Lecture 3: Azuma-Hoeffding and uniform law

1 / 15

Announcements

- HW due next Thursday 23:59, write it up entirely independently yourself
- You can check paper suggestions for project work already on the project website (link to a googlesheet)
- Lec2 slides updated regarding boundedness of martingale difference sequence & Azuma-Hoeffding (will explain again today)
- Goal of in-class lecture: cannot deliver the details of each proof completely, but primarily intuition - expect to fully understand and digest after reading the book & doing homework

Plan today

- Review of proof of uniform tail bound
- Warm-up exercise: using Azuma-Hoeffding for online learning "excess risk"
- Proof of Azuma-Hoeffding
- Uniform law with Rademacher complexity
- Intuition of Rademacher complexity

Recap: Main tail bound

- $\{Z_i\}_{i=1}^n$ are training points $\stackrel{iid}{\sim} \mathbb{P}$, estimator $\widehat{f}_n \in \mathcal{F}$ trained on them
- We use Z both for the collection Z = {Z_i}ⁿ_{i=1} and a single random vector Z ~ ℙ which should be clear from the context
- Goal: want to prove that $R(\hat{f}_n) R_n(\hat{f}_n) \leq \sup_{f \in \mathcal{F}} \mathbb{E}\ell(Z; f) \frac{1}{n} \sum_{i=1}^n \ell(Z_i; f) =: g_n(Z) \text{ small with probability at least } 1 \delta$

Theorem (Uniform tail bound)

For b-unif. bounded ℓ , it holds that

$$\mathbb{P}(\sup_{f\in\mathcal{F}}R(f)-R_n(f)\geq\mathbb{E}[\sup_{f\in\mathcal{F}}R(f)-R_n(f)]+t)\leq e^{-\frac{nt^2}{2b^2}}$$

where the probability is over the training data.

Recap: What we can do with the tail bound

Using the short-term $\operatorname{Res}(n, \mathcal{F}) := \mathbb{E}[\sup_{f \in \mathcal{F}} R(f) - R_n(f)]$ We immediately obtain

$$\mathbb{P}(\sup_{f\in\mathcal{F}}R(f)-R_n(f)\leq {
m Res}(n,\mathcal{F})+t)\geq 1-{
m e}^{-rac{nt^2}{2b^2}}$$

This is a "high probability" bound in the sense that with probability at least $1 - \delta$ we have

$$\sup_{f \in \mathcal{F}} R(f) - R_n(f) \le b \sqrt{\frac{2\log(\frac{1}{\delta})}{n}} + \operatorname{Res}(n, \mathcal{F})$$

Recap: Proof of tail bound (w/o martingale speak) Approach: Upper bound $\mathbb{P}(g_n(Z) - \mathbb{E}g_n(Z) \ge t)$ by following

- 1. If loss ℓ *b*-uniformly bounded, then $g_n = \sup_{f \in \mathcal{F}} \mathbb{E}\ell(Z, f) - \frac{1}{n} \sum_{i=1}^n \ell(Z_i, f)$ satisfies bounded difference property with $\sigma_i = \frac{2b}{n}$ for all *i*
- 2. For any g_n , we can decompose $g_n(Z) \mathbb{E}g_n(Z) = \sum_{i=1}^n D_i$ $D_i = \mathbb{E}[g_n(Z)|Z_1, \dots, Z_i] - \mathbb{E}[g_n(Z)|Z_1, \dots, Z_{i-1}]$
- 3. Then, D_i satisfies that for any z_1^{i-1} there are some a_i, b_i with $b_i a_i \leq \sigma_i$ such that $D_i | Z_1^{i-1} = z_1^{i-1} \in [a_i, b_i]$.
- 4. show how for such D_i (bounded martingale diff sequence) we have $\sum_{i=1}^{n} D_i$ concentrates around its expectation $\mathbb{E}D_i = 0$, i.e. $\mathbb{P}(\sum_{i=1}^{n} D_i > t) \leq = e^{-\frac{2t^2}{\sum_{i=1}^{n} \sigma_i^2}} \leq e^{-\frac{nt^2}{2b^2}}$ [Azuma Hoeffding]

Note: 2-4 proves McDiarmid using Azuma-Hoeffding, 2-3 prove that assumptions for Azuma-Hoeffding hold.

Not shown, will show today: Azuma-Hoeffding

5/15

Recap: Azuma-Hoeffding

• Hoeffding: Simple concentration for average of *n* independent sub-Gaussian (e.g bounded) *Z_i*

$$\mathbb{P}(\frac{1}{n}\sum_{i=1}^{n}Z_{i}-\mathbb{E}Z>t)\leq e^{-\frac{nt^{2}}{2\sigma^{2}}}$$

• Azuma-Hoeffding: "Advanced" concentration for average of a martingale difference sequence $\{D_i\}_{i=1}^n$ bounded in intervals of length $\sigma = \frac{c}{n}$ n $2t^2$ $2nt^2$

$$\mathbb{P}(\sum_{i=1}^{n} D_i > t) \le e^{-\frac{2t^2}{n\sigma^2}} = e^{-\frac{2nt^2}{c^2}}$$

Theorem (Azuma-Hoeffding inequality, MW Cor. 2.20)

If for martingale difference sequence $\{(D_i, \mathcal{F}_i)\}_{i=1}^n$ it holds that $D_i | \mathcal{F}_{i-1}$ almost surely lies in an interval of length L_i for all i, then

$$\mathbb{P}(\sum_{i=1}^n D_i \geq t) \leq e^{-\frac{2t^2}{\sum_{i=1}^n L_i^2}}$$

Next, we gain some more intuition on Azuma-Hoeffding by applying it to a different problem related to online learning 7/15

Exercise Context I: Online learning setting

- Z_1, \ldots, Z_n come in one at a time.
- At each point in time *i* you would like to output an estimator \hat{f}_{i-1} to predict on the next sample Z_i with small loss
- As a data scientists, we naturally consider functions that are trained using the previous examples Z₁,..., Z_{i-1}. More formally, we assume f_{i-1} is a *deterministic function* of the previous samples Z₁,..., Z_{i-1} (e.g. ERM but *does not have to be*!), i.e. measurable with respect to σ(Z₁,..., Z_{i-1}) = F_{i-1}.
- \hat{f}_0 can be any data-independent arbitrary estimator, e.g. a randomly initialized model.

• Assume the minimizer
$$\hat{f}_n := \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1} \ell(Z_i; f)$$
 exists

Exercise Context II: Online to batch conversion

• A standard quantity people want to keep small in online learning is the regret Reg_n , the average incurred loss of the sequence $\{\hat{f}_i\}_{i=1}^n$ with the loss of \hat{f}_n

$$\operatorname{Reg}_{n} = \sum_{i=1}^{n} \ell(Z_{i}; \widehat{f}_{i-1}) - \sum_{i=1}^{n} \ell(Z_{i}; \widehat{f}_{n})$$

- Note: Bounding the actual Reg_n is a whole area of research and in many cases, good online learning algorithms exist
- Online-to-batch conversion exploits online learning algorithms with small regret to get estimator based on batch Z₁,..., Z_n with good generalization. For example, one can consider a random estimator that samples from the sequence of online estimators { f_i}_{i=0}ⁿ⁻¹ which
 - conditioned on the data are deterministic
 - has an average (over the sampling) a risk of $\frac{1}{n} \sum_{i=1}^{n} R(\hat{f}_{i-1})$
- We will now prove a high probability bound on the "average" excess risk $\frac{1}{n} \sum_{i=1}^{n} R(\hat{f}_{i-1}) R(f^{\star})$

Exercise: Bound on the average excess risk With your neighbor, prove that with probability at least $1 - \delta$,

$$\frac{1}{n}\sum_{i=1}^{n}[R(\widehat{f}_{i-1})-R(f^{\star})] \leq \frac{1}{n}\operatorname{Reg}_{n} + \sqrt{\frac{8\log(1/\delta)}{n}}$$
(1)

with $R(f) = \mathbb{E}\ell(Z; f)$ for $\ell \in [0, 1]$ using the following steps

- 1. Step: Prove that $D_i = [\mathbb{E}_Z \ell(Z; \hat{f}_{i-1}) - \ell(Z_i; \hat{f}_{i-1})] + [\ell(Z_i; f^*) - \mathbb{E}_Z \ell(Z; f^*)]$ is a bounded martingale difference sequence
- 2. Step: Decompose the risk (by including terms with \hat{f} and using its optimality) and prove

$$\frac{1}{n}\sum_{i=1}^{n}[R(\widehat{f}_{i-1})-R(f^{\star})] \leq \frac{1}{n}\operatorname{Reg}_{n}+\frac{1}{n}\sum_{i=1}^{n}D_{i}$$

3. Step: Use Step 1 and Azuma-Hoeffding to prove the bound eq. 1

10/15

9/15

Solution: Proof of average excess risk bound

We use the following shorthands for simplicity:

- $R_n({\{\widehat{f}_i\}_{i=0}^{n-1}}) := \frac{1}{n} \sum_{i=1}^n \ell(Z_i; \widehat{f}_{i-1})$
- $R({\{\widehat{f}_i\}}_{i=0}^{n-1}) := \frac{1}{n} \sum_{i=1}^n R(\widehat{f}_{i-1}) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}\ell(Z;\widehat{f}_{i-1})$
- 1. Risk decomposition:

$$\frac{1}{n}\sum_{i=1}^{n} [R(\hat{f}_{i-1}) - R(f^{\star})] \le R(\{\hat{f}_i\}_{i=0}^{n-1}) - R_n(\{\hat{f}_i\}_{i=0}^{n-1}) + \underbrace{R_n(\{\hat{f}_i\}_{i=0}^{n-1}) - R_n(\hat{f}_n)}_{=\operatorname{Reg}_n}$$

+
$$\underbrace{R_n(\widehat{f}_n) - R_n(f^*)}_{\leq 0 \text{ by optimality of } \widehat{f}} + R_n(f^*) - R(f^*)$$

11/15

2. D_i is a martingale difference sequence because

$$\mathbb{E}D_i|\mathcal{F}_{i-1}=0$$

as Z_i is independent of \hat{f}_{i-1} and bounded a.s. by 4.

Check: The average excess risk over $\{\hat{f}\}_{i=1}^{n}$ is similar in terms of rate for large *n* as long as $R(\hat{f}_n)$ is bounded

Proof of Azuma-Hoeffding

1. First of all, we have for all sequences z_1^{i-1} that for some $b_i - a_i \leq L_i$

$$\mathbb{E}[e^{\lambda D_i} | Z_1^{i-1} = z_1^{i-1}] \le e^{\lambda^2 (b_i - a_i)^2/8} \le e^{\lambda^2 L_i^2/8}$$

by the fact that R.V. bounded in an interval of length L_i are $L_i/2$ subgaussian (for the right constant check MW Exercise 2.4., for an easier proof for the wrong constant check MW Example 2.4.) and hence a.s. the random variable $\mathbb{E}[e^{\lambda D_i}|Z_1^{i-1}] \leq e^{\lambda^2 L_i^2/8}$

- 2. If D_i are independent, we have $\mathbb{E}e^{\lambda \sum_{i=1}^{n} D_i} = \prod_{i=1}^{n} \mathbb{E}e^{\lambda D_i}$
- 3. Note that since D_i are \mathcal{F}_i -measurable by definition of martingale difference sequence, we have $\mathbb{E}[e^{\lambda D_i}|G] = e^{\lambda D_i}$ for all $G \in \mathcal{F}_i$
- 4. Now using the tower property (TP) of conditional expectations iteratively, we see that $\sum_{i=1}^{n} D_i$ is $\sqrt{\sum_{i=1}^{n} \frac{L_i^2}{4}}$ -subgaussian:

$$\mathbb{E}e^{\lambda \sum_{i=1}^{n} D_{i}} \stackrel{(TP)}{=} \mathbb{E}[\mathbb{E}[e^{\lambda \sum_{i=1}^{n-1} D_{i}} e^{\lambda D_{n}} | Z_{1}, \dots, Z_{n-1}]]$$

$$\stackrel{(3.)}{=} \mathbb{E}[e^{\lambda \sum_{i=1}^{n-1} D_{i}} \mathbb{E}[e^{\lambda D_{n}} | Z_{1}, \dots, Z_{n-1}]] \leq e^{\lambda^{2} L_{i}^{2} / 8} \mathbb{E}[e^{\lambda \sum_{i=1}^{n-1} D_{i}}] = e^{\lambda^{2} \sum_{i=1}^{n} L_{i}^{2} / 8} \mathbb{E}[e^{\lambda \sum_{i=1}^{n-1} D_{i}}]$$

Bounding $\text{Res}(n, \mathcal{F})$, Rademacher complexity

Today we use shorthand $\mathcal{H} = \{h : h(\cdot) = \ell(\cdot; f) \quad \forall f \in \mathcal{F}\}$ and write the uniform tail bound this way. Then we have

$$\sup_{f\in\mathcal{F}}\mathbb{E}\ell(Z,f)-\frac{1}{n}\sum_{i=1}^{n}\ell(Z_i,f)=\sup_{h\in\mathcal{H}}\mathbb{E}h(Z)-\frac{1}{n}\sum_{i=1}^{n}h(Z_i)$$

and it follows that

$$\mathbb{P}(\sup_{h\in\mathcal{H}}\mathbb{E}h(Z)-\frac{1}{n}\sum_{i=1}^{n}h(Z_{i})\geq \operatorname{Res}(n,\mathcal{F})+t)\leq \mathrm{e}^{-\frac{nt^{2}}{2b^{2}}}$$
(2)

The next four sessions will be about how to bound $\text{Res}(n, \mathcal{F})$!

Step I (this week): we first use eq. 2 & that $\text{Res}(n, \mathcal{F})$ is bounded by

Definition (Rademacher complexity)

Given a function class \mathcal{H} and distribution \mathbb{P} on its domain \mathcal{Z} , for i.i.d. Rademacher R.V. ϵ_i , we define the Rademacher complexity as

$$\mathcal{R}_n(\mathcal{H}) = \mathbb{E}_{\epsilon, Z} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \epsilon_i h(Z_i)$$

Step II (next 2 weeks): We'll discuss how to bound $\mathcal{R}_n(\mathcal{H})$ as a function of n, \mathcal{H}

Step I: Uniform law with Rademacher complexity

Theorem (Uniform law for the risk, MW Thm 4.10.)

For b-unif. bounded \mathcal{H} , with prob. over the training data

$$\mathbb{P}(\sup_{h\in\mathcal{H}}\mathbb{E}h(Z)-\frac{1}{n}\sum_{i=1}^{n}h(Z_{i})\geq 2\mathcal{R}_{n}(\mathcal{H})+t)\leq e^{-\frac{nt^{2}}{2b^{2}}}$$

• By using $\mathcal{H} = \{h : h(\cdot) = \ell(\cdot; f) \mid \forall f \in \mathcal{F}\}$ we get

$$\mathcal{R}_n(\mathcal{H}) = \mathbb{E}_{\epsilon, Z} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \epsilon_i h(Z_i) = \mathbb{E}_{\epsilon, Z} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \epsilon_i \ell(Z_i, f)$$

and after showing $\text{Res}(n, \mathcal{F}) \leq 2\mathcal{R}_n(\mathcal{H})$, directly obtain our desired bound on $\sup_{f \in \mathcal{F}} R(f) - R_n(f)$

• Note if $\mathcal{R}_n(\mathcal{H}) = o(1)$, then $\sup_{f \in \mathcal{F}} R(f) - R_n(f) \stackrel{a.s.}{\rightarrow} 0$.

• Before the proof, we aim to gain some intuition for the quantity $\mathcal{R}_n(\mathcal{H})$ and how it may behave with different *n* and \mathcal{H}

13/15

References

Azuma-Hoeffding

• MW Chapter 2

Online to batch conversion with Azuma-Hoeffding

https://home.ttic.edu/~tewari/lectures/lecture13.pdf

Uniform law and Rademacher complexity

• MW Chapter 4

 $15 \, / \, 15$