
Lecture 4: Uniform law and Rademacher
complexity
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FAQ for muddiest point

Online learning
• added more motivation and explanation, also lecture note from
Tewari, Kakade.

Azuma-Hoeffding
• How martingale properties allow the AH bound (will discuss now)

Questions on the uniform law - will discuss today
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Plans for today

• Recap Azuma-Hoeffding proof
• Intuition for Rademacher complexity
• Proof of uniform law with symmetrization
• Application of Rademacher complexity: Finite function classes

• Massart’s lemma and its proof
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Recap: From Hoeffding to Azuma-Hoeffding
Why use Di = E[gn(Z )|Z1, . . . ,Zi ]− E[gn(Z )|Z1, . . . ,Zi−1] to
decompose gn? Azuma-Hoeffding is a generalization of Hoeffding
(i.e. Azuma-Hoeffding implies Hoeffding), for functions of n
independent R.V. instead of sum of n independent RV.

Decomposition of gn

• For Hoeffding, in 1
n

∑n
i=1 Xi for Xi independent, each R.V. adds

fresh randomness →
• For AH, in decomposition ∑n

i=1 Di , each Di has the additional
randomness that is due to addition of Zi only. This is why we chose
the particular Di (property 1 next slide)

In addition the Di are in some sense bounded (for McDiarmid,
generally subgaussian is fine), so sth “like Hoeffding” should work:
• For Hoeffding, each summand is subgaussian →
• For AH (for proving McDiarmid), each summand is conditionally a.s.
bounded and hence also conditionally subgaussian (property 2) 4 / 14



Recap: Martingale properties to prove Azuma-Hoeffding
The following properties of this choice are what we need in the proof
(these are the properties of martingale differences)

1. Di is Fi measurable, i.e. Di is a deterministic function given specific
values for Z1, . . . ,Zi

2. For any values z1, . . . , zi−1, for some ai , bi

• the random variable Di |Z i−1
1 = z i−1

1 is bounded in an interval [ai , bi ]
of length Li and

• E[Di |Z i−1
1 = z i−1

1 ] = 0 and hence together we use the fact that r.v.
bounded a.s. in [ai , bi ] are bi−ai

2 subgaussian to get

E[eλ(Di−E[Di |Z i−1
1 =z i−1

1 ])|Z i−1
1 = z i−1

1 ] ≤ eλ2(bi−ai )2/8 ≤ eλ2L2
i /8

Further we use the tower property (TP): E[E[X |Y ,Z ]|Y ] = E[X |Y ]

Eeλ
∑n

i=1 Di (TP)= E[E[eλ
∑n−1

i=1 Di eλDn |Z1, . . . ,Zn−1]]
(1.)= E[eλ

∑n−1
i=1 DiE[eλDn |Z1, . . . ,Zn−1]]

(2.)
≤ eλ2L2

i /8E[eλ
∑n−1

i=1 Di ] = eλ2 ∑n
i=1 L2

i /8
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Recap: Uniform tail bound via Rademacher complexity
• Define H = {h : h(·) = `(·; f ) ∀f ∈ F}
• εi are i.i.d. Rademacher R.V.
• Z = {Zi}ni=1 are training points iid∼ P

Definition (Rademacher complexity)
Given a function class H and distribution P on its domain Z, we
define the Rademacher complexity as

Rn(H) = Eε,z sup
h∈H

1
n

n∑

i=1
εih(zi)

Theorem (Uniform law for the risk, MW Thm 4.10.)
For b-unif. bounded H, with prob. over training data,

P(sup
h∈H

[Eh − 1
n

n∑

i=1
h(Zi)] ≥ 2Rn(H) + t) ≤ e−

nt2
2b2
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Intuition for Rademacher complexity
Consider binary classification setting `(zi ; f ) = 1(f (xi)yi < 0).

1. How does the empirical Rademacher complexity

R̃n(H) = Eε sup
f ∈F

1
n

n∑

i=1
εi`(zi , f )

with H = {h : h(·) = `(·; f ) ∀f ∈ F}

depend on the factors F , `, n to control excess risk?

2. What is the connection between R.C. and VC dimension?

3. (Why) is it easier to reason about than the original
Res(n,H) = Egn(Z )

Some answers
• If F larger → H larger → R̃n(H) larger (VC dim)
• Similarly if ` has small variance → R̃n(H) is smaller (Lipschitz)
• As n grows, harder to fit → R̃n(H) smaller
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Intuition (see figures in handwritten notes)
• Let’s look R̃n(H) = Eε supf ∈F

∑n
i=1 εih(zi) for fixed zi and

h(zi) = `(zi ; f ) and see how it might decrease with n
• For simplicity, let Z = R, use e.g. h(z) = sgnf (z) (you can do it
more generally for `)
• Let F be “smooth” functions, given a draw/sample ε1, . . . , εn
Which f ∈ F can achieve large R̃n(H) = Eε supf ∈F

∑n
i=1 εi`(zi , f )?

• Maximizing R̃n(H) requires for each {εi}ni=1 matching “induced
labeling” of f ({f (zi)}ni=1)
• For small n, you can find a f for each sample of {εi}ni=1 that
matches in sign, i.e. |{(h(z1), . . . , h(zn)) : h ∈ H}| = 2n, then
E supf ∈F

∑n
i=1 εih(zi) = 1

• For large n, points are too dense, if F need to be smooth, not that
possible for some very “wiggly” {εi}ni=1 → Eε supf ∈F

∑n
i=1 εih(zi)
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Caveats of the uniform law

• Requires boundedness of ` (for bounded differences)
• for regression you also bound suprema of empirical processes, can use

Gaussian complexity and Lipschitz-of-Gaussians rule (see MW 3)
• or argue that ` bounded with high probability, cause X and hence

f (X ) bounded for continuous f

• Super loose bound → F needs to be algorithm / data dependent
• we will see for regularized optimizers
• structural risk minimization

• in second half of lectures we’ll discuss a different way to bound the
excess risk for regression → however even there, we will control
suprema of empirical processes will be needed
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Proof of uniform law - Step I: Tail bound
Theorem (Uniform tail bound)
For b-unif. bounded `, it holds that

P(sup
f ∈F

R(f )− Rn(f ) ≥ E[sup
f ∈F

R(f )− Rn(f )] + t) ≤ e−
nt2
2b2

where the probability is over the training data.

We recapped the proof last lecture, using McDiarmid.

In particular, by the uniform tail bound, if we can prove that
E[supf ∈F R(f )− Rn(f )] ≤ 2Rn(H) then it immediately follows that

P(sup
h∈H

Eh(Z )− 1
n

n∑

i=1
h(Zi) ≥ 2Rn(H) + t)

≤P(sup
f ∈F

R(f )− Rn(f ) ≥ E[sup
f ∈F

R(f )− Rn(f )] + t) ≤ e−
nt2
2b2

This proof step is called symmetrization
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Proof of uniform law - Step II: Symmetrization
(i) For any H, supH EH(Z ) ≤ E supH H(Z ) (Exercise)
(ii) h(Zi)− h(Z̃i) is symmetric → multiplying by εi preserves distr.

EZ gn(Z ) = EZ sup
h∈H

Eh − 1
n

∑

i
h(Zi)

= EZ sup
h∈H

EZ̃
1
n

n∑

i=1
h(Z̃i)−

1
n

n∑

i=1
h(Zi)

(i)
≤ EZ ,Z̃ sup

h∈H

1
n

n∑

i=1
[h(Zi)− h(Z̃i)]

(ii)= EZ ,Z̃ ,ε sup
h∈H

1
n

n∑

i=1
εi [h(Zi)− h(Z̃i)]

≤ 2EZ ,ε sup
h∈H

1
n

n∑

i=1
εih(Zi) =: 2Rn(H)

• Tight: Rn(H)
2 ≤ E suph∈H

1
n

∑
i h−Eh ≤ 2Rn(H) (MW Prop 4.11.)

11 / 14

Classification setup

• Labels are now in discrete domain y ∈ {−1,+1}
• Given f , we predict the label of some x using ŷ = sign(f (x)
• Evaluation metric: `((x , y); f ) = 1{yf (x)<0} and hence population
risk: R(f ) = E`((x , y); f ) = P(y 6= sign(f (x))
• A fixed f ∈ F defines a labeling from domain X → {−1,+1}. For

a given set Zn = {Zi = (xi , yi)}ni=1, the function space F induces a
set in {−1, 1}n that reads F(Zn) = {(f (Z1), . . . , f (Zn)) : f ∈ F}
• We again use notation h(z) = `(z , f ) and define

H(Zn) = {(`(Z1; f ), . . . , `(Zn; f )) : f ∈ F}

Notice that |F(Zn)| = |H(Zn)|
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Massart’s lemma
Lemma (Massart)
For n points Zn := {Z1, . . . ,Zn}, let all h : Z → {0, 1} and
H(Zn) := {(h(Z1), . . . , h(Zn)) : h ∈ H} with cardinality |H(Zn)|.

R̃n(H(Zn)) := Eε sup
h∈H

1
n

n∑

i=1
εih(Zi) ≤

√
2 log |H(Zn)|

n

• Step 1: For Rademacher εi and any Zn
1 we have that

θi := h(Zi) ∈ {0, 1}, show 1
nε
>θ is zero-mean and 1√n sub-gaussian

(similar to Hoeffding proof). This follows from the fact that [ai , bi ]
bounded r.v. are [bi − ai ]/2 subgaussian
• Step 2: Use the fact from HW 1 that, for N zero-mean subgaussians

X1, . . . ,XN with sub-gaussian parameter σ

E max
i=1..N

Xi ≤
√
2σ2 log N

Here, N = H(Zn) the number of different vectors
(h(Z1), . . . , h(Zn))
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