Lecture 2: Uniform tail bound and McDiarmid
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Announcements and lecture outline

Announcements:

HW released tonight, due in two weeks on Thursday 12.10.22
23:59 on gradescope.

Warning: HW is long, start early!

Can discuss together, but write up your own solution and indicate
who you've worked together with

no late HW except in medical cases (with attest from doctor)
Post questions on HW on moodle

Please de-register once you know you are not going to continue the
course!
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Plan today

1. Recap excess risk decomposition and Hoeffding's inequality

2. Concentration of functions of n dependent r.v. via bounded
differences

3. McDiarmid inequality and uniform tail bound

4. Proof of McDiarmid via Doob martingales, Azuma-Hoeffding
inequality
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Recap last lecture: excess risk decomposition

® Recall we assume that Z; := (X;, Y;) '~ P with Z € Z and
evaluate a function f by the expected loss (population risk)
R(f) =E{(Z;f)

 The empirical risk is defined by R,(f) = X 3"7_; ¢(Z;; f) and
for fixed f, we have ER,(f) = R(f).

® \\e want to bound the excess risk
<0 by optimality

Ro(%,) + Ra(Fa) — Ra(F*) +Ra(F*) — R(F*)
Ra(Fa) + Ra(*) — R(F*)
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® Then via Chernoff, we proved Hoeffding's inequality that holds for
the mean of i.i.d. sub-Gaussians

nt2
ZX EX >1t) <e 22
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Wakeup-Q: How can we use Hoeffdings inequality to bound T57 s




Back to term T;

e Problem: R,(f,) = %27:1 U(Z;; £,) not an emp. mean of i.i.d.
R.V.! Can we still show some sort of concentration for R(f,)?

® Crude bound: since by assumption algorithm searches in a
model /function class F, i.e. f, € F, we can upper bound Ty by

R(?n) - Rn(?n) < sup R(f) - Rn(f) = gn(Zb sy Zn)
feF
® |nstead of averages of ni.i.d. random variables, the supremum of an
empirical process R(f) — R,(f) is a general function g, : Z" — R

® Instead of R,(f) =~ ER,(f) = R(f) for empirical means,
if g, satisfies some properties, g, concentrates around Eg,(z)!
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Specific case: g, satisfies bounded difference property

Definition (bounded difference property)

Define for given z,z' € Z" a new vector z\K with the k-th element

. ifj £k
from Z' and all other from z: zj\k = ZJ/ I J?é . We say that
z, ifj=k
gn : 2" — R satisfies the bounded difference inequality if for each
k=1,...,n it holds that

1gn(2) — gn(Z\k)\ < gy forall z,z/ € Z"

-

-

Theorem (McDiarmid, MW Cor. 2.21)

If g, : Z" — R satisfies the bounded difference condition and Z € Z"
is a random vector with n independent entries, then

2¢2

P(gn(Z) — Egn(Z) > t) < e 2k

-

-

® Concentration with n is usually obtained via t ~ n or via o) ~ %
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Tail bound for supremum of (bounded) empirical process
® Remember for f € F: Ry(f) = 130, U(Z;, f)

® \We can now use McDiarmid on the sup. of empirical process
gn(z1,...,2n) =suprer R(f) — Ra(f) for bounded losses!

Theorem (Uniform tail bound)

For b-unif. bounded ((-, ), that is ||[{(-; )||cc < b for all f € F, it
holds that
2

P(sup R(f) — Ra(f) > E[sup R(f) — Ra(F)] + t) < & 22
feF feF

where the probability is over the training data.

- J

® Note that there are other results beyond boundedness (Lipschitz
functions etc.), that are tighter particularly in the context of
bounding suprema of empirical process - MW Chapter 3

® This uniform tail bound can give us a (crude) high-probability
bound and rate, if we can bound the expectation (— next class!)
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Proof of tail bound using McDiarmid
For simplicity define H = {h: h(-) = £(-;f) Vf e F}
Use McDiarmid by checking bounded differences assumption with
gn(2) = supger Rn(f) — R(f) = suppeyy 7 271 h(z;) — Eh
® For b-uniformly bounded H, we have for all k =1,...,n and any
z,z € Z" that for any he H
- Z[h z;) — Eh] — sup - Z h(z") — ER
hen M5
_ Sih(z) = hz") _ h(z) = h(z) _ 2b
B n n - n
® Since it holds for all h € H, taking the sup on both sides yields
2b
gn(z)— g,,(z\k) — sup Z[h z;) Eh]—sup Z [ Eh] -
hen 1 i

® By symmetry it holds for g,(z\¥) — gn(z) — |gn(2) — gn(2\¥)| < 2—:

® Plugging in o) = 7 into McDiarmid then yields the result. 8 /16




Proof sketch of McDiarmid

Theorem (McDiarmid, MW Cor. 2.21)

If g, : Z" — R satisfies the bounded difference condition with
{ok}i_, and Z is a random vector with n independent entries, then

2¢2

P(gn(Z) — Egn(Z) > t) < & 2k

- J

Proof intuition:
Re-writing g, as a sum

® For any function g, : Z" — R, even though we don’t have a sum
per se, we can write the difference as a sum (check for yourself)

n
gn(Z) — Ben(Z) = 3_ D,
j=1
where D; := E|[gn(Z)|Z1,...,Z]] — E[gn(Z)| 21, ... Zj—1] for j > 2

and D1 = Elga(2)|21] — Elgn(2)]
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Proof intuition Part |

Discuss with your neighbor. For the special case of empirical mean
gn(Z) = 1327 | Z; with Z; independent and bounded

— D; are independent and sub-Gaussian so that one can use
Hoeffding's bound on D;. Can we use this for general g,?

® |ndeed, forall j=1,...,n
1< 1 < Z EZ
Di==> E[Z|Z,....Z]-= Y E[Zi|Z,...,Zi1] = T ——
n y nl,:j_1 n n

with all D; independent and bounded (hence sub-Gaussian)

® For general g,(Z) independence of D; does not hold!
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Proof intuition Part Il

® However, we can still show that
® D; indepedendent — D; martingale difference, and hope that D; s.t.
® D; "conditionally” bounded (and hence still in some way subgaussian)
® (informal) Then instead of Hoeffding that can be used on
independent bounded R.V., we can use Azuma-Hoeffding, that
shows

212
bj—aj)?

n
i=1(

P(Zn: Di>t)<e 2

i=1

for bounded martingale difference sequences where D; € [a;, b;] a.s.

We now formalize the proof.
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“Recap”: Martingale difference sequences
Let {Z;}2, be a sequence of R.\V. and F; :=0(Z1,...,Z)),

Further, let {5;}%2; be such that S; is measurable with respect to F;

(i.e. we say {5;}%2; is adapted to the filtration {F;}?2;)
Definition (Martingale (difference))
* {5, Fj}2, is a martingale
if for all j, E|Sj| < oo and E[Sj41|Fj] = S;
® Similarly, {D;, F;}2, is a martingale difference sequence
if for all j, E|Dj| < oo and E[Dj4+1|Fj] =0

® For any martingale {S;, 7}y, D;=Sj — Sj—1 for j>1is a
martingale difference sequence.

® Doob construction: given some function g, : Z" — R, for a
sequence of random variables /3, ..., Z,, note that
Si =E[gn(Z)|Z1, ..., Zj] fulfills exactly the above conditions if
E|gn(Z)| < 0o. Then also E[Dj1|Fj] =0 for D; =5; — Sj_1
Check with your neighbor
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Formal proof of McDiarmid
Theorem (Azuma-Hoeffding inequality, MW Cor 2.20)

If for martingale difference sequence {(D;, F;)}"_; it holds that
D;|Fi—1 almost surely lies in an interval of length L; for all i, then

n 22
n

P(Y D;>t)<e 2imh

i=1

- J

Note: This version is slightly different than MW Cor 2.20 - this
version does not require all D;|zj~* to be in the same range [a;, b;] for
all zi_l - only the length matters

The proof of McDiarmid follows immediately if we can show that

e for any g, satisfying the bounded difference property with {JJ}J’-’Zl

* we have that g,(Z) — Egn(Z) = >_i_; D; with {D;, F;}7_4
martingale difference sequence and D; \.7-" 1 almost surely I|es in an
interval of length L;

We now show that this fact is true.
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Proof: Assumptions of Azuma-Hoeffding hold
® Define shorthand Z{ = (Z1,...,Z;) € Z' for random /real vectors

® \We can now prove that if g, satisfies the bounded difference
condition with {aJ}J |, then for all Z~' € 2/~ there exists aj, b;

st. D|ZT =27 ea , bj] almost surely with b; — a; < o
J 1 j J

® \We define shorthand (last equallty foIIows by mdependence of Zj):
Elgn(2)|4 ] =Elgn(2)|Z " =21 =Een(# . Z))

e Further, by definition for all Z~ " € Z/~1 almost surely
Dj|Z{ " =2 " > inf Elen(Z)|2 . Zj = 2] - Elga(2)ld ] = 4
DIz =27 " < supElen(2)|z " Z = 2] ~ Elgn(2)|z ] = b
o j\Z{_l = z{_l € [aj, bj] and, by bounded diff. ass. on g, a.s:
b —a = sup Egn(z} .2, Z}}) = inf Bga(z .2, Z14)

1 B
< Sl/Jp E’gn(Z:JL » 5 jlzi—l) o gn(ZJ Z Z—|—1)‘ < gj
2,2'€2 14 /16




Summary

® McDiarmid inequality for bounded difference
® uniform tail bound for Ty

® Proof McDiarmid: Hoeffding bound for sums of independent R.V. —
martingale (difference) sequences and Azuma-Hoeffding inequality

Next up: Uniform law with symmetization and Rademacher complexity
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References

Concentration bounds including Azuma-Hoeffding, McDiarmid

* MW Chapter 2
® Boucheron, Lugosi, Massart: Chapter 2

Martingales - any probability theory book, e.g.:
® P Billingsley. Probability and Measure
® R. Durrett. Probability: Theory and Examples (4th edition)

(Bonus) More concentration bounds on suprema of empirical
processes:

* MW Chapter 3
® [edoux, Talagrand: Probability for Banach spaces for functional
Bernstein
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