Lecture 3: Azuma-Hoeffding and uniform law
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Announcements

® HW due next Thursday 23:59, write it up entirely independently
yourself

® You can check paper suggestions for project work already on the
project website (link to a googlesheet)

® |ec? slides updated regarding boundedness of martingale difference
sequence & Azuma-Hoeffding (will explain again today)

® Goal of in-class lecture: cannot deliver the details of each proof
completely, but primarily intuition - expect to fully understand and
digest after reading the book & doing homework
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Plan today

® Review of proof of uniform tail bound

® Warm-up exercise: using Azuma-Hoeffding for online learning
“excess risk”

® Proof of Azuma-Hoeffding
® Uniform law with Rademacher complexity

® |ntuition of Rademacher complexity
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Recap: Main tail bound

e {Z;}" | are training points " P, estimator f, € F trained on them

® We use Z both for the collection Z = {Z;}?_; and a single random
vector Z ~ [P which should be clear from the context

® Goal: want to prove that

R(fa) — Ru(fa) < suprer BU(Z; ) — 20 U(Z5; F) =t gn(Z) small
with probability at least 1 — ¢

Theorem (Uniform tail bound)

For b-unif. bounded ¢, it holds that

P(sup R(f) — Ra(f) > E[sup R(f) — Ra(f)] + t) < e_g
feF feF

where the probability is over the training data.

-
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Recap: What we can do with the tail bound

Using the short-term Res(n, F) := E[supscr R(f) — Rn(f)] We
immediately obtain

nt2
P(sup R(f) — Ry(f) < Res(n, F)+t) >1—e 22
feF

This is a “high probability” bound in the sense that with probability at
least 1 — 6 we have

2Iog(%)

sup R(f) — R,(f) < b
feF n

+ Res(n, F)
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Recap: Proof of tail bound (w/o martingale speak)
Approach: Upper bound P(g,(Z) — Eg,(Z) > t) by following

1. If loss ¢ b-uniformly bounded, then
gn = supser BU(Z, f) — L S0 0(Z;, f) satisfies bounded difference
property with o; = % for all i

2. For any g,, we can decompose g,(Z) —Egn(Z) =>_71 D,
Di = Elga(2)|Z, ., Z) — Elgn(2)| 21, ..., Zi1]

3. Then, D; satisfies that for any z{ ! there are some a;, b; with
b; — a; < o; such that D,"Zl’_l = Zi_l € [a,-, b,]

4. show how for such D; (bounded martingale diff sequence) we have

> 7 1 D; concentrates around its expectation ED; = 0, i.e.

2
2

2
P> 7 1D >t)<=e 2im % < e 2w [Azuma Hoeffding]

Note: 2-4 proves McDiarmid using Azuma-Hoeffding, 2-3 prove that
assumptions for Azuma-Hoeffding hold.

Not shown, will show today: Azuma-Hoeffding 615




Recap: Azuma-Hoeffding

® Hoeffding: Simple concentration for average of n independent
sub-Gaussian (e.g bounded) Z;

17 nt?
P(- ) Zi—EZ>t)<e 22
® Azuma-Hoeffding: “Advanced” concentration for average of a

martingale difference sequence {D;}?_; bounded in intervals of
C

length o = =

n 212 _ 2nt?

n
IP)(ZD,- >t)<e n? =e &
i=1

Theorem (Azuma-Hoeffding inequality, MW Cor. 2.20)

If for martingale difference sequence {(D;, F;)}"_; it holds that
D;|Fi—1 almost surely lies in an interval of length L; for all i, then
n 2t2
P(Z Di>t)<e D i b

i=1

- J

Next, we gain some more intuition on Azuma-Hoeffding by applying it
to a different problem related to online learning 7/15

Exercise Context |: Online learning setting

® /i,...,Z, come in one at a time.

® At each point in time i you would like to output an estimator ?,-_1
to predict on the next sample Z; with small loss

® As a data scientists, we naturally consider functions that are trained
using the previous examples 2, ..., Z;_1. More formally, we assume
f,_1 is a deterministic function of the previous samples Z1,...,2Z;_1
(e.g. ERM but does not have to be!), i.e. measurable with respect
to O'(Zl, cee Z,'_l) = Fi_1.

° ?0 can be any data-independent arbitrary estimator, e.g. a randomly
initialized model.

e Assume the minimizer f, := arg Minsc - % > i1 U(Zi; f) exists
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Exercise Context IlI: Online to batch conversion

® A standard quantity people want to keep small in online learning is
the regret Reg,,, the average incurred loss of the sequence {f;}7 4
with the loss of f,

Reg, =) U(Z; fii1) — > Uz )
i=1 i=1

® Note: Bounding the actual Reg,, is a whole area of research and in
many cases, good online learning algorithms exist

® Online-to-batch conversion exploits online learning algorithms with
small regret to get estimator based on batch Zi,..., Z, with good
generalization. For example, one can consider a random estimator
that samples from the sequence of online estimators {?,}7:_01 which

® conditioned on the data are deterministic R
® has an average (over the sampling) a risk of 23" | R(fi_1)

°* We W|II now prove a high probability bound on the “average” excess

risk 1 °7 ) R(F_1) — R(F¥)

Exercise: Bound on the average excess risk
With your neighbor, prove that with probability at least 1 — ¢,

3 2IRG )~ R() < | Regy + \/“g—(”‘” (1)

with R(f) = El(Z; f) for £ € [0, 1] using the following steps

1. Step: Prove that R
D; =[Ez0(Z; fi—1) — (Z;; fi—1)] + [0(Zi; £7) —EZ0(Z; )] is a
bounded martingale difference sequence

2. Step: Decompose the risk (by including terms with f and using its
optimality) and prove

—Z[R 1)~ R(F)] < 2Reg, + 237D,

i=1

3. Step: Use Step 1 and Azuma-Hoeffding to prove the bound eq. 1




Solution: Proof of average excess risk bound
We use the following shorthands for simplicity:

* Ra({fi}}=9) = 3+ T1 U(Zii fiv) ~
* RU{}Z) = £ Xfa R(fi1) = 5 11 BU(Z; fima)

1. Risk decomposition:

- Z[R ~1) = R(F)] < RUAYSS) — Ra{fi}120) + Ra({fi}123) — Ral(fa)

=Reg,

+ Rolfa) = RalF*) +Ra(*) = R(1")

"

<0 by optimality of f
2. D; is a martingale difference sequence because

ED;|Fi—1 =0
as Z; is independent of ?,-_1 and bounded a.s. by 4.

Check: The average excess risk over {f}7_, is similar in terms of rate
for large n as long as R(f,) is bounded
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Proof of Azuma-Hoeffding

1. First of all, we have for all sequences z{_l that for some b; — a; < L;
, - - 2 . 2.)2 2712
E[eAD,‘le 1 _ Z{ 1] < e)\ (bi—aj)=/8 < e>\ L:/8

by the fact that R.V. bounded in an interval of length L; are L;/2
subgaussian (for the right constant check MW Exercise 2.4., for an

easier proof for the wrong constant check MW Example 2.4.) and
hence a.s. the random variable E[e*Pi|Z/71] < X°L7/8

2. If D; are independent, we have Ee 2 i D = [17 Ee?Pi

3. Note that since D; are Fj-measurable by definition of martingale
difference sequence, we have E[e*P'|G] = e*Di for all G € F;

4. Now using the tower property (TP) of conditional expectations
2
iteratively, we see that >" ; D;is \/> i %—subgaussian:
n ) P n—1
Ee i O (D) E[]E[e)‘zizl BighPo 7, Zn4]]
Sp[er T DR[|y, ., Z, 4]] < N HBR[N i D] = o X L8y
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Bounding Res(n, F), Rademacher complexity
Today we use shorthand H = {h: h(-) =¥¢(:;f) Vf € F} and write
the uniform tail bound thls way. Then we have

sup E(Z, f) ——Zz Zi, f) = sup]Eh(Z)——Zh
teF i=1 i=1

and it follows that N

P(sup Eh(Z) — %Z h(Z;) > Res(n, F)+t) <e 2b2 (2)
heH

The next four sessions will be about how to bound Res(n, F)!
Step | (this week): we first use eq. 2 & that Res(n, F) is bounded by

Definition (Rademacher complexity)

Given a function class ‘H and distribution P on its domain Z, for i.i.d.
Rademacher R.V. ¢;, we define the Rademacher complexity as

1 n
Rn(H) = E¢ 7z sup — e;h(Z,
(H) he%n; (

Step Il (next 2 weeks): We'll discuss how to bound R,(H) as a
function of n,H 13/15

Step I: Uniform law with Rademacher complexity
Theorem (Uniform law for the risk, MW Thm 4.10.)

For b-unif. bounded H, with prob. over the training data

P(suth(Z)——Zh Z)>2Ry(H)+t) < e 52
heH =1

- J

® By using H={h:h(:)=4(;f) VYfeF} weget
Ra(H) =E suplzn: h(Z)=E suplzn: UZ;, f)
n(H) = K. — ) €in(4;) = ke — ) €itl4,
Z heH N i=1 o fer n i—1
and after showing Res(n, F) < 2R ,(H), directly obtain our desired
bound on supscr R(f) — Rn(f)

* Note if R(H) = o(1), then supsc = R(f) — Ru(f) 23 0.

® Before the proof, we aim to gain some intuition for the quantity
Rn(H) and how it may behave with different n and H
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References

Azuma-Hoeffding

* MW Chapter 2

Online to batch conversion with Azuma-Hoeffding

® https://home.ttic.edu/~tewari/lectures/lecturel3.pdf

Uniform law and Rademacher complexity

¢ MW Chapter 4
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