Lecture 3: Azuma-Hoeffding and uniform law

Announcements

- HW due next Thursday $23: 59$, write it up entirely independently yourself
- You can check paper suggestions for project work already on the project website (link to a googlesheet)
- Lec2 slides updated regarding boundedness of martingale difference sequence \& Azuma-Hoeffding (will explain again today)
- Goal of in-class lecture: cannot deliver the details of each proof completely, but primarily intuition - expect to fully understand and digest after reading the book \& doing homework

Plan today

- Review of proof of uniform tail bound
- Warm-up exercise: using Azuma-Hoeffding for online learning "excess risk"
- Proof of Azuma-Hoeffding
- Uniform law with Rademacher complexity
- Intuition of Rademacher complexity

Recap: Main tail bound

- $\left\{Z_{i}\right\}_{i=1}^{n}$ are training points $\stackrel{i i d}{\sim} \mathbb{P}$, estimator $\widehat{f}_{n} \in \mathcal{F}$ trained on them
- We use Z both for the collection $Z=\left\{Z_{i}\right\}_{i=1}^{n}$ and a single random vector $Z \sim \mathbb{P}$ which should be clear from the context
- Goal: want to prove that
$R\left(\widehat{f}_{n}\right)-R_{n}\left(\widehat{f}_{n}\right) \leq \sup _{f \in \mathcal{F}} \mathbb{E} \ell(Z ; f)-\frac{1}{n} \sum_{i=1}^{n} \ell\left(Z_{i} ; f\right)=: g_{n}(Z)$ small with probability at least $1-\delta$

Theorem (Uniform tail bound)

For b-unif. bounded ℓ, it holds that

$$
\mathbb{P}\left(\sup _{f \in \mathcal{F}} R(f)-R_{n}(f) \geq \mathbb{E}\left[\sup _{f \in \mathcal{F}} R(f)-R_{n}(f)\right]+t\right) \leq e^{-\frac{n t^{2}}{2 b^{2}}}
$$

where the probability is over the training data.

Recap: What we can do with the tail bound

Using the short-term $\operatorname{Res}(n, \mathcal{F}):=\mathbb{E}\left[\sup _{f \in \mathcal{F}} R(f)-R_{n}(f)\right]$ We immediately obtain

$$
\mathbb{P}\left(\sup _{f \in \mathcal{F}} R(f)-R_{n}(f) \leq \operatorname{Res}(n, \mathcal{F})+t\right) \geq 1-\mathrm{e}^{-\frac{n t^{2}}{2 b^{2}}}
$$

This is a "high probability" bound in the sense that with probability at least $1-\delta$ we have

$$
\sup _{f \in \mathcal{F}} R(f)-R_{n}(f) \leq b \sqrt{\frac{2 \log \left(\frac{1}{\delta}\right)}{n}}+\operatorname{Res}(n, \mathcal{F})
$$

Recap: Proof of tail bound (w/o martingale speak)

Approach: Upper bound $\mathbb{P}\left(g_{n}(Z)-\mathbb{E} g_{n}(Z) \geq t\right)$ by following

1. If loss ℓb-uniformly bounded, then
$g_{n}=\sup _{f \in \mathcal{F}} \mathbb{E} \ell(Z, f)-\frac{1}{n} \sum_{i=1}^{n} \ell\left(Z_{i}, f\right)$ satisfies bounded difference property with $\sigma_{i}=\frac{2 b}{n}$ for all i
2. For any g_{n}, we can decompose $g_{n}(Z)-\mathbb{E} g_{n}(Z)=\sum_{i=1}^{n} D_{i}$

$$
D_{i}=\mathbb{E}\left[g_{n}(Z) \mid Z_{1}, \ldots, Z_{i}\right]-\mathbb{E}\left[g_{n}(Z) \mid Z_{1}, \ldots, Z_{i-1}\right]
$$

3. Then, D_{i} satisfies that for any z_{1}^{i-1} there are some a_{i}, b_{i} with $b_{i}-a_{i} \leq \sigma_{i}$ such that $D_{i} \mid Z_{1}^{i-1}=z_{1}^{i-1} \in\left[a_{i}, b_{i}\right]$.
4. show how for such D_{i} (bounded martingale diff sequence) we have $\sum_{i=1}^{n} D_{i}$ concentrates around its expectation $\mathbb{E} D_{i}=0$, i.e.
$\mathbb{P}\left(\sum_{i=1}^{n} D_{i}>t\right) \leq=\mathrm{e}^{-\frac{2 t^{2}}{\sum_{i=1}^{n} \sigma_{i}^{2}}} \leq \mathrm{e}^{-\frac{n t^{2}}{2 b^{2}}}$ [Azuma Hoeffding]
Note: 2-4 proves McDiarmid using Azuma-Hoeffding, 2-3 prove that assumptions for Azuma-Hoeffding hold.

Not shown, will show today: Azuma-Hoeffding

Recap: Azuma-Hoeffding

- Hoeffding: Simple concentration for average of n independent sub-Gaussian (e.g bounded) Z_{i}

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mathbb{E} Z>t\right) \leq \mathrm{e}^{-\frac{n t^{2}}{2 \sigma^{2}}}
$$

- Azuma-Hoeffding: "Advanced" concentration for average of a martingale difference sequence $\left\{D_{i}\right\}_{i=1}^{n}$ bounded in intervals of length $\sigma=\frac{c}{n}$

$$
\mathbb{P}\left(\sum_{i=1}^{n} D_{i}>t\right) \leq \mathrm{e}^{-\frac{2 t^{2}}{n \sigma^{2}}}=\mathrm{e}^{-\frac{2 n t^{2}}{c^{2}}}
$$

Theorem (Azuma-Hoeffding inequality, MW Cor. 2.20)

If for martingale difference sequence $\left\{\left(D_{i}, \mathcal{F}_{i}\right)\right\}_{i=1}^{n}$ it holds that $D_{i} \mid \mathcal{F}_{i-1}$ almost surely lies in an interval of length L_{i} for all i, then

$$
\mathbb{P}\left(\sum_{i=1}^{n} D_{i} \geq t\right) \leq e^{-\frac{2 t^{2}}{\sum_{i=1}^{L_{i}^{2}}}}
$$

Next, we gain some more intuition on Azuma-Hoeffding by applying it to a different problem related to online learning

Exercise Context I: Online learning setting

- Z_{1}, \ldots, Z_{n} come in one at a time.
- At each point in time i you would like to output an estimator \widehat{f}_{i-1} to predict on the next sample Z_{i} with small loss
- As a data scientists, we naturally consider functions that are trained using the previous examples Z_{1}, \ldots, Z_{i-1}. More formally, we assume \hat{f}_{i-1} is a deterministic function of the previous samples Z_{1}, \ldots, Z_{i-1} (e.g. ERM but does not have to be!), i.e. measurable with respect to $\sigma\left(Z_{1}, \ldots, Z_{i-1}\right)=\mathcal{F}_{i-1}$.
- \widehat{f}_{0} can be any data-independent arbitrary estimator, e.g. a randomly initialized model.
- Assume the minimizer $\widehat{f}_{n}:=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1} \ell\left(Z_{i} ; f\right)$ exists

Exercise Context II: Online to batch conversion

- A standard quantity people want to keep small in online learning is the regret Reg_{n}, the average incurred loss of the sequence $\left\{\widehat{f}_{i}\right\}_{i=1}^{n}$ with the loss of \widehat{f}_{n}

$$
\operatorname{Reg}_{n}=\sum_{i=1}^{n} \ell\left(Z_{i} ; \widehat{f}_{i-1}\right)-\sum_{i=1}^{n} \ell\left(Z_{i} ; \widehat{f}_{n}\right)
$$

- Note: Bounding the actual Reg_{n} is a whole area of research and in many cases, good online learning algorithms exist
- Online-to-batch conversion exploits online learning algorithms with small regret to get estimator based on batch Z_{1}, \ldots, Z_{n} with good generalization. For example, one can consider a random estimator that samples from the sequence of online estimators $\left\{\widehat{f}_{i}\right\}_{i=0}^{n-1}$ which
- conditioned on the data are deterministic
- has an average (over the sampling) a risk of $\frac{1}{n} \sum_{i=1}^{n} R\left(\widehat{f}_{i-1}\right)$
- We will now prove a high probability bound on the "average" excess risk $\frac{1}{n} \sum_{i=1}^{n} R\left(\hat{f}_{i-1}\right)-R\left(f^{\star}\right)$

Exercise: Bound on the average excess risk

With your neighbor, prove that with probability at least $1-\delta$,

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left[R\left(\widehat{f}_{i-1}\right)-R\left(f^{\star}\right)\right] \leq \frac{1}{n} \operatorname{Reg}_{n}+\sqrt{\frac{8 \log (1 / \delta)}{n}} \tag{1}
\end{equation*}
$$

with $R(f)=\mathbb{E} \ell(Z ; f)$ for $\ell \in[0,1]$ using the following steps

1. Step: Prove that
$D_{i}=\left[\mathbb{E}_{Z} \ell\left(Z ; \widehat{f}_{i-1}\right)-\ell\left(Z_{i} ; \widehat{f}_{i-1}\right)\right]+\left[\ell\left(Z_{i} ; f^{\star}\right)-\mathbb{E}_{Z} \ell\left(Z ; f^{\star}\right)\right]$ is a bounded martingale difference sequence
2. Step: Decompose the risk (by including terms with \widehat{f} and using its optimality) and prove

$$
\frac{1}{n} \sum_{i=1}^{n}\left[R\left(\widehat{f}_{i-1}\right)-R\left(f^{\star}\right)\right] \leq \frac{1}{n} \operatorname{Reg}_{n}+\frac{1}{n} \sum_{i=1}^{n} D_{i}
$$

3. Step: Use Step 1 and Azuma-Hoeffding to prove the bound eq. 1

Solution: Proof of average excess risk bound

We use the following shorthands for simplicity:

- $R_{n}\left(\left\{\widehat{f}_{i}\right\}_{i=0}^{n-1}\right):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(Z_{i} ; \widehat{f}_{i-1}\right)$
- $R\left(\left\{\widehat{f}_{i}\right\}_{i=0}^{n-1}\right):=\frac{1}{n} \sum_{i=1}^{n} R\left(\hat{f}_{i-1}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \ell\left(Z ; \widehat{f}_{i-1}\right)$

1. Risk decomposition:

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left[R\left(\widehat{f}_{i-1}\right)-R\left(f^{\star}\right)\right] & \leq R\left(\left\{\widehat{f}_{i}\right\}_{i=0}^{n-1}\right)-R_{n}\left(\left\{\widehat{f}_{i}\right\}_{i=0}^{n-1}\right)+\underbrace{R_{n}\left(\left\{\widehat{f}_{i}\right\}_{i=0}^{n-1}\right)-R_{n}\left(\widehat{f}_{n}\right)}_{=\operatorname{Reg}_{n}} \\
& +\underbrace{R_{n}\left(\widehat{f}_{n}\right)-R_{n}\left(f^{\star}\right)}_{\leq 0 \text { by optimality of } \widehat{f}}+R_{n}\left(f^{\star}\right)-R\left(f^{\star}\right)
\end{aligned}
$$

2. D_{i} is a martingale difference sequence because

$$
\mathbb{E} D_{i} \mid \mathcal{F}_{i-1}=0
$$

as Z_{i} is independent of \widehat{f}_{i-1} and bounded a.s. by 4.
Check: The average excess risk over $\{\widehat{f}\}_{i=1}^{n}$ is similar in terms of rate for large n as long as $R\left(\widehat{f}_{n}\right)$ is bounded

Proof of Azuma-Hoeffding

1. First of all, we have for all sequences z_{1}^{i-1} that for some $b_{i}-a_{i} \leq L_{i}$

$$
\mathbb{E}\left[\mathrm{e}^{\lambda D_{i}} \mid Z_{1}^{i-1}=z_{1}^{i-1}\right] \leq \mathrm{e}^{\lambda^{2}\left(b_{i}-a_{i}\right)^{2} / 8} \leq \mathrm{e}^{\lambda^{2} L_{i}^{2} / 8}
$$

by the fact that R.V. bounded in an interval of length L_{i} are $L_{i} / 2$ subgaussian (for the right constant check MW Exercise 2.4., for an easier proof for the wrong constant check MW Example 2.4.) and hence a.s. the random variable $\mathbb{E}\left[\mathrm{e}^{\lambda D_{i}} \mid Z_{1}^{i-1}\right] \leq \mathrm{e}^{\lambda^{2} L_{i}^{2} / 8}$
2. If D_{i} are independent, we have $\mathbb{E} \mathrm{e}^{\lambda \sum_{i=1}^{n} D_{i}}=\prod_{i=1}^{n} \mathbb{E} \mathrm{e}^{\lambda D_{i}}$
3. Note that since D_{i} are \mathcal{F}_{i}-measurable by definition of martingale difference sequence, we have $\mathbb{E}\left[\mathrm{e}^{\lambda D_{i}} \mid G\right]=\mathrm{e}^{\lambda D_{i}}$ for all $G \in \mathcal{F}_{i}$
4. Now using the tower property (TP) of conditional expectations iteratively, we see that $\sum_{i=1}^{n} D_{i}$ is $\sqrt{\sum_{i=1}^{n} \frac{L_{i}^{2}}{4}}$-subgaussian:
$\mathbb{E} \mathrm{e}^{\lambda \sum_{i=1}^{n} D_{i} \stackrel{(T P)}{=} \mathbb{E}\left[\mathbb{E}\left[\mathrm{e}^{\lambda \sum_{i=1}^{n-1} D_{i}} \mathrm{e}^{\lambda D_{n}} \mid Z_{1}, \ldots, Z_{n-1}\right]\right]}$
$\stackrel{(3 .)}{=} \mathbb{E}\left[\mathrm{e}^{\lambda \sum_{i=1}^{n-1} D_{i}} \mathbb{E}\left[\mathrm{e}^{\lambda D_{n}} \mid Z_{1}, \ldots, Z_{n-1}\right]\right] \leq \mathrm{e}^{\lambda^{2} L_{i}^{2} / 8} \mathbb{E}\left[\mathrm{e}^{\lambda \sum_{i=1}^{n-1} D_{i}}\right]=\mathrm{e}^{\lambda^{2} \sum_{i=1}^{n} L_{i}^{2} / 8}$

Bounding $\operatorname{Res}(n, \mathcal{F})$, Rademacher complexity

Today we use shorthand $\mathcal{H}=\{h: h(\cdot)=\ell(\cdot ; f) \quad \forall f \in \mathcal{F}\}$ and write the uniform tail bound this way. Then we have

$$
\sup _{f \in \mathcal{F}} \mathbb{E} \ell(Z, f)-\frac{1}{n} \sum_{i=1}^{n} \ell\left(Z_{i}, f\right)=\sup _{h \in \mathcal{H}} \mathbb{E} h(Z)-\frac{1}{n} \sum_{i=1}^{n} h\left(Z_{i}\right)
$$

and it follows that

$$
\begin{equation*}
\mathbb{P}\left(\sup _{h \in \mathcal{H}} \mathbb{E} h(Z)-\frac{1}{n} \sum_{i=1}^{n} h\left(Z_{i}\right) \geq \operatorname{Res}(n, \mathcal{F})+t\right) \leq \mathrm{e}^{-\frac{n t^{2}}{2 b^{2}}} \tag{2}
\end{equation*}
$$

The next four sessions will be about how to bound $\operatorname{Res}(n, \mathcal{F})$!
Step I (this week): we first use eq. $2 \&$ that $\operatorname{Res}(n, \mathcal{F})$ is bounded by

Definition (Rademacher complexity)

Given a function class \mathcal{H} and distribution \mathbb{P} on its domain \mathcal{Z}, for i.i.d. Rademacher R.V. ϵ_{i}, we define the Rademacher complexity as

$$
\mathcal{R}_{n}(\mathcal{H})=\mathbb{E}_{\epsilon, Z} \sup _{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} h\left(Z_{i}\right)
$$

Step II (next 2 weeks): We'll discuss how to bound $\mathcal{R}_{n}(\mathcal{H})$ as a function of n, \mathcal{H}

Step I: Uniform law with Rademacher complexity

Theorem (Uniform law for the risk, MW Thm 4.10.)

For b-unif. bounded \mathcal{H}, with prob. over the training data

$$
\mathbb{P}\left(\sup _{h \in \mathcal{H}} \mathbb{E} h(Z)-\frac{1}{n} \sum_{i=1}^{n} h\left(Z_{i}\right) \geq 2 \mathcal{R}_{n}(\mathcal{H})+t\right) \leq e^{-\frac{n t^{2}}{2 b^{2}}}
$$

- By using $\mathcal{H}=\{h: h(\cdot)=\ell(\cdot ; f) \quad \forall f \in \mathcal{F}\}$ we get

$$
\mathcal{R}_{n}(\mathcal{H})=\mathbb{E}_{\epsilon, Z} \sup _{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} h\left(Z_{i}\right)=\mathbb{E}_{\epsilon, Z} \sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \ell\left(Z_{i}, f\right)
$$

and after showing $\operatorname{Res}(n, \mathcal{F}) \leq 2 \mathcal{R}_{n}(\mathcal{H})$, directly obtain our desired bound on $\sup _{f \in \mathcal{F}} R(f)-R_{n}(f)$

- Note if $\mathcal{R}_{n}(\mathcal{H})=o(1)$, then $\sup _{f \in \mathcal{F}} R(f)-R_{n}(f) \xrightarrow{\text { a.s. }} 0$.
- Before the proof, we aim to gain some intuition for the quantity $\mathcal{R}_{n}(\mathcal{H})$ and how it may behave with different n and \mathcal{H}

References

Azuma-Hoeffding

- MW Chapter 2

Online to batch conversion with Azuma-Hoeffding

- https://home.ttic.edu/~tewari/lectures/lecture13.pdf

Uniform law and Rademacher complexity

- MW Chapter 4

