Lecture 4: Uniform law and Rademacher
complexity
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FAQ for muddiest point

Online learning

® added more motivation and explanation, also lecture note from
Tewari, Kakade.

Azuma-Hoeffding
® How martingale properties allow the AH bound (will discuss now)

Questions on the uniform law - will discuss today
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Plans for today

® Recap Azuma-Hoeffding proof

Intuition for Rademacher complexity

Proof of uniform law with symmetrization

® Application of Rademacher complexity: Finite function classes

® Massart's lemma and its proof
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Recap: From Hoeffding to Azuma-Hoeffding

Why use D; = ]E[gn(Z)|Zl, Ceey Z,] — E[gn(Z)‘Zl, cee Z,'_l] to
decompose g,? Azuma-Hoeffding is a generalization of Hoeffding
(i.e. Azuma-Hoeffding implies Hoeffding), for functions of n
independent R.V. instead of sum of n independent RV.

Decomposition of g,

® For Hoeffding, in %Z}’:l X; for X; independent, each R.V. adds
fresh randomness —

® For AH, in decomposition > 7 ; D;, each D; has the additional
randomness that is due to addition of Z; only. This is why we chose
the particular D; (property 1 next slide)

In addition the D; are in some sense bounded (for McDiarmid,
generally subgaussian is fine), so sth “like Hoeffding" should work:

® For Hoeffding, each summand is subgaussian —

® For AH (for proving McDiarmid), each summand is conditionally a.s.
bounded and hence also conditionally subgaussian (property 2) 4/14




Recap: Martingale properties to prove Azuma-Hoeffding

The following properties of this choice are what we need in the proof
(these are the properties of martingale differences)

1. D; is F; measurable, i.e. D; is a deterministic function given specific
values for Z1,...,Z;

2. For any values zi,...,z_1, for some a;, b;

® the random variable D;|Z{~! = z/~! is bounded in an interval [a;, b;]
of length L; and

® E[D;|ZI™* = 27! = 0 and hence together we use the fact that r.v.
bounded a.s. in [a;, bj] b2

]E[eA(D;—IE[D;|Zli_1: {—1])|Zli 1 _ 21 1] < e>\2(b —a)?/8 esz,?/s

Further we use the tower property (TP): E[E[X|Y, Z]|Y] = E[X]Y]
n n—1
Ee* i 0 () E[]E[eAzizl DigADn\ 7, Zn4]]

(2.) -
(1. )E[eAZ Dig[erDn| 7y, ... Zooa]] < e)\ZL,?/SE[eAZizll Dij — ¢ S

1 L7/8
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Recap: Uniform tail bound via Rademacher complexity

® Define H=1{h:h(-)=4¢(;f) VfeF}
® ¢; are i.i.d. Rademacher R.V. )
o 7 ={Z;}"_, are training points P

Definition (Rademacher complexity)

Given a function class H and distribution IP on its domain Z, we
define the Rademacher complexity as

Ra(H) =E z SUP Zeh(z,

For b-unif. bounded H, with prob. over training data,

Fuplen L SHEN 2 2000 + 0 < o F
i=1
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Intuition for Rademacher complexity
Consider binary classification setting ¢(z;; f) = 1(f(x;)y; < 0).

1. How does the empirical Rademacher complexity

. 1.0
Rno(H) =Ecsup = Y €il(z, f
() =Eesup 3tz )

with H =1{h: h(:) =4(-;f) VfeF}
depend on the factors F, ¢, n to control excess risk?
2. What is the connection between R.C. and VC dimension?

3. (Why) is it easier to reason about than the original
Res(n,H) = Egn(Z)

Some answers

e If F larger — H larger — R,(H) larger (VC dim)
e Similarly if £ has small variance — R () is smaller (Lipschitz)

® As n grows, harder to fit — R,(#) smaller
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Intuition (see figures in handwritten notes)

* Let's look R,(H) = Ecsupser S.7_; €;h(z) for fixed z; and
h(z;) = £(z;; f) and see how it might decrease with n

® For simplicity, let Z =R, use e.g. h(z) = sgnf(z) (you can do it
more generally for /)

® Let F be “smooth” functions, given a draw/sample €1, ..., €,
Which f € F can achieve large R(H) = Ecsupser S0 g €il(zi, F)?

e Maximizing R,(H) requires for each {¢;}7_; matching “induced
labeling” of f ({f(z)}"_;)

® For small n, you can find a f for each sample of {¢;}7_; that
matches in sign, i.e. [{(h(z1),...,h(z,)) : h € H}| = 2", then
Esupfe}— 27:1 Eih(Z,') =1

® For large n, points are too dense, if F need to be smooth, not that
possible for some very “wiggly” {€;}7_; — Ecsuprcr D g €ih(zi)
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Caveats of the uniform law

® Requires boundedness of ¢ (for bounded differences)
® for regression you also bound suprema of empirical processes, can use
Gaussian complexity and Lipschitz-of-Gaussians rule (see MW 3)
® or argue that / bounded with high probability, cause X and hence
f(X) bounded for continuous f

® Super loose bound — F needs to be algorithm / data dependent
® we will see for regularized optimizers
® structural risk minimization

® in second half of lectures we'll discuss a different way to bound the
excess risk for regression — however even there, we will control
suprema of empirical processes will be needed
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Proof of uniform law - Step |: Tail bound

Theorem (Uniform tail bound)
For b-unif. bounded ¢, it holds that

P(sup R(f) — Ra(f) > E[sup R(f) — Ra(f)] + t) < 5
feF feF

where the probability is over the training data.

We recapped the proof last lecture, using McDiarmid.

In particular, by the uniform tail bound, if we can prove that
El[supscr R(f) — Ra(f)] < 2Rn(H) then it immediately follows that

P(fs)g?th(Z) — %z": h(Z;) > 2R,(H) + t)

nt2
<P(sup R(f) — Ra(f) > E[sup R(f) — R,(f)] +t) <e 22
feF feF

This proof step is called symmetrization
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Proof of uniform law - Step Il: Symmetrization

(i) For any H, supyEH(Z) < Esupy H(Z) (Exercise)
(i) h(Z;) — h(Z;) is symmetric — multiplying by €; preserves distr.

Ezgn(Z) =EzsupEh — — Z h(Z
heH

=2 sup ]Ezz Z h(Z;) — - Z h(Z

E; sup Z[h — h(Z))]
(i) EZZESUP Zel[h )]
) ) hEH n I 1
<2Ezsup - Ze, = (H)
heH N

e Tight: 2o < Esupyey L5, h—Eh < 2R,(H) (MW Prop 4.11.)
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Classification setup

® Labels are now in discrete domain y € {—1,+1}
® Given f, we predict the label of some x using y = sign(f(x)

® Evaluation metric: £((x,y); f) = 1y f(x)<0} and hence population
risk: R(f) =El((x,y); f) =P(y # sign(f(x))

® A fixed f € F defines a labeling from domain X — {—1,+1}. For
a given set Z" = {Z; = (x;, yi)}_1, the function space F induces a
set in {—1,1}" that reads F(Z") = {(f(Z1),...,f(Z,)): f € F}

® We again use notation h(z) = ¢(z, f) and define
H(Z™) ={(l(Z1;1),....0(Zy; ) : f € F}

Notice that | F(Z")| = |H(Z")]
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Massart's lemma
Lemma (Massart)
For n points Z" := {Zy,...,Z,}, let all h: Z — {0,1} and
H(Z™) = {(h(Z1),...,h(Z,)) : h € H} with cardinality |H(Z")|.

« 1 & 2log |H(Z™)]
RnHZn ::Eesu - ,'h Z,' S\/
(H(27) i=Besup =5 ih(Z) ;

® Step 1: For Rademacher €; and any Z{" we have that
0; == h(Z;) € {0,1}, show Le"0 is zero-mean and % sub-gaussian

(similar to Hoeffding proof). This follows from the fact that [a;, b;]
bounded r.v. are [b; — a;]/2 subgaussian

® Step 2: Use the fact from HW 1 that, for N zero-mean subgaussians
X1, ..., Xy with sub-gaussian parameter o

. < 2
Eir:nla.l_);VX, < /204log N
Here, N = H(Z") the number of different vectors
(h(Z1),...,h(Z,))
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