Lecture 4: Uniform law and Rademacher complexity

FAQ for muddiest point

Online learning

 added more motivation and explanation, also lecture note from Tewari, Kakade.

Azuma-Hoeffding

• How martingale properties allow the AH bound (will discuss now)

Questions on the uniform law - will discuss today

Plans for today

- Recap Azuma-Hoeffding proof
- Intuition for Rademacher complexity
- Proof of uniform law with symmetrization
- Application of Rademacher complexity: Finite function classes
 - Massart's lemma and its proof

3/14

Recap: From Hoeffding to Azuma-Hoeffding Why use $D_i = \mathbb{E}[g_n(Z)|Z_1, \dots, Z_i] - \mathbb{E}[g_n(Z)|Z_1, \dots, Z_{i-1}]$ to decompose g_n ? Azuma-Hoeffding is a *generalization* of Hoeffding (i.e. Azuma-Hoeffding implies Hoeffding), for functions of nindependent R.V. instead of sum of n independent RV.

Decomposition of g_n

- For Hoeffding, in $\frac{1}{n} \sum_{i=1}^{n} X_i$ for X_i independent, each R.V. adds fresh randomness \rightarrow
- For AH, in decomposition $\sum_{i=1}^{n} D_i$, each D_i has the additional randomness that is due to addition of Z_i only. This is why we chose the particular D_i (property 1 next slide)

In addition the D_i are in some sense **bounded** (for McDiarmid, generally subgaussian is fine), so sth "like Hoeffding" should work:

- For Hoeffding, each summand is subgaussian ightarrow
- For AH (for proving McDiarmid), each summand is conditionally a.s. bounded and hence also conditionally subgaussian (property 2)

Recap: Martingale properties to prove Azuma-Hoeffding The following properties of this choice are what we need in the proof (these are the properties of martingale differences)

- 1. D_i is \mathcal{F}_i measurable, i.e. D_i is a deterministic function given specific values for Z_1, \ldots, Z_i
- 2. For any values z_1, \ldots, z_{i-1} , for some a_i, b_i
 - the random variable $D_i | Z_1^{i-1} = z_1^{i-1}$ is bounded in an interval $[a_i, b_i]$ of length L_i and
 - $\mathbb{E}[D_i|Z_1^{i-1} = z_1^{i-1}] = 0$ and hence together we use the fact that r.v. bounded a.s. in $[a_i, b_i]$ are $\frac{b_i a_i}{2}$ subgaussian to get

$$\mathbb{E}[\mathsf{e}^{\lambda(D_i - \mathbb{E}[D_i | Z_1^{i-1} = z_1^{i-1}])} | Z_1^{i-1} = z_1^{i-1}] \le \mathsf{e}^{\lambda^2 (b_i - a_i)^2 / 8} \le \mathsf{e}^{\lambda^2 L_i^2 / 8}$$

Further we use the tower property (TP): $\mathbb{E}[\mathbb{E}[X|Y, Z]|Y] = \mathbb{E}[X|Y]$

$$\mathbb{E}e^{\lambda \sum_{i=1}^{n} D_{i}} \stackrel{(TP)}{=} \mathbb{E}[\mathbb{E}[e^{\lambda \sum_{i=1}^{n-1} D_{i}} e^{\lambda D_{n}} | Z_{1}, \dots, Z_{n-1}]]$$

$$\stackrel{(1.)}{=} \mathbb{E}[e^{\lambda \sum_{i=1}^{n-1} D_{i}} \mathbb{E}[e^{\lambda D_{n}} | Z_{1}, \dots, Z_{n-1}]] \stackrel{(2.)}{\leq} e^{\lambda^{2} L_{i}^{2} / 8} \mathbb{E}[e^{\lambda \sum_{i=1}^{n-1} D_{i}}] = e^{\lambda^{2} \sum_{i=1}^{n} L_{i}^{2} / 8} \frac{1}{5 / 14}$$

Recap: Uniform tail bound via Rademacher complexity

- Define $\mathcal{H} = \{h : h(\cdot) = \ell(\cdot; f) \mid \forall f \in \mathcal{F}\}$
- ϵ_i are i.i.d. Rademacher R.V.
- $Z = \{Z_i\}_{i=1}^n$ are training points $\stackrel{iid}{\sim} \mathbb{P}$

Definition (Rademacher complexity)

Given a function class \mathcal{H} and distribution \mathbb{P} on its domain \mathcal{Z} , we define the Rademacher complexity as

$$\mathcal{R}_n(\mathcal{H}) = \mathbb{E}_{\epsilon,z} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \epsilon_i h(z_i)$$

Theorem (Uniform law for the risk, MW Thm 4.10.)

For b-unif. bounded \mathcal{H} , with prob. over training data,

$$\mathbb{P}(\sup_{h\in\mathcal{H}}[\mathbb{E}h-\frac{1}{n}\sum_{i=1}^{n}h(Z_i)]\geq 2\mathcal{R}_n(\mathcal{H})+t)\leq e^{-\frac{nt^2}{2b^2}}$$

Intuition for Rademacher complexity

Consider binary classification setting $\ell(z_i; f) = \mathbb{1}(f(x_i)y_i < 0)$.

1. How does the empirical Rademacher complexity

$$\tilde{\mathcal{R}}_n(\mathcal{H}) = \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \epsilon_i \ell(z_i, f)$$

with $\mathcal{H} = \{h : h(\cdot) = \ell(\cdot; f) \quad \forall f \in \mathcal{F}\}$

depend on the factors \mathcal{F}, ℓ, n to control excess risk?

- 2. What is the connection between R.C. and VC dimension?
- 3. (Why) is it easier to reason about than the original $\operatorname{Res}(n, \mathcal{H}) = \mathbb{E}g_n(Z)$

Some answers

- If \mathcal{F} larger $\rightarrow \mathcal{H}$ larger $\rightarrow \tilde{\mathcal{R}}_n(\mathcal{H})$ larger (VC dim)
- Similarly if ℓ has small variance $\rightarrow \tilde{\mathcal{R}}_n(\mathcal{H})$ is smaller (Lipschitz)
- As *n* grows, harder to fit $\rightarrow \tilde{\mathcal{R}}_n(\mathcal{H})$ smaller

Intuition (see figures in handwritten notes)

- Let's look $\tilde{\mathcal{R}}_n(\mathcal{H}) = \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \sum_{i=1}^n \epsilon_i h(z_i)$ for fixed z_i and $h(z_i) = \ell(z_i; f)$ and see how it might decrease with n
- For simplicity, let Z = ℝ, use e.g. h(z) = sgnf(z) (you can do it more generally for ℓ)
- Let \mathcal{F} be "smooth" functions, given a draw/sample $\epsilon_1, \ldots, \epsilon_n$

Which $f \in \mathcal{F}$ can achieve large $\tilde{\mathcal{R}}_n(\mathcal{H}) = \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \sum_{i=1}^n \epsilon_i \ell(z_i, f)$?

- Maximizing *<i>R*_n(*H*) requires for each {*ε_i*}ⁿ_{i=1} matching "induced labeling" of f ({*f*(*z_i*)}ⁿ_{i=1})
- For small n, you can find a f for each sample of {ε_i}ⁿ_{i=1} that matches in sign, i.e. |{(h(z₁),..., h(z_n)) : h ∈ H}| = 2ⁿ, then E sup_{f∈F} ∑ⁿ_{i=1} ε_ih(z_i) = 1
- For large *n*, points are too dense, if *F* need to be smooth, not that possible for some very "wiggly" {*ε_i*}^{*n*}_{*i*=1} → E_{*ε*} sup_{*f*∈*F*} ∑^{*n*}_{*i*=1} *ε_ih*(*z_i*)

7/14

Caveats of the uniform law

• Requires boundedness of ℓ (for bounded differences)

- for regression you also bound suprema of empirical processes, can use Gaussian complexity and Lipschitz-of-Gaussians rule (see MW 3)
- or argue that ℓ bounded with high probability, cause X and hence f(X) bounded for continuous f

• Super loose bound $ightarrow \mathcal{F}$ needs to be algorithm / data dependent

- we will see for regularized optimizers
- structural risk minimization
- in second half of lectures we'll discuss a different way to bound the excess risk for regression → however even there, we will control suprema of empirical processes will be needed

Proof of uniform law - Step I: Tail bound Theorem (Uniform tail bound)

For b-unif. bounded ℓ , it holds that

$$\mathbb{P}(\sup_{f\in\mathcal{F}}R(f)-R_n(f)\geq\mathbb{E}[\sup_{f\in\mathcal{F}}R(f)-R_n(f)]+t)\leq e^{-\frac{nt^2}{2b^2}}$$

where the probability is over the training data.

We recapped the proof last lecture, using McDiarmid.

In particular, by the uniform tail bound, if we can prove that $\mathbb{E}[\sup_{f \in \mathcal{F}} R(f) - R_n(f)] \leq 2\mathcal{R}_n(\mathcal{H})$ then it immediately follows that

$$\mathbb{P}(\sup_{h\in\mathcal{H}}\mathbb{E}h(Z)-\frac{1}{n}\sum_{i=1}^{n}h(Z_{i})\geq 2\mathcal{R}_{n}(\mathcal{H})+t)$$

$$\leq \mathbb{P}(\sup_{f\in\mathcal{F}}R(f)-R_{n}(f)\geq \mathbb{E}[\sup_{f\in\mathcal{F}}R(f)-R_{n}(f)]+t)\leq e^{-\frac{nt^{2}}{2b^{2}}}$$

This proof step is called symmetrization

Proof of uniform law - Step II: Symmetrization

(i) For any H, $\sup_H \mathbb{E}H(Z) \leq \mathbb{E} \sup_H H(Z)$ (Exercise) (ii) $h(Z_i) - h(\tilde{Z}_i)$ is symmetric \rightarrow multiplying by ϵ_i preserves distr.

$$\mathbb{E}_{Z}g_{n}(Z) = \mathbb{E}_{Z} \sup_{h \in \mathcal{H}} \mathbb{E}h - \frac{1}{n} \sum_{i} h(Z_{i})$$

$$= \mathbb{E}_{Z} \sup_{h \in \mathcal{H}} \mathbb{E}_{\tilde{Z}} \frac{1}{n} \sum_{i=1}^{n} h(\tilde{Z}_{i}) - \frac{1}{n} \sum_{i=1}^{n} h(Z_{i})$$

$$\stackrel{(i)}{\leq} \mathbb{E}_{Z,\tilde{Z}} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} [h(Z_{i}) - h(\tilde{Z}_{i})]$$

$$\stackrel{(ii)}{=} \mathbb{E}_{Z,\tilde{Z},\epsilon} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} [h(Z_{i}) - h(\tilde{Z}_{i})]$$

$$\leq 2\mathbb{E}_{Z,\epsilon} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} h(Z_{i}) =: 2\mathcal{R}_{n}(\mathcal{H}) \Box$$

• Tight: $\frac{\mathcal{R}_n(\mathcal{H})}{2} \leq \mathbb{E} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_i h - \mathbb{E}h \leq 2\mathcal{R}_n(\mathcal{H}) \text{ (MW Prop 4.11.)}$

11 / 14

Classification setup

- Labels are now in discrete domain $y \in \{-1, +1\}$
- Given f, we predict the label of some x using $\hat{y} = sign(f(x))$
- Evaluation metric: $\ell((x, y); f) = \mathbb{1}_{\{yf(x) < 0\}}$ and hence population risk: $R(f) = \mathbb{E}\ell((x, y); f) = \mathbb{P}(y \neq sign(f(x)))$
- A fixed f ∈ F defines a labeling from domain X → {-1, +1}. For a given set Zⁿ = {Z_i = (x_i, y_i)}ⁿ_{i=1}, the function space F induces a set in {-1,1}ⁿ that reads F(Zⁿ) = {(f(Z₁),...,f(Z_n)) : f ∈ F}
- We again use notation $h(z) = \ell(z, f)$ and define

$$\mathcal{H}(Z^n) = \{ (\ell(Z_1; f), \ldots, \ell(Z_n; f)) : f \in \mathcal{F} \}$$

Notice that $|\mathcal{F}(Z^n)| = |\mathcal{H}(Z^n)|$

Massart's lemma

Lemma (Massart)

For *n* points $Z^n := \{Z_1, ..., Z_n\}$, let all $h : \mathbb{Z} \to \{0, 1\}$ and $\mathcal{H}(Z^n) := \{(h(Z_1), ..., h(Z_n)) : h \in \mathcal{H}\}$ with cardinality $|\mathcal{H}(Z^n)|$. $\tilde{\mathcal{R}}_n(\mathcal{H}(Z^n)) := \mathbb{E}_{\epsilon} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \epsilon_i h(Z_i) \le \sqrt{\frac{2 \log |\mathcal{H}(Z^n)|}{n}}$

- Step 1: For Rademacher ε_i and any Z₁ⁿ we have that θ_i := h(Z_i) ∈ {0,1}, show 1/n ε^Tθ is zero-mean and 1/√n sub-gaussian (similar to Hoeffding proof). This follows from the fact that [a_i, b_i] bounded r.v. are [b_i - a_i]/2 subgaussian
- Step 2: Use the fact from HW 1 that, for N zero-mean subgaussians X_1, \ldots, X_N with sub-gaussian parameter σ

$$\mathbb{E}\max_{i=1..N}X_i \leq \sqrt{2\sigma^2\log N}$$

Here, $N = \mathcal{H}(Z^n)$ the number of different vectors $(h(Z_1), \ldots, h(Z_n))$

13/14

References

Uniform law

- MW Chapter 4
- "Understanding machine learning" by Shalev-Shwartz, Ben-David, Chapter 26