
Lecture 3: Azuma-Hoeffding and uniform law
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Announcements

• HW due next Thursday 23:59, write it up entirely independently
yourself
• You can check paper suggestions for project work already on the
project website (link to a googlesheet)
• Lec2 slides updated regarding boundedness of martingale difference
sequence & Azuma-Hoeffding (will explain again today)
• Goal of in-class lecture: cannot deliver the details of each proof
completely, but primarily intuition - expect to fully understand and
digest after reading the book & doing homework
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Plan today

• Review of proof of uniform tail bound
• Warm-up exercise: using Azuma-Hoeffding for online learning
“excess risk”
• Proof of Azuma-Hoeffding
• Uniform law with Rademacher complexity
• Intuition of Rademacher complexity
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Recap: Main tail bound

• {Zi}ni=1 are training points iid∼ P, estimator f̂n ∈ F trained on them
• We use Z both for the collection Z = {Zi}ni=1 and a single random
vector Z ∼ P which should be clear from the context
• Goal: want to prove that

R(f̂n)− Rn(f̂n) ≤ supf ∈F E`(Z ; f )− 1
n

∑n
i=1 `(Zi ; f ) =: gn(Z ) small

with probability at least 1− δ

Theorem (Uniform tail bound)
For b-unif. bounded `, it holds that

P(sup
f ∈F

R(f )− Rn(f ) ≥ E[sup
f ∈F

R(f )− Rn(f )] + t) ≤ e−
nt2
2b2

where the probability is over the training data.
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Recap: What we can do with the tail bound

Using the short-term Res(n,F) := E[supf ∈F R(f )− Rn(f )] We
immediately obtain

P(sup
f ∈F

R(f )− Rn(f ) ≤ Res(n,F) + t) ≥ 1− e−
nt2
2b2

This is a “high probability” bound in the sense that with probability at
least 1− δ we have

sup
f ∈F

R(f )− Rn(f ) ≤ b

√
2 log(1

δ )
n + Res(n,F)
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Recap: Proof of tail bound (w/o martingale speak)
Approach: Upper bound P(gn(Z )− Egn(Z ) ≥ t) by following

1. If loss ` b-uniformly bounded, then
gn = supf ∈F E`(Z , f )− 1

n
∑n

i=1 `(Zi , f ) satisfies bounded difference
property with σi = 2b

n for all i

2. For any gn, we can decompose gn(Z )− Egn(Z ) = ∑n
i=1 Di

Di = E[gn(Z )|Z1, . . . ,Zi ]− E[gn(Z )|Z1, . . . ,Zi−1]

3. Then, Di satisfies that for any z i−1
1 there are some ai , bi with

bi − ai ≤ σi such that Di |Z i−1
1 = z i−1

1 ∈ [ai , bi ].

4. show how for such Di (bounded martingale diff sequence) we have∑n
i=1 Di concentrates around its expectation EDi = 0, i.e.

P(∑n
i=1 Di > t) ≤= e

− 2t2∑n
i=1 σ2

i ≤ e−
nt2
2b2 [Azuma Hoeffding]

Note: 2-4 proves McDiarmid using Azuma-Hoeffding, 2-3 prove that
assumptions for Azuma-Hoeffding hold.
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Recap: Azuma-Hoeffding
• Hoeffding: Simple concentration for average of n independent
sub-Gaussian (e.g bounded) Zi

P(1n

n∑

i=1
Zi − EZ > t) ≤ e−

nt2
2σ2

• Azuma-Hoeffding: “Advanced” concentration for average of a
martingale difference sequence {Di}ni=1 bounded in intervals of
length σ = c

n
P(

n∑

i=1
Di > t) ≤ e−

2t2
nσ2 = e−

2nt2
c2

Theorem (Azuma-Hoeffding inequality, MW Cor. 2.20)
If for martingale difference sequence {(Di ,Fi)}ni=1 it holds that
Di |Fi−1 almost surely lies in an interval of length Li for all i , then

P(
n∑

i=1
Di ≥ t) ≤ e

− 2t2∑n
i=1 L2

i

Next, we gain some more intuition on Azuma-Hoeffding by applying it
to a different problem related to online learning 7 / 15

Exercise Context I: Online learning setting

• Z1, . . . ,Zn come in one at a time.
• At each point in time i you would like to output an estimator f̂i−1
to predict on the next sample Zi with small loss
• As a data scientists, we naturally consider functions that are trained

using the previous examples Z1, . . . ,Zi−1. More formally, we assume
f̂i−1 is a deterministic function of the previous samples Z1, . . . ,Zi−1
(e.g. ERM but does not have to be!), i.e. measurable with respect
to σ(Z1, . . . ,Zi−1) = Fi−1.
• f̂0 can be any data-independent arbitrary estimator, e.g. a randomly
initialized model.
• Assume the minimizer f̂n := arg minf ∈F

1
n

∑
i=1 `(Zi ; f ) exists
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Exercise Context II: Online to batch conversion
• A standard quantity people want to keep small in online learning is
the regret Regn, the average incurred loss of the sequence {f̂i}ni=1
with the loss of f̂n

Regn =
n∑

i=1
`(Zi ; f̂i−1)−

n∑

i=1
`(Zi ; f̂n)

• Note: Bounding the actual Regn is a whole area of research and in
many cases, good online learning algorithms exist
• Online-to-batch conversion exploits online learning algorithms with
small regret to get estimator based on batch Z1, . . . ,Zn with good
generalization. For example, one can consider a random estimator
that samples from the sequence of online estimators {f̂i}n−1

i=0 which
• conditioned on the data are deterministic
• has an average (over the sampling) a risk of 1

n
∑n

i=1 R(f̂i−1)

• We will now prove a high probability bound on the “average” excess
risk 1

n
∑n

i=1 R(f̂i−1)− R(f ?)
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Exercise: Bound on the average excess risk
With your neighbor, prove that with probability at least 1− δ,

1
n

n∑

i=1
[R(f̂i−1)− R(f ?)] ≤ 1

nRegn +
√

8 log(1/δ)
n (1)

with R(f ) = E`(Z ; f ) for ` ∈ [0, 1] using the following steps

1. Step: Prove that
Di = [EZ `(Z ; f̂i−1)− `(Zi ; f̂i−1)] + [`(Zi ; f ?)− EZ `(Z ; f ?)] is a
bounded martingale difference sequence

2. Step: Decompose the risk (by including terms with f̂ and using its
optimality) and prove

1
n

n∑

i=1
[R(f̂i−1)− R(f ?)] ≤ 1

nRegn + 1
n

n∑

i=1
Di

3. Step: Use Step 1 and Azuma-Hoeffding to prove the bound eq. 1
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Solution: Proof of average excess risk bound
We use the following shorthands for simplicity:
• Rn({f̂i}n−1

i=0 ) := 1
n

∑n
i=1 `(Zi ; f̂i−1)

• R({f̂i}n−1
i=0 ) := 1

n
∑n

i=1 R(f̂i−1) = 1
n

∑n
i=1 E`(Z ; f̂i−1)

1. Risk decomposition:
1
n

n∑

i=1
[R(f̂i−1)− R(f ?)] ≤ R({f̂i}n−1

i=0 )− Rn({f̂i}n−1
i=0 ) + Rn({f̂i}n−1

i=0 )− Rn(f̂n)︸ ︷︷ ︸
=Regn

+ Rn(f̂n)− Rn(f ?)︸ ︷︷ ︸
≤0 by optimality of f̂

+Rn(f ?)− R(f ?)

2. Di is a martingale difference sequence because
EDi |Fi−1 = 0

as Zi is independent of f̂i−1 and bounded a.s. by 4.

Check: The average excess risk over {f̂ }ni=1 is similar in terms of rate
for large n as long as R(f̂n) is bounded
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Proof of Azuma-Hoeffding
1. First of all, we have for all sequences z i−1

1 that for some bi − ai ≤ Li

E[eλDi |Z i−1
1 = z i−1

1 ] ≤ eλ2(bi−ai )2/8 ≤ eλ2L2
i /8

by the fact that R.V. bounded in an interval of length Li are Li/2
subgaussian (for the right constant check MW Exercise 2.4., for an
easier proof for the wrong constant check MW Example 2.4.) and
hence a.s. the random variable E[eλDi |Z i−1

1 ] ≤ eλ2L2
i /8

2. If Di are independent, we have Eeλ
∑n

i=1 Di = ∏n
i=1 EeλDi

3. Note that since Di are Fi -measurable by definition of martingale
difference sequence, we have E[eλDi |G ] = eλDi for all G ∈ Fi

4. Now using the tower property (TP) of conditional expectations
iteratively, we see that ∑n

i=1 Di is
√∑n

i=1
L2

i
4 -subgaussian:

Eeλ
∑n

i=1 Di (TP)= E[E[eλ
∑n−1

i=1 Di eλDn |Z1, . . . ,Zn−1]]
(3.)= E[eλ

∑n−1
i=1 DiE[eλDn |Z1, . . . ,Zn−1]] ≤ eλ2L2

i /8E[eλ
∑n−1

i=1 Di ] = eλ2 ∑n
i=1 L2

i /8
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Bounding Res(n,F), Rademacher complexity
Today we use shorthand H = {h : h(·) = `(·; f ) ∀f ∈ F} and write
the uniform tail bound this way. Then we have

sup
f ∈F

E`(Z , f )− 1
n

n∑

i=1
`(Zi , f ) = sup

h∈H
Eh(Z )− 1

n

n∑

i=1
h(Zi)

and it follows that
P(sup

h∈H
Eh(Z )− 1

n

n∑

i=1
h(Zi) ≥ Res(n,F) + t) ≤ e−

nt2
2b2 (2)

The next four sessions will be about how to bound Res(n,F)!

Step I (this week): we first use eq. 2 & that Res(n,F) is bounded by

Definition (Rademacher complexity)
Given a function class H and distribution P on its domain Z, for i.i.d.
Rademacher R.V. εi , we define the Rademacher complexity as

Rn(H) = Eε,Z sup
h∈H

1
n

n∑

i=1
εih(Zi)

Step II (next 2 weeks): We’ll discuss how to bound Rn(H) as a
function of n,H 13 / 15

Step I: Uniform law with Rademacher complexity
Theorem (Uniform law for the risk, MW Thm 4.10.)
For b-unif. bounded H, with prob. over the training data

P(sup
h∈H

Eh(Z )− 1
n

n∑

i=1
h(Zi) ≥ 2Rn(H) + t) ≤ e−

nt2
2b2

• By using H = {h : h(·) = `(·; f ) ∀f ∈ F} we get

Rn(H) = Eε,Z sup
h∈H

1
n

n∑

i=1
εih(Zi) = Eε,Z sup

f ∈F

1
n

n∑

i=1
εi`(Zi , f )

and after showing Res(n,F) ≤ 2Rn(H), directly obtain our desired
bound on supf ∈F R(f )− Rn(f )

• Note if Rn(H) = o(1), then supf ∈F R(f )− Rn(f ) a.s.→ 0.
• Before the proof, we aim to gain some intuition for the quantity
Rn(H) and how it may behave with different n and H
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