
Lecture 6: Covering and metric entropy
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Announcements

• HW was due, thanks for handing in
• HW solutions will be up end of this week. HW2 will be up in 1.5
weeks, i.e. 27.10.
• Thanks for signing up for projects - a few have not yet signed up
• Project proposals due Friday, 24.10. 23:59 - send to
konstantin.donhauser at inf.ethz.ch via email

Plan today
• Rademacher complexity as supremum of subgaussian process
• Bounding the supremum using max of subgaussian result and
covering argument (metric entropy)
• Examples beyond linear functions
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Recap: Uniform law
Recap H = ` ◦ F
Theorem (Uniform law for the risk)
For b-unif. bounded H, with prob. over the training data

P(sup
h∈H

Eh(Z )− 1
n

n∑

i=1
h(Zi) ≥ 2Rn(H) + t) ≤ e−

nt2
2b2

Our task was then to bound

Rn(H) := Ez

R̃n(H(zn
1 ))︷ ︸︸ ︷

Eε sup
h∈H

1
n

∑

i
εih(zi) =: Rn(H)

Here, we write R̃n(H(Zn)) (where we stress dependence on samples)
for R̃n(H) with a slight abuse of notation. More generally, for any set
T ⊂ Rn we define

R̃n(T) = Eε sup
θ∈T

n∑

i=1
εiθi .
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Recap: VC bound vs. margin bound

Last lecture, we obtained a completely distribution independent VC
bound of the Rademacher complexity via

Rn(H) = EZnR̃n(H) ≤ sup
Zn
R̃n(H(Zn

1 ))

by bounding the RHS via the VC dimension.

Q: How about the margin bound for linear functions? Is it to
distribution dependent?

A: It depended on D := supx∈X ‖x‖2. When using the upper bound
for the 0-1 loss (for some empirically trained f̂ ), it implicitly also
depends on the margin of the distribution γ as that affects how small
Rγn (f̂ ) can be.
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Recap: Margin bound proof and Rademacher contraction
Assume that for some function class F all samples zn

1 from the
distribution P can achieve a margin of γ

1. Define the proxy function class F̃(zn
1 ) = {yi f (xi) : f ∈ F} function

class. Then H := {h : h(z) = `(z ; f ), f ∈ F} = ` ◦ F̃
2. Rademacher contraction implies that (via uniform law) that

L-Lipschitz loss functions would generalize better.

3. Then we can use the uniform law on the H = `γ ◦ F with ramp loss
`γ and obtain that with probability at least 1− δ

R0(f ) ≤ R`γ (f ) ≤ R`γ ,n(f ) + 2Rn(`γ ◦ F̃) +
√

c log(1/δ)
n

≤ Rγn (f ) + 2
γ

Rn(F̃)︸ ︷︷ ︸
≤supxn

1
R̃n(F̃(xn

1 ))

+
√

c log(1/δ)
n

Intuition for Rademacher contraction on the board.
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R.C. rates for different function classes

So far we bounded R.C. of finite VC classes, of linear (parametric)
function classes by O( 1√n ).

• Today we’ll see examples for infinite-dimensional F where
R̃n(H(zn

1 )) ≤ O( 1
nβ ) for some β ≤ 1/2, for every zn

1

• Then with probability at least 1− δ, the generalization gap

sup
f ∈F

R(f )− Rn(f ) ≤ O( 1
nβ ) + O(

√
log 1/δ

n )

• For β < 1/2 the Rademacher term always dominates the excess risk
since we have fast concentration for the sup of empirical process →
the parametric √n rate is “best one can hope for”
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A general approach to bound the R.C.
• For finite classes → used max of subgaussians
• For special parameterization such as linear model → used
boundedness of parameters and inputs

Today, we present a generic approach by

1. viewing the R.C. as the expecteed supremum of a subgaussian
process

2. bounding the expected supremum of subgaussian processes via
metric entropy

Definition (subgaussian process)
{Xθ, θ ∈ T} is a zero-mean subgaussian process if for all θ, θ̃ ∈ T,
random variable Xθ − Xθ̃ is subgaussian w/ parameter ρ(θ, θ̃) for
some metric ρ and EXθ = 0
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From R.C. to supremum of subgaussian processes

First note that we can write T ⊂ Rn

R̃n(T) = Eε sup
θ∈T

1
n

∑

i
εiθi =: 1√nEε sup

θ∈T
Xθ

where Xθ := 1√n 〈ε, θ〉 and the scaling is chosen for later convenience

Then Xθ is a subgaussian process as per the next

Proposition (Rademacher as a sup of subgaussian processes)
For any T, Xθ is a σ-subgaussian process with parameter
σ = supθ,θ̃∈T ρ(θ, θ̃) where ρ(θ, θ̃) = ‖θ−θ̃‖2√n and it holds that

√
nR̃n(T) ≤ E sup

θ,θ′∈T
Xθ − Xθ′
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Proof of proposition
1. First EXθ = 0 for all θ

2. Xθ −Xθ̃ is subgaussian wrt ρ(θ, θ̃) := 1√n‖θ− θ̃‖2 =: ‖θ− θ̃‖n since

Eeλ(Xθ−Xθ̃) = Ee
λ√

n
∑

i εi (θi−θ̃i ) ≤
∏

i
Ee

λ(θi−θ̃i )√
n εi ≤ e

λ2 1
n ‖θ−θ̃‖

2
2

2

3. Because EXθ̃ = 0 for all θ̃ ∈ T, we can then write empirical
Rademacher complexity

√
nR̃n(T) = Eε sup

θ∈T

1√n 〈ε, θ〉 = E sup
θ∈T

Xθ − EXθ̃
(i)= E sup

θ∈T
Xθ − Xθ̃ ≤ E sup

θ,θ̃∈T
Xθ − Xθ̃

where (i) holds because of linearity of expectation and for any θ̃,
which is smaller than sup-ing the difference over θ̃

9 / 19

How can we leverage max of subgaussian lemma now?

For general function classes, the set e.g. T = H(zn
1 ) is infinite (even

when it’s bounded). How to get to a finite set to use max of
subgaussians like in Massarts Lemma?

Main idea (high-level):

1. Cover T with a finite set of N points such that for any θ ∈ T, there
is a point in the cover with distance ≤ δ

2. Can then take expected sup over grid points

3. Bound difference to other points again using naive bound

1√nEε sup
‖θ‖√

n ≤δ

1√n
∑

i
εiθi ≤ δEε

‖ε‖2√n ≤ δ
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Bound using naive (1-step) covering argument
Proposition (using Pollard’s bound - MW Prop 5.17)
Let δ > 0. If a set of points θ1, . . . , θN satisfies minj ρ(θ, θj) ≤ δ for
all θ ∈ T and supθ,θ′∈T ρ(θ, θ′) ≤ σ with ρ = ‖·‖2√n , then we have

R̃n(T) ≤ 2[δ + 2σ
√

logN
n ]

Proof: For general ρ we can rewrite for any arbitrary θ, θ̃ ∈ T
Xθ − Xθ̃ = Xθ − Xθ? + Xθ? − Xθ̃? + Xθ̃? − Xθ̃

≤ 2 sup
ρ(θ,θ′)≤δ

Xθ − Xθ′ + max
i ,j∈[N]

Xθi − Xθj

• Taking expectations, we obtain Pollard’s bound for general ρ

E sup
θ,θ̃∈T

Xθ − Xθ̃ ≤ 2E sup
ρ(θ,θ′)≤δ

Xθ − Xθ′ + 2
√
2σ2 logN(δ)

using the max of subgaussians upper bound you proved in HW1.
• Proposition follows by using specific ρ and 3. of previous slide .
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How large is N(δ) for a given δ?
• For a given δ we’d like to find the smallest number N for which

the condition in the proposition holds, depends δ and call this N(δ)
(covering number, next slide).

• Then, we can choose δ to minimize δ + 2σ
√

log N(δ)
n , i.e.

R̃n(T) ≤ 2 inf
δ>0

[δ + 2D
√

logN(δ)
n ]

In order for this term to decrease with n we require
• δ to decrease with n
• N(δ) not increase exponentially with decreasing δ.

Good example: N(δ) ∼ 1/δ and δ ∼ 1√n → R̃n(T) ≤ O(
√

log n
n )

The minimum N(δ) for a given δ can be found using the covering
number (next slide).
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Covering number and entropy

Figure 1: Left: δ-covering, Right: δ-packing

Definition (covering number, metric entropy)
For a metric ρ let the ε-covering number N (ε;T, ρ) be the smallest N
such that a set of N points S = {θi}Ni=1 satisfies
maxθ∈S mini ρ(θi , θ) ≤ ε (S is ε-cover). The metric entropy is
logN (ε;T, ρ). Usually in our course N <∞ for any ε

Note that this definition holds for any set (including sets of functions)
and metrics.
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Packing number

Definition (packing number)
The ε-packing numberM(ε;T, ρ) is the biggest M such that a set of
M points S = {θi}Mi=1 satisfies mini 6=j ρ(θi , θj) ≥ ε (S is ε-packing).

Lemma (Packing vs. covering number - MW Lemma 5.5)
The following sandwich relationship holds
M(2ε;T, ρ) ≤ N (ε;T, ρ) ≤M(ε;T, ρ)

• Growth of N depends on
• metric ρ on T

• for abstract T: geometry of the set
• for T = H(zn

1 ): covering/complexity of H (very loose!)
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R.C. rates for function classes

We now contrast the covering numbers for a parametric and
non-parametric function classes H = F (i.e. identity/no loss),
• setting T = H(zn

1 ) and
• using the empirical error ρ = ‖ · ‖n := ‖θ−θ′‖2√n as the metric.

Note that for any H and f , g ∈ H
‖θ−θ′‖2√n =

√
1
n

∑
i(f (zi)− g(zi))2 ≤ maxi |f (zi)− g(zi)| ≤ ‖f − g‖∞
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R.C. rates for function classes: Parametric example
Example I: Smoothly parameterized function class H1 with h s.t.

sup
z
|h(z ; u)− h(z ; u′)| ≤ L‖u − u′‖2

where u ∈ B2(1) ⊂ Rd is the 2-norm ball of radius 1.

For any zn
1 ,

N (δ;H(zn
1 ), ‖·‖n) ≤ (1+2L

δ
)d → logN (δ;H(zn

1 ), ‖·‖n) � d log(1+L
δ

)

Further the set is bounded as

‖h(zn
1 ; u)− h(zn

1 ; u′)‖n ≤ ‖h(z ; u)− h(z ; u′)‖∞ ≤ L‖u − u′‖2

Finally plugging in δ =
√

d log n
n yields Rn(H1) ≤ O(

√
d log n

n ).
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Proof of covering number of H1 (skipped in class)

1. By assumption on h we have

‖h(zn
1 ; u)− h(zn

1 ; u′)‖n ≤ ‖h(z ; u)− h(z ; u′)‖∞ ≤ L‖u − u′‖2

2. Any δ/L-cover for B2(1) ⊂ Rd is also an δ-cover for H(zn
1 )

3. (MW Lem. 5.7.) Covering of a ball of metric ρ wrt metric ρ has
N (δ;Bρ, ρ) = (1 + 2

δ )d using volume ratio bound

→ N (δ;H(zn
1 ), ‖ · ‖n) ≤ N ( δL ;B2(1), ‖ · ‖2) ≤ (1 + 2L

δ
)d
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R.C. rates for function classes: Nonparametric example
We now move on to an infinite-dimensional function class

Example II: Smooth non-parametric function classes Hα2 with
h : [0, 1]→ R s.t. |h(α)(x)− h(α)(x ′)| ≤ L|x − x ′|
• We use bounds for N (δ;Hα2 , ‖ · ‖∞) and thus
N (δ;H(zn

1 ), ‖ · ‖n) ≤ N (δ;H, ‖ · ‖∞)
• For α = 0, using the sandwich inequality and constructing a
packing, we get for any zn

1

N (δ;H0
2, ‖ · ‖∞) = O(eL/δ)→ logN (δ;H0

2, ‖ · ‖∞) � 1
δ

and hence we have Rn(H0
2) ≤ O(n−1/3) (see MW Example 5.10.).

• For general α, we have logN (δ;Hα2 , ‖ · ‖∞) � (1
δ )

1
α+1 and hence

obtain rates of Rn(Hα2 ) ≤ O(n−
1
2

(2α+2)
(2α+3) ) (MW Ex. 5.11.).
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References

Metric entropy
• MW Chapter 5
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