
Lecture 5: VC bound and margin bound
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Announcements

• Homework 1 due Thursday 23:59
• Moodle finally has forums to ask questions re HW or lecture (just
realized yesterday)
• Project sign-ups Monday 14:00 - find your partner on moodle If you
want to present a paper not on the list, please double check with us.

Feedback compilation
• Good: interactivity, intuition
• can be improved: handwriting, references to some results that are
not explicitly noted in MW (adding some from SS), more intuition
before proof but also more proof details
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About project choice
1. Identify and motivate problem - why should I / the community care?

Including literature review (done-ish)

2. “Detective hat”: Intuitive (not just technical level) understanding of
proof, assumptions, statement in depth

3. “Reviewer hat”: Which relevant questions does it shed light on and
does the paper answer/shed light on it? How significant is the
addition of this paper compared to existing literature? This is a key
step towards Step 4.

4. “Researcher hat”: What are interesting, impactful follow-up
questions they did not answer and would be interesting and perhaps
feasible to pursue?

5. Break down the identified follow-up problem into feasible chunks
(e.g. lemmas, experiments) and optionally show your attempts to
tackle the first few steps.
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Outline for today

• VC bound and proof
• Rademacher contraction
• Interactive: Proof using the ramp loss and contraction (students)
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Recap: Massart’s lemma

Note: in this lecture, we often write zn := zn
1 and the same for x .

Last time, we bounded the Rademacher for function classes F that
induce a finite set H(Zn) = {(`(Z1; f ), . . . , `(Zn; f )) : f ∈ F} using
Massart’s lemma
Lemma (Massart, SS Lemma 26.8)
For n points Zn := {Z1, . . . ,Zn}, let all h : Z → {0, 1} and
H(Zn) := {(h(Z1), . . . , h(Zn)) : h ∈ H} with cardinality |H(Zn)|.

R̃n(H(Zn)) := Eε sup
h∈H

1
n

n∑

i=1
εih(Zi) ≤

√
2 log |H(Zn)|

n

• |H(Zn)| corresponds to # labelings for Zn induced by H
• if |H(Zn)| grows exponentially → R̃n(H(Zn)) = O(1)
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VC bound
We now use Massart to upper bound the generalization gap
R(f )− Rn(f ) for function classes of finite VC dimension, where
|H(Zn)| does not grow exponentially in n for any Zn.

Recap definition VC dimension for binary classification:

Definition (VC dimension)
Biggest n ∈ N s.t. there exists Zn ∈ Zn with H(Zn) = {0, 1}n

Function classes F with finite VC dimension can make H
Glivenko-Cantelli, i.e. Rn(H) = o(1). More specifically:

Theorem (uniform VC bound)
If H has VC dimension dVC, w/ prob ≥ 1− δ for any estimator f ∈ F

P(yf (X ) < 0) ≤ 1
n

n∑

i=1
1yi f (xi )<0 + 4

√
dVC log(n + 1)

n +
√

2 log(1/δ)
n
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Proof of VC bound 1
Now we first prove a high-probability upper bound for the population
0-1 loss `((x , y); f ) = 1yf (x)<0 for finite function classes F .
Plugging in the definition of the loss, using the uniform law, we get

P(Yf (X ) < 0) ≤ 1
n

n∑

i=1
1yi f (xi )<0 + 2Rn(H) + c

√
log(1/δ)

n (1)

for some universal constant c . The proof uses the uniform law (U.L.)

R(f )− Rn(f ) = E`((x , y); f )− 1
n

n∑

i=1
`((x , y); f )

= P(yf (x) < 0)− 1
n

n∑

i=1
1yi f (xi )<0

≤ sup
f ∈F

R(f )− Rn(f )
U.L.
≤ 2Rn(H) + c

√
log(1/δ)

n
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Proof of VC bound 2
• Note that Rn(H) = EZnR̃n(H) ≤ supZn R̃n(H) (this is crude!)

• Further by Massart, supZn R̃n(H) ≤ supZn

√
2 log |H(Zn)|

n yielding

Rn(H) ≤
√

2 log supZn |H(Zn)|
n (2)

(loose since distribution independent!)

Furthermore, we have the following upper bound on the size of H(Zn)

Lemma (Sauer-Shelah, MW Prop 4.18.)
If F has VC dimension dVC, then for any Zn = Z1, . . . ,Zn we have
growth function NH(n) := supZn∈Zn |H(Zn)| ≤ (n + 1)dVC for all
n ≥ dVC.

Plugging Sauer-Shelah into eq. 2, and that into eq. 1 in the uniform
law to yield result
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Empirical Rademacher complexity - notation
In the following, we will slightly abuse notation and write the more
general empirical Rademacher complexity for T ⊂ Rn as

R̃n(T) = E sup
θ∈T

n∑

i=1
εiθi .

Note that hence we can write R̃n(H(Zn)) for R̃n(H).

The following lemma can connect the empirical Rademacher comp. of
a function class F̃ to the empirical Rademacher comp. of a specific
loss ` : R→ R acting on a function class, specifically when H = ` ◦ F̃
First note that for T = F̃(Zn) we can write the empirical Rademacher
complexity in two ways (abusing notation)

R̃n(` ◦ F̃) = E sup
f̃ ∈F̃

n∑

i=1
εi`(f̃ (Zi)) same as

R̃n(` ◦ T) = E sup
θ∈T

n∑

i=1
εi`(θi)
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Rademacher contraction
In the case of classification, we often have a loss of the form (again,
slightly abusing notation) `(Zi , f ) = `(Yi f (Xi)) and can define
f̃ (Zi) = Yi f (Xi).

The following lemma holds for general losses ` : Rn → Rn (again,
abuse of notation) where the loss may differ for each element, with
`(θ) = (`1(θ1), . . . , `n(θn)) with L−Lipschitz `j : R→ R, i.e.

|`j(a)− `j(b)| ≤ L|a − b| for all a, b ∈ R.

Lemma (Rademacher contraction, SS Lemma 26.9)
For any T ⊂ Rn and ` : Rn → Rn with univariate L-Lipschitz
functions it holds that

R̃n(` ◦ T) ≤ LR̃n(T)

In the following when `i = ` for all i , then R̃n(` ◦ T) = R̃n(` ◦ T) as
in the previous slide.
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Skipped during lecture: Proof ingredients

Let ε be the vector of n i.i.d. Rademacher r.v. and define the
shorthand ε2:n = (ε2, . . . , εn) and same for θ.

The following holds for all n
• Key 1: de-symmetrize using the tower property: For any g we have
Eεg(ε) = Eε1 [E[g(ε)|ε1]] = 1

2E[g(ε)|ε1 = 1] + 1
2Eg(ε)|ε = −1]

• Key 2: Lipschitz property `i(θi)− `i(θ̃i) ≤ L|θi − θ̃i | for all i
• Key 3: For each ε we can define h(θ2:n) = ∑n

i=2 εi`i(θi). One can
prove via contradiction that

supθ,θ̃∈T |θ1−θ̃1|+h(θ2:n)+h(θ̃2:n) = sup θ,θ̃∈T
θ1≥θ̃1

θ1−θ̃1+h(θ2:n)+h(θ̃2:n)
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Skipped during lecture: R.C. contraction proof
nR̃n(` ◦ T) = Eε sup

θ∈T

n∑

i=1
εi`i(θi)

1.= 1
2


Eε2:n sup

θ∈T
`1(θ1) +

n∑

i=2
εi`i(θi) + sup

θ̃∈T
−`1(θ̃1) +

n∑

i=2
εi`i(θ̃i)




= 1
2


Eε2:n sup

θ,θ̃∈T
`1(θ1)− `1(θ̃1) +

n∑

i=2
εi`i(θi) +

n∑

i=2
εi`i(θ̃i)




2.
≤ 1

2


Eε2:n sup

θ,θ̃∈T
L|θ1 − θ̃1|+

n∑

i=2
εi`i(θi) +

n∑

i=2
εi`i(θ̃i)




3.= 1
2


Eε2:n sup

θ∈T
Lθ1 +

n∑

i=2
εi`i(θi) + sup

θ̃∈T
(−Lθ̃1) +

n∑

i=2
εi`i(θ̃i)




1.= Eε sup
θ∈T

Lε1θ1 +
n∑

i=2
εi`i(θi)

Use the same argument for the RHS inductively on each coordinate.

Question: Which step breaks down if you try to do it simultaneously?
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Mimicking proof-based research in collaboration

• Learning objectives: Both for actual guarantees and presentation,
collaboration
1. Get intuition why a problem / conjecture should be true

2. Break down a proof to parts

3. Prove individual parts

• Matching questions in the interactive session today
1. Intuitively why should enforcing a large margin yield better

generalization? Show graphically (no right or wrong)

2. Given contraction inequality, ramp loss and Rademacher complexity
for linear functions, prove the margin bound

3. Prove Rademacher complexity for linear function class
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Instructions
• Groups:

• We will divide the class into three groups of ≈ 4 people each.
• Each group will solve one of the three questions jointly.
• Once you know your group, choose a representative to present later

• Group work:
• 15 minutes of discussion to solve the question - if done early, feel free

to solve another groups’ question
• Another 5 minutes to prepare the representative’s blackboard

presentation

• Final presentation
• 30 minutes of 3 short presentations (7 min presentation, 3 min Q&A)
• Introduce yourself and group members by names
• Present your results.
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Primer on margins for linear classifiers
• Class of linear classifiers F = {f : f (x) = w>x w ∈ Rd}
• Intuition in introductory lectures for linearly separable data: large

minimum distance to the boundary is good that can be computed as

dmin = min
i

yi
w>xi
‖w‖2

where mini yi〈w , xi〉 is called the margin
• Can obtain set of maximizing directions by solving

max
γ,w

γ s.t. yi〈
w
‖w‖2

, xi〉 ≥ γ

which for bounded ‖w‖2 ≤ B is the same as solving

max
γ′,‖w‖2≤B

γ′ s.t. yi〈w , xi〉 ≥ γ′

• We will look the generalization performance of feasible w with
‖w‖2 ≤ B which achieve a margin of at least some γ
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Margin bound for binary classification

Key ingredient of proof (in interactive session)

Definition (ramp loss)
The ramp loss `γ is defined as

`γ(u) =





1 u ∈ (−∞, 0)
1− u

γ u ∈ [0, γ]
0 u ∈ (γ,∞)

and 1
γ -Lipschitz.
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Margin bound for linear classifiers

Definitions
• Set of linear functions FB = {f (x) = 〈w , x〉 : ‖w‖2 ≤ B}
• Define the risk Rγn (f ) = 1

n
∑n

i=1 1yi f (xi )≤γ and
Rγ(f ) = EX ,Y1Yf (X)≤γ

Assumption (A): Boundedness of covariates P(‖x‖2 ≤ D) = 1

Theorem (margin bound for linear classifiers)
If the assumptions are valid for any fixed γ, w/ prob. at least 1− δ,
for any f ∈ FB we have

R0(f ) = P[y 6= sign(f (x))] ≤ Rγn (f ) + 2DB
γ
√n + c

√
log(1/δ)

n

for some constant c > 0.
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Solution: Proof of margin bound for linear classifiers
1. First we prove the following lemma

Lemma (uniform law with margin loss)
For F symmetric, we have

P
(

sup
f ∈F

R0(f )− Rγn (f ) ≥ 2
γ
Rn(F) + t

)
≤ e−cnt2

2. Then we note that the class of linear functions FB is symmetric and

Lemma (Rademacher complexity of bounded linear function class)
For FB the empirical Rademacher complexity for specific x1, . . . xn is

R̃n(FB(xn
1 )) ≤ B maxi ‖xi‖2√n

so that Rn(FB) ≤ supxn
1∈X n

1
R̃n(FB(xn

1 )) ≤ BD√n

3. Plugging in t = c
√

log(1/δ)
n then yields the theorem.
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Solution: Proof of uniform law with margin loss
Define R`γ (f ) := E(X ,Y )`γ(Yf (X )) and R`γ ,n(f ) its empirical version.
We first use the uniform law to bound R`γ (f ).

1. In particular, given zi = (xi , yi), define F̃(zn
1 ) by f̃ (zi) = yi f (xi) for

f ∈ F . Because F is symmetric, we have F̃(zn
1 ) = F(xn

1 )

2. Defining H(zn
1 ) = {`γ(·, f ) : f ∈ F} the Rademacher complexity

reads
R̃n(H(zn

1 )) = R̃n(`γ ◦ F(xn
1 )).

3. The contraction inequality implies R̃n(`γ ◦ F(xn
1 )) ≤ 1

γ R̃n(F(xn
1 ))

and the same holds when taking expectations

4. The uniform law then yields that w.p. ≥ 1− e−cnt2

sup
f ∈F

R`γ (f )− R`γ ,n(f ) ≤ 2
γ
Rn(F) + t

5. The lemma follows by noting that for every γ > 0 and any f it holds
that R0(f ) ≤ R`γ (f ) and R`γ ,n(f ) ≤ Rγn (f ).
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Solution: Rademacher complexity for linear classes
Proof of lemma via direct calculation
We utilize the fact that ‖x‖2 =

√
‖x‖22 and that √· is a concave

function whence Jensen’s inequality yields

nR̃n(FB(xn
1 )) = Eε sup

w

∑

i
εiw>xi ≤ BEε‖

∑

i
εixi‖

= B
√
Eε‖

∑

i
εixi‖2 = B

√∑

i
‖xi‖2 ≤ B

√
nmax

i
‖xi‖2

In contrast: Rade. Comp. via VC Dimension
1. VC dimension of a class of linear classifiers (without bias term!) in

Rd is d (dVC ≥ d is clear, dVC ≤ d via construction using linear
dependence for d + 1 points)

2. Then, using the VC bound we would obtain a bound of the order√
d log(n+1)

n , which is generally much larger then the dimension
independent B.
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