
Lecture 2: Uniform tail bound and McDiarmid
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Announcements and lecture outline

Announcements:
• HW released tonight, due in two weeks on Thursday 12.10.22

23:59 on gradescope.
• Warning: HW is long, start early!
• Can discuss together, but write up your own solution and indicate
who you’ve worked together with
• no late HW except in medical cases (with attest from doctor)
• Post questions on HW on moodle
• Please de-register once you know you are not going to continue the
course!
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Plan today

1. Recap excess risk decomposition and Hoeffding’s inequality

2. Concentration of functions of n dependent r.v. via bounded
differences

3. McDiarmid inequality and uniform tail bound

4. Proof of McDiarmid via Doob martingales, Azuma-Hoeffding
inequality
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Recap last lecture: excess risk decomposition
• Recall we assume that Zi := (Xi ,Yi) i.i.d.∼ P with Zi ∈ Z and
evaluate a function f by the expected loss (population risk)
R(f ) = E`(Z ; f )
• The empirical risk is defined by Rn(f ) = 1

n
∑n

i=1 `(Zi ; f ) and
for fixed f , we have ERn(f ) = R(f ).
• We want to bound the excess risk

R(f̂n)− R(f ?) = R(f̂n)− Rn(f̂n) +

≤0 by optimality︷ ︸︸ ︷
Rn(f̂n)− Rn(f ?) +Rn(f ?)− R(f ?)

≤ R(f̂n)− Rn(f̂n)︸ ︷︷ ︸
T1

+Rn(f ?)− R(f ?)︸ ︷︷ ︸
T2

• Then via Chernoff, we proved Hoeffding’s inequality that holds for
the mean of i.i.d. sub-Gaussians

P(1n

n∑

i=1
Xi − EX ≥ t) ≤ e−

nt2
2σ2

Wakeup-Q: How can we use Hoeffdings inequality to bound T2?
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Back to term T1

• Problem: Rn(f̂n) = 1
n

∑n
i=1 `(Zi ; f̂n) not an emp. mean of i.i.d.

R.V.! Can we still show some sort of concentration for Rn(f̂n)?
• Crude bound: since by assumption algorithm searches in a
model/function class F , i.e. f̂n ∈ F , we can upper bound T1 by

R(f̂n)− Rn(f̂n) ≤ sup
f ∈F

R(f )− Rn(f ) =: gn(Z1, . . . ,Zn)

• Instead of averages of n i.i.d. random variables, the supremum of an
empirical process R(f )− Rn(f ) is a general function gn : Zn → R

• Instead of Rn(f ) ≈ ERn(f ) = R(f ) for empirical means,
if gn satisfies some properties, gn concentrates around Egn(z)!
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Specific case: gn satisfies bounded difference property
Definition (bounded difference property)
Define for given z , z ′ ∈ Zn a new vector z\k with the k-th element

from z ′ and all other from z : z\kj =




zj if j 6= k
z ′k if j = k

. We say that

gn : Zn → R satisfies the bounded difference inequality if for each
k = 1, . . . , n it holds that

|gn(z)− gn(z\k)| ≤ σk for all z , z ′ ∈ Zn

Theorem (McDiarmid, MW Cor. 2.21)
If gn : Zn → R satisfies the bounded difference condition and Z ∈ Zn

is a random vector with n independent entries, then

P(gn(Z )− Egn(Z ) ≥ t) ≤ e
− 2t2∑n

k=1 σ2
k

• Concentration with n is usually obtained via t ∼ n or via σk ∼ 1
n
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Tail bound for supremum of (bounded) empirical process
• Remember for f ∈ F : Rn(f ) = 1

n
∑n

i=1 `(Zi , f )
• We can now use McDiarmid on the sup. of empirical process
gn(z1, . . . , zn) = supf ∈F R(f )− Rn(f ) for bounded losses!

Theorem (Uniform tail bound)
For b-unif. bounded `(·, f ), that is ‖`(·; f )‖∞ ≤ b for all f ∈ F , it
holds that

P(sup
f ∈F

R(f )− Rn(f ) ≥ E[sup
f ∈F

R(f )− Rn(f )] + t) ≤ e−
nt2
2b2

where the probability is over the training data.

• Note that there are other results beyond boundedness (Lipschitz
functions etc.), that are tighter particularly in the context of
bounding suprema of empirical process - MW Chapter 3
• This uniform tail bound can give us a (crude) high-probability
bound and rate, if we can bound the expectation (→ next class!)
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Proof of tail bound using McDiarmid
For simplicity define H = {h : h(·) = `(·; f ) ∀f ∈ F}
Use McDiarmid by checking bounded differences assumption with
gn(z) := supf ∈F Rn(f )− R(f ) = suph∈H

1
n

∑n
i=1 h(zi)− Eh

• For b-uniformly bounded H, we have for all k = 1, . . . , n and any
z , z ′ ∈ Zn that for any h ∈ H

1
n

∑

i
[h(zi)− Eh]− sup

h̃∈H

1
n

∑

i

[
h̃(z\ki )− Eh̃

]

≤
∑

i h(zi)− h(z\ki )
n = h(zk)− h(z ′k)

n ≤ 2b
n

• Since it holds for all h ∈ H, taking the sup on both sides yields

gn(z)−gn(z\k) = sup
h∈H

1
n

∑

i
[h(zi)−Eh]−sup

h̃∈H

1
n

∑

i

[
h̃(z\ki )−Eh̃

]
≤ 2b

n

• By symmetry it holds for gn(z\k)− gn(z)→ |gn(z)− gn(z\k)| ≤ 2b
n

• Plugging in σk = 2b
n into McDiarmid then yields the result. 8 / 16



Proof sketch of McDiarmid
Theorem (McDiarmid, MW Cor. 2.21)
If gn : Zn → R satisfies the bounded difference condition with
{σk}nk=1 and Z is a random vector with n independent entries, then

P(gn(Z )− Egn(Z ) ≥ t) ≤ e
− 2t2∑n

k=1 σ2
k

Proof intuition:

Re-writing gn as a sum
• For any function gn : Zn → R, even though we don’t have a sum
per se, we can write the difference as a sum (check for yourself)

gn(Z )− Egn(Z ) =:
n∑

j=1
Dj

where Dj := E[gn(Z )|Z1, . . . ,Zj ]− E[gn(Z )|Z1, . . .Zj−1] for j ≥ 2
and D1 = E[gn(Z )|Z1]− E[gn(Z )]
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Proof intuition Part I

Discuss with your neighbor: For the special case of empirical mean
gn(Z ) = 1

n
∑n

i=1 Zi with Zi independent and bounded

→ Dj are independent and sub-Gaussian so that one can use
Hoeffding’s bound on Dj . Can we use this for general gn?
• Indeed, for all j = 1, . . . , n

Dj = 1
n

n∑

i=j
E[Zi |Z1, . . . ,Zj ]−

1
n

n∑

i=j−1
E[Zi |Z1, . . . ,Zj−1] = Zj

n −
EZ
n

with all Dj independent and bounded (hence sub-Gaussian)
• For general gn(Z ) independence of Dj does not hold!
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Proof intuition Part II

• However, we can still show that
• Dj indepedendent → Dj martingale difference, and hope that Dj s.t.
• Dj “conditionally” bounded (and hence still in some way subgaussian)

• (informal) Then instead of Hoeffding that can be used on
independent bounded R.V., we can use Azuma-Hoeffding, that
shows

P(
n∑

i=1
Di ≥ t) ≤ e

− 2t2∑n
i=1(bi−ai )2

for bounded martingale difference sequences where Di ∈ [ai , bi ] a.s.

We now formalize the proof.
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“Recap”: Martingale difference sequences
Let {Zj}∞j=1 be a sequence of R.V. and Fj := σ(Z1, . . . ,Zj),

Further, let {Sj}∞j=1 be such that Sj is measurable with respect to Fj
(i.e. we say {Sj}∞j=1 is adapted to the filtration {Fj}∞j=1)

Definition (Martingale (difference))
• {Sj ,Fj}∞j=1 is a martingale
if for all j , E|Sj | <∞ and E[Sj+1|Fj ] = Sj
• Similarly, {Dj ,Fj}∞j=1 is a martingale difference sequence
if for all j , E|Dj | <∞ and E[Dj+1|Fj ] = 0

• For any martingale {Sj ,Fj}∞j=0, Dj = Sj − Sj−1 for j ≥ 1 is a
martingale difference sequence.
• Doob construction: given some function gn : Zn → R, for a
sequence of random variables Z1, . . . ,Zn, note that
Sj = E[gn(Z )|Z1, . . . ,Zj ] fulfills exactly the above conditions if
E|gn(Z )| <∞. Then also E[Dj+1|Fj ] = 0 for Dj = Sj − Sj−1
Check with your neighbor
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Formal proof of McDiarmid
Theorem (Azuma-Hoeffding inequality, MW Cor 2.20)
If for martingale difference sequence {(Di ,Fi)}ni=1 it holds that
Di |Fi−1 almost surely lies in an interval of length Li for all i , then

P(
n∑

i=1
Di ≥ t) ≤ e

− 2t2∑n
i=1 L2

i

Note: This version is slightly different than MW Cor 2.20 - this
version does not require all Di |z i−1

1 to be in the same range [ai , bi ] for
all z i−1

1 - only the length matters

The proof of McDiarmid follows immediately if we can show that
• for any gn satisfying the bounded difference property with {σj}nj=1
• we have that gn(Z )− Egn(Z ) = ∑n

j=1 Dj with {Dj ,Fj}nj=1 a
martingale difference sequence and Di |Fi−1 almost surely lies in an
interval of length Li

We now show that this fact is true.
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Proof: Assumptions of Azuma-Hoeffding hold
• Define shorthand Z i

1 = (Z1, . . . ,Zi) ∈ Z i for random/real vectors
• We can now prove that if gn satisfies the bounded difference
condition with {σj}nj=1, then for all z j−1

1 ∈ Z j−1 there exists aj , bj
s.t. Dj |Z j−1

1 = z j−1
1 ∈ [aj , bj ] almost surely with bj − aj ≤ σj

• We define shorthand (last equality follows by independence of Zj):
E[gn(Z )|z j−1

1 ] := E[gn(Z )|Z j−1
1 = z j−1

1 ] = Egn(z j−1
1 ,Zn

j )

• Further, by definition for all z j−1
1 ∈ Z j−1 almost surely

Dj |Z j−1
1 = z j−1

1 ≥ inf
z∈Z

E[gn(Z )|z j−1
1 ,Zj = z ]− E[gn(Z )|z j−1

1 ] =: aj

Dj |Z j−1
1 = z j−1

1 ≤ sup
z∈Z

E[gn(Z )|z j−1
1 ,Zj = z ]− E[gn(Z )|z j−1

1 ] =: bj

• Dj |Z j−1
1 = z j−1

1 ∈ [aj , bj ] and, by bounded diff. ass. on gn, a.s:
bj − aj = sup

z∈Z
Egn(z j−1

1 , z ,Zn
j+1)− inf

z∈Z
Egn(z j−1

1 , z ,Zn
j+1)

≤ sup
z,z ′∈Z

E|gn(z j−1
1 , z ,Zn

j+1)− gn(z j−1
1 , z ′,Zn

j+1)| ≤ σj
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Summary

• McDiarmid inequality for bounded difference
• uniform tail bound for T1

• Proof McDiarmid: Hoeffding bound for sums of independent R.V.→
martingale (difference) sequences and Azuma-Hoeffding inequality

Next up: Uniform law with symmetization and Rademacher complexity
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References

Concentration bounds including Azuma-Hoeffding, McDiarmid
• MW Chapter 2
• Boucheron, Lugosi, Massart: Chapter 2

Martingales - any probability theory book, e.g.:
• P. Billingsley. Probability and Measure
• R. Durrett. Probability: Theory and Examples (4th edition)

(Bonus) More concentration bounds on suprema of empirical
processes:
• MW Chapter 3
• Ledoux, Talagrand: Probability for Banach spaces for functional
Bernstein
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