Lecture 2: Uniform tail bound and McDiarmid

Announcements and lecture outline

Announcements:

- HW released tonight, due in two weeks on Thursday **12.10.22 23:59** on gradescope.
- Warning: HW is long, start early!
- Can discuss together, but write up your own solution and indicate who you've worked together with
- no late HW except in medical cases (with attest from doctor)
- Post questions on HW on moodle
- Please de-register once you know you are not going to continue the course!

Plan today

- 1. Recap excess risk decomposition and Hoeffding's inequality
- 2. Concentration of functions of n dependent r.v. via bounded differences
- 3. McDiarmid inequality and uniform tail bound
- 4. Proof of McDiarmid via Doob martingales, Azuma-Hoeffding inequality

Recap last lecture: excess risk decomposition

- Recall we assume that $Z_i := (X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}$ with $Z_i \in \mathcal{Z}$ and evaluate a function f by the expected loss (population risk) $R(f) = \mathbb{E}\ell(Z; f)$
- The empirical risk is defined by $R_n(f) = \frac{1}{n}$ $\sum_{i=1}^n \ell(Z_i; f)$ and for fixed f, we have $\mathbb{E}R_n(f) = R(f)$.
- We want to bound the excess risk

$$
R(\widehat{f}_n) - R(f^*) = R(\widehat{f}_n) - R_n(\widehat{f}_n) + \overbrace{R_n(\widehat{f}_n) - R_n(f^*)}^{\leq 0 \text{ by optimality}} + R_n(f^*) - R(f^*)
$$

$$
\leq \underbrace{R(\widehat{f}_n) - R_n(\widehat{f}_n)}_{T_1} + \underbrace{R_n(f^*) - R(f^*)}_{T_2}
$$

• Then via Chernoff, we proved Hoeffding's inequality that holds for the mean of i.i.d. sub-Gaussians

$$
\mathbb{P}(\frac{1}{n}\sum_{i=1}^n X_i - \mathbb{E}X \ge t) \le e^{-\frac{nt^2}{2\sigma^2}}
$$

Wakeup-Q: How can we use Hoeffdings inequality to bound T_2 ?

3 / 16

Back to term T_1

- Problem: $R_n(\widehat{f}_n) = \frac{1}{n}$ $\sum_{i=1}^n \ell(Z_i; \widehat{f}_n)$ *not* an emp. mean of i.i.d. R.V.! Can we still show some sort of concentration for $R_n(f_n)$?
- Crude bound: since by assumption algorithm searches in a model/function class F, i.e. $\widehat{f}_n \in \mathcal{F}$, we can upper bound T_1 by

$$
R(\widehat{f}_n)-R_n(\widehat{f}_n)\leq \sup_{f\in\mathcal{F}}R(f)-R_n(f)=:g_n(Z_1,\ldots,Z_n)
$$

- Instead of averages of n i.i.d. random variables, the supremum of an empirical process $R(f) - R_n(f)$ is a general function $g_n : \mathcal{Z}^n \to \mathbb{R}$
- Instead of $R_n(f) \approx \mathbb{E}R_n(f) = R(f)$ for empirical means, if g_n satisfies some properties, g_n concentrates around $\mathbb{E} g_n(z)!$

5 / 16

Specific case: g_n satisfies bounded difference property

Definition (bounded difference property)

Define for given $z, z' \in \mathcal{Z}^n$ a new vector $z^{\backslash k}$ with the *k*-th element from z' and all other from $z: z_i^{\backslash k}$ $j^{\prime\kappa}=$ $\sqrt{ }$ $\frac{1}{2}$ \mathcal{L} z_j if $j \neq k$ z'_k if $j = k$. We say that $\mathcal{g}_n: \mathcal{Z}^n \rightarrow \mathbb{R}$ satisfies the bounded difference inequality if for each $k = 1, \ldots, n$ it holds that $|g_n(z) - g_n(z^{\backslash k})| \leq \sigma_k$ for all $z, z' \in \mathcal{Z}^n$

Theorem (McDiarmid, MW Cor. 2.21)

If $g_n : \mathcal{Z}^n \to \mathbb{R}$ satisfies the bounded difference condition and $Z \in \mathcal{Z}^n$ is a random vector with n independent entries, then

$$
\mathbb{P}(g_n(Z)-\mathbb{E}g_n(Z)\geq t)\leq e^{-\frac{2t^2}{\sum_{k=1}^n\sigma_k^2}}
$$

• Concentration with *n* is usually obtained via $t \sim n$ or via $\sigma_k \sim \frac{1}{n}$ n Tail bound for supremum of (bounded) empirical process • Remember for $f \in \mathcal{F}$: $R_n(f) = \frac{1}{n}$ $\sum_{i=1}^n \ell(Z_i, f)$

• We can now use McDiarmid on the sup. of empirical process $g_n(z_1,\ldots,z_n)=\sup_{f\in\mathcal{F}}R(f)-R_n(f)$ for bounded losses!

Theorem (Uniform tail bound)

For b-unif. bounded $\ell(\cdot, f)$, that is $\|\ell(\cdot; f)\|_{\infty} \leq b$ for all $f \in \mathcal{F}$, it holds that

$$
\mathbb{P}(\sup_{f\in\mathcal{F}} R(f)-R_n(f)\geq \mathbb{E}[\sup_{f\in\mathcal{F}} R(f)-R_n(f)]+t)\leq e^{-\frac{nt^2}{2b^2}}
$$

where the probability is over the training data.

- Note that there are other results beyond boundedness (Lipschitz functions etc.), that are tighter particularly in the context of bounding suprema of empirical process - MW Chapter 3
- This uniform tail bound can give us a (crude) high-probability bound and rate, if we can bound the expectation (\rightarrow next class!)

Proof of tail bound using McDiarmid

For simplicity define
$$
\mathcal{H} = \{ h : h(\cdot) = \ell(\cdot; f) \quad \forall f \in \mathcal{F} \}
$$

Use McDiarmid by checking bounded differences assumption with $g_n(z) \mathrel{\mathop:}= {\sf sup}_{f \in \mathcal{F}} \, R_n(f) - R(f) = {\sf sup}_{h \in \mathcal{H}} \, \frac{1}{n}$ n $\sum_{i=1}^n h(z_i) - \mathbb{E}h$

• For *b*-uniformly bounded H, we have for all $k = 1, \ldots, n$ and any $z, z' \in \mathcal{Z}^n$ that for any $h \in \mathcal{H}$

$$
\frac{1}{n}\sum_{i}[h(z_i) - \mathbb{E}h] - \sup_{\tilde{h}\in\mathcal{H}}\frac{1}{n}\sum_{i} \left[\tilde{h}(z_i)^k - \mathbb{E}\tilde{h}\right]
$$

$$
\leq \frac{\sum_{i}h(z_i) - h(z_i)^k}{n} = \frac{h(z_k) - h(z_k')}{n} \leq \frac{2b}{n}
$$

Since it holds for all $h \in \mathcal{H}$, taking the sup on both sides yields $g_n(z)-g_n(z^{\setminus k})=\sup_{k\in\mathbb{R}^d}$ h∈H 1 n \sum i $[h(z_i)-\mathbb{E} h]-\sup$ \tilde{h} ∈ \mathcal{H} 1 n \sum i $\int h(z_i)^k$ $\left[\hat{h}_i^{(k)}\right]\!\!-\!\mathbb{E}\tilde{h}\Big]$ \leq 2b n

- By symmetry it holds for $g_n(z^{k}) g_n(z) \to |g_n(z) g_n(z^{k})| \leq \frac{2b}{n}$
- Plugging in $\sigma_k = \frac{2b}{n}$ $\frac{2b}{n}$ into McDiarmid then yields the result. $\frac{8}{16}$

Proof sketch of McDiarmid

Theorem (McDiarmid, MW Cor. 2.21)

If $g_n : \mathcal{Z}^n \to \mathbb{R}$ satisfies the bounded difference condition with $\{\sigma_k\}$ n $_{k=1}^{n}$ and Z is a random vector with n independent entries, then $2t^2$

$$
\mathbb{P}(g_n(Z)-\mathbb{E}g_n(Z)\geq t)\leq e^{-\overline{\sum_{k=1}^n\sigma_k^2}}
$$

Proof intuition:

Re-writing g_n as a sum

• For any function $g_n : \mathcal{Z}^n \to \mathbb{R}$, even though we don't have a sum per se, we can write the difference as a sum (check for yourself)

$$
g_n(Z)-\mathbb{E} g_n(Z)=:\sum_{j=1}^n D_j
$$

 $\mathsf{where}\ D_j := \mathbb{E}[g_n(Z)|Z_1,\ldots,Z_j] - \mathbb{E}[g_n(Z)|Z_1,\ldots Z_{j-1}] \,\,\mathsf{for}\,\, j\geq 2$ and $D_1 = \mathbb{E}[g_n(Z)|Z_1] - \mathbb{E}[g_n(Z)]$

Proof intuition Part I

Discuss with your neighbor: For the special case of empirical mean $g_n(Z)=\frac{1}{n}$ $\sum_{i=1}^{n} Z_i$ with Z_i independent and bounded

 $\rightarrow D_i$ are independent and sub-Gaussian so that one can use Hoeffding's bound on D_j . Can we use this for general g_n ?

• Indeed, for all $j = 1, \ldots, n$

$$
D_j = \frac{1}{n} \sum_{i=j}^n \mathbb{E}[Z_i | Z_1, \ldots, Z_j] - \frac{1}{n} \sum_{i=j-1}^n \mathbb{E}[Z_i | Z_1, \ldots, Z_{j-1}] = \frac{Z_j}{n} - \frac{\mathbb{E}Z}{n}
$$

with all D_j independent and bounded (hence sub-Gaussian)

• For general $g_n(Z)$ independence of D_i does not hold!

10 / 16

Proof intuition Part II

• However, we can still show that

- D_j indepedendent $\rightarrow D_j$ martingale difference, and hope that D_j s.t.
- D_j "conditionally" bounded (and hence still in some way subgaussian)
- (informal) Then instead of Hoeffding that can be used on independent **bounded** R.V., we can use Azuma-Hoeffding, that shows

$$
\mathbb{P}(\sum_{i=1}^n D_i \geq t) \leq e^{-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}}
$$

for **bounded** martingale difference sequences where $D_i \in [a_i, b_i]$ a.s. We now formalize the proof.

"Recap": Martingale difference sequences Let $\{Z_j\}_{j=1}^{\infty}$ be a sequence of R.V. and $\mathcal{F}_j := \sigma(Z_1, \ldots, Z_j)$,

Further, let $\{S_j\}_{j=1}^{\infty}$ be such that S_j is measurable with respect to \mathcal{F}_j (i.e. we say $\{S_j\}_{j=1}^\infty$ is *adapted to the filtration* $\{\mathcal{F}_j\}_{j=1}^\infty)$

Definition (Martingale (difference))

- $\{S_j, \mathcal{F}_j\}_{j=1}^{\infty}$ is a martingale if for all j , $\mathbb{E} |S_j| < \infty$ and $\mathbb{E} [S_{j+1} | \mathcal{F}_j] = S_j$
- Similarly, $\{D_j, \mathcal{F}_j\}_{j=1}^{\infty}$ is a *martingale difference sequence* if for all j , $\mathbb{E}|D_j| < \infty$ and $\mathbb{E}[D_{j+1}|\mathcal{F}_j] = 0$
- For any martingale $\{S_j, \mathcal{F}_j\}_{j=0}^{\infty}$, $D_j=S_j-S_{j-1}$ for $j\geq 1$ is a martingale difference sequence.
- Doob construction: given some function $g_n : \mathcal{Z}^n \to \mathbb{R}$, for a sequence of random variables Z_1, \ldots, Z_n , note that $S_j = \mathbb{E}[g_n(Z)|Z_1, \ldots, Z_j]$ fulfills exactly the above conditions if $\mathbb{E}|g_{n}(Z)| < \infty$. Then also $\mathbb{E}[D_{j+1}|\mathcal{F}_{j}]=0$ for $D_{j}=S_{j}-S_{j-1}$ Check with your neighbor

Formal proof of McDiarmid

Theorem (Azuma-Hoeffding inequality, MW Cor 2.20)

If for martingale difference sequence $\{(D_i, \mathcal{F}_i)\}_{i=1}^n$ $_{i=1}^{n}$ it holds that $D_i|\mathcal{F}_{i-1}$ almost surely lies in an interval of length L_i for all i, then

$$
\mathbb{P}(\sum_{i=1}^n D_i \geq t) \leq e^{-\frac{2t^2}{\sum_{i=1}^n L_i^2}}
$$

Note: This version is slightly different than MW Cor 2.20 - this version does not require all $D_i | z_1^{i-1}$ to be in the same range $[a_i, b_i]$ for all z_1^{i-1} - only the length matters

The proof of McDiarmid follows immediately if we can show that

- for any g_n satisfying the bounded difference property with $\{\sigma_j\}_{j=1}^n$ $j=1$
- we have that $g_n(Z)-\mathbb{E} g_n(Z)=\sum_{j=1}^n D_j$ with $\{D_j,\mathcal{F}_j\}_{j=1}^n$ $_{j=1}^n$ a martingale difference sequence and $D_i | \mathcal{F}_{i-1}$ almost surely lies in an interval of length L_i

We now show that this fact is true.

Proof: Assumptions of Azuma-Hoeffding hold

- Define shorthand Z_1^i $I_1^i = (Z_1, \ldots, Z_i) \in \mathcal{Z}^i$ for random/real vectors
- We can now prove that if g_n satisfies the bounded difference condition with $\{\sigma_j\}_j^n$ $_{j=1}^n$, then for all z_1^{j-1} $j^{-1}_1 \in \mathcal{Z}^{j-1}$ there exists a_j, b_j s.t. $D_j | Z_1^{j-1}$ $z_1^{j-1} = z_1^{j-1}$ $\mathbf{Z}_1^{J-1} \in [a_j, b_j]$ almost surely with $b_j - a_j \leq \sigma_j$
- We define shorthand (last equality follows by independence of Z_j): $\mathbb{E}[g_n(Z)|z_1^{j-1}]$ $\mathbb{E}[g_n(Z)|Z_1^{j-1}]$ $z_1^{j-1} = z_1^{j-1}$ $\left[\begin{smallmatrix} j-1 \ 1 \end{smallmatrix} \right] = \mathbb{E} g_n(z_1^{j-1})$ $j-1 \atop 1}, Z^n_j$ j)

\n- Further, by definition for all
$$
z_1^{j-1} \in \mathcal{Z}^{j-1}
$$
 almost surely
\n- $D_j | Z_1^{j-1} = z_1^{j-1} \geq \inf_{z \in \mathcal{Z}} \mathbb{E}[g_n(z)|z_1^{j-1}, Z_j = z] - \mathbb{E}[g_n(z)|z_1^{j-1}] =: a_j$
\n- $D_j | Z_1^{j-1} = z_1^{j-1} \leq \sup_{z \in \mathcal{Z}} \mathbb{E}[g_n(z)|z_1^{j-1}, Z_j = z] - \mathbb{E}[g_n(z)|z_1^{j-1}] =: b_j$
\n- $D_j | Z_1^{j-1} = z_1^{j-1} \in [a_j, b_j]$ and, by bounded diff. as S_n on g_n , as S_n on g_n on g_n on S_n on <math display="inline

14 / 16

Summary

- McDiarmid inequality for bounded difference
- uniform tail bound for T_1
- Proof McDiarmid: Hoeffding bound for sums of independent R.V. \rightarrow martingale (difference) sequences and Azuma-Hoeffding inequality

Next up: Uniform law with symmetization and Rademacher complexity

References

Concentration bounds including Azuma-Hoeffding, McDiarmid

- MW Chapter 2
- Boucheron, Lugosi, Massart: Chapter 2

Martingales - any probability theory book, e.g.:

- P. Billingsley. Probability and Measure
- R. Durrett. Probability: Theory and Examples (4th edition)

(Bonus) More concentration bounds on suprema of empirical processes:

- MW Chapter 3
- Ledoux, Talagrand: Probability for Banach spaces for functional Bernstein