≥ N (2δ) and using 2. in slide 15, it suffices to
require

(1
δ

) 1
α ≥ c

[( n
σ2
) 1

2α+1 + 2 log 2
]
→ δ2 = O

(σ2

n
) 2α

2α+1

for σ2

n smaller than a universal constant.

e) Hence by 3. (Fano’s method) ‖f̂ − f ?‖2L2([0,1]) ≥ O
(
σ2
n

) 2α
2α+1
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Metric entropy for higher order Sobolev spaces (bonus)
Lemma (Metric entropy for α-order compact Sobolev spaces)
It holds that logN (δ;Wα

2 ([0, 1]), ‖ · ‖22) = O(1
δ ) 1

α .

Proof steps

Define Eα = {θ ∈ `2(N) : ∑∞j=1 j2αθ2
j ≤ 1}

1. First observation: N (δ;Wα
2 ([0, 1]), ‖ · ‖22) = N (δ; Eα, ‖ · ‖`2(N))

• Note that by Mercer’s Theorem, we can write for some orthonormal
basis in ‖ · ‖2 Wα

2 ([0, 1]) = {f : f =
∑∞

j=1 θjφj for θ ∈ Eα}
• Kernel operator eigenvalues decay as j2α (hinges on spectra of

differential operators that we won’t prove)
• Because φj are orthonormal in ‖ · ‖2 norm we have ‖f ‖2

2 = ‖θf ‖2
`2(N)

2. MW Example 5.12. proves logN (δ; Eα, ‖ · ‖`2(N)) ≤ O
(

1
δ

) 1
α
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