Lecture 6: Covering and metric entropy
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Announcements

HW was due, thanks for handing in

® HW solutions will be up end of this week. HW2 will be up in 1.5
weeks, i.e. 27.10.

Thanks for signing up for projects - a few have not yet signed up

® Project proposals due Friday, 24.10. 23:59 - send to
konstantin.donhauser at inf.ethz.ch via email

Plan today
® Rademacher complexity as supremum of subgaussian process

® Bounding the supremum using max of subgaussian result and
covering argument (metric entropy)

® Examples beyond linear functions
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Recap: Uniform law
Recap H =/l o F

Theorem (Uniform law for the risk)
For b-unif. bounded H, with prob. over the training data

P(sup EN(Z) Z hZ) = 2Ra(H) + £) < &35

Our task was then to bound ﬁn(H(z"))

Ra(H )_EE:;E Ze, z,)—R(H)

Here, we write R,(H(Z")) (where we stress dependence on samples)
for Rn(H) with a slight abuse of notation. More generally, for any set
T C R" we define

Ra(T) = ]EsupZeH
QETI 1
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Recap: VC bound vs. margin bound

Last lecture, we obtained a completely distribution independent VC
bound of the Rademacher complexity via

Ro(M) = ErRo(H) < sup Ro(H(Z]))

by bounding the RHS via the VC dimension.

Q: How about the margin bound for linear functions? Is it to
distribution dependent?

A: It depended on D := sup,y ||x||2. When using the upper bound

for the 0-1 loss (for some empirically trained f), it implicitly also
depends on the margin of the distribution v as that affects how small

R () can be.

4/19




Recap: Margin bound proof and Rademacher contraction

Assume that for some function class F all samples z{' from the
distribution P can achieve a margin of ~

1. Define the proxy function class F(z) = {y;f(x;) : f € F} function
class. Then H :={h: h(z) =l(z;f),f € F} =Lo F

2. Rademacher contraction implies that (via uniform law) that
L-Lipschitz loss functions would generalize better.

3. Then we can use the uniform law on the H = £, o F with ramp loss
¢ and obtain that with probability at least 1 — ¢

clog(1/6)

RO(F) < Re,(F) < Re, n(F) + 2Rn(6y 0 F) + \/ n

<R(AH+2  Ru(F) +\/—C'°g(1/5)
Y —— n

<sup,n Rn(F(x]))

Intuition for Rademacher contraction on the board.
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R.C. rates for different function classes

So far we bounded R.C. of finite VC classes, of linear (parametric)
function classes by O(%)

® Today we'll see examples for infinite-dimensional F where
Rn(H(z])) < O(n%) for some g < 1/2, for every z{

® Then with probability at least 1 — 9, the generalization gap

log1/6
n

sup R(F) ~ Ro(f) < O(5) + O(4 & /%)

feF

® For 8 < 1/2 the Rademacher term always dominates the excess risk
since we have fast concentration for the sup of empirical process —
the parametric \/n rate is “best one can hope for”
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A general approach to bound the R.C.

® For finite classes — used max of subgaussians

® For special parameterization such as linear model — used
boundedness of parameters and inputs

Today, we present a generic approach by

1. viewing the R.C. as the expecteed supremum of a subgaussian
process

2. bounding the expected supremum of subgaussian processes via
metric entropy

Definition (subgaussian process)

{Xy,0 € T} is a zero-mean subgaussian process if for all 6,0 € T,
random variable Xy — Xj is subgaussian w/ parameter p(6,0) for
some metric p and EXy =0
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From R.C. to supremum of subgaussian processes

First note that we can write T C R”

Ra(T) =Ecsup =) €0 =0 —E,sup Xy
o(T) oeT N Z f 6T

where Xy := %(e, 6) and the scaling is chosen for later convenience

Then Xy is a subgaussian process as per the next

Proposition (Rademacher as a sup of subgaussian processes)

For any T, Xy is a o-subgaussian process with parameter

o = supy ger P(0; 0) where p(6,0) = % and it holds that

VRA(T) <E sup Xy — Xy
0,0'€T
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Proof of proposition
1. First EXy = 0 for all ¢
2. Xy — Xz is subgaussian wrt p(8, 0) := \/—HH 0|l =: |0 — 0| since

Py (0:—b- \0;=07) . 21110013
EerXo—X3) — geva 20 o [[Ee™ v “<e—2

i

3. Because EX; =0 for all § ¢ T, we can then write empirical
Rademacher complexity

~ 1
\/ERn(T) = K, sup —<€, 9> = ]ESUPXQ - EX@
9cT v N OcT
O Esup Xy — X; <E sup Xo — X;
6cT 0,0€T

where (i) holds because of linearity of expectation and for any 6,
which is smaller than sup-ing the difference over 6
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How can we leverage max of subgaussian lemma now?

For general function classes, the set e.g. T = H(z{) is infinite (even
when it's bounded). How to get to a finite set to use max of
subgaussians like in Massarts Lemma?

Main idea (high-level):
1. Cover T with a finite set of N points such that for any 8 € T, there
is a point in the cover with distance < 9

2. Can then take expected sup over grid points

3. Bound difference to other points again using naive bound

1 1 llefl2 _
. sup — €0; < OE,
VN o) s ﬁz,: N

\/__

<9
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Bound using naive (1-step) covering
Proposition (usmg Pollard’s bound - MW Prop 5.17)

Let § > 0. If a set of points 01, ..., 0N satisfies min; p(0,6') < § for
all 0 € T and supg g7 p(0,0") < o with p = ”\/”—2 then we have

R(T) < 2[5 + 20| 28 N]

- J

Proof: For general p we can rewrite for any arbitrary 6, 6ecT
Xg—Xé':XQ—XQ* + X« —Xé* + X, —Xg

<2 sup XH — X@/ -+ max Xel X@j
p(6,6')<5 ijEN]

® Taking expectations, we obtain Pollard’'s bound for general p

E sup Xp— X5 <2E sup Xy — Xpr + 21/202 log N(3)
0.0eT p(0,0')<8

using the max of subgaussians upper bound you proved in HW1.

® Proposition follows by using specific p and 3. of previous slide [].
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How large is N(0) for a given 47

® For a given 6 we'd like to find the smallest number N for which
the condition in the proposition holds, depends ¢ and call this N(9)
(covering number, next slide).

® Then, we can choose ¢ to minimize ¢ + 204/ w, i.e.

log N(5)

Rn(T) < 2inf[6 + 2D
>0

]

In order for this term to decrease with n we require

® ¢ to decrease with n
® N(§) not increase exponentially with decreasing 9.

Good example: N(5) ~ ]_/5 and § ~ % - 7% ( ) O( /Iogn)

The minimum N(§) for a given & can be found using the covering
number (next slide).
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Covering number and entropy

Figure 1: Left: d-covering, Right: d-packing

Definition (covering number, metric entropy)

For a metric p let the e-covering number N (¢; T, p) be the smallest N
such that a set of N points S = {0}, satisfies

maxges min; p(0;,0) < € (S is e-cover). The metric entropy is
\Iog/\/'(e; T, p). Usually in our course N’ < oo for any €

-
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Packing number

Definition (packing number)

The e-packing number M(e; T, p) is the biggest M such that a set of
M points S = {0;}M, satisfies min;; p(6;,0;) > € (S is e-packing).

Lemma (Packing vs. covering number - MW Lemma 5.5)

The following sandwich relationship holds
M(26,T,p) < N(eT,p) < M(e; T, p)

e Growth of N depends on
® metric pon T
® for abstract T: geometry of the set

® for T = H(z]): covering/complexity of H (very loose!)
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R.C. rates for function classes

We now contrast the covering numbers for a parametric and
non-parametric function classes H = F (i.e. identity/no loss),

® setting T = H(z{) and
® using the empirical error p = || - || =

NG as the metric.

Note that for any H and f,g € H
P=tlle — \J15,(F(z:) — g(2))? < maxi|f(z) — g(2)] < |If — gl
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R.C. rates for function classes: Parametric example
Example I: Smoothly parameterized function class H; with h s.t.

sup |h(z; u) — h(z; )| < L|ju = u'[2

where u € By(1) C R is the 2-norm ball of radius 1.

For any z{,
N 2L 4 N L
N (@& H () [[ln) < (1+-5) = log N (6; H(z7), [|-]la) = d log(1++)

Further the set is bounded as

lh(z1'; u) = bz o)l < [1h(z; u) = h(z; 0)|loo < L|ju— u/||2

Finally plugging in § = \/@ yields R,(H1) < O(4/ d";g”).

16/19




Proof of covering number of H; (skipped in class)

1. By assumption on h we have
lh(z1'; u) = bz u)lln < [1h(z; u) = h(z; t)[loo < Lfju— o/[|2

2. Any §/L-cover for By(1) C RY is also an §-cover for H(z])

3. (MW Lem. 5.7.) Covering of a ball of metric p wrt metric p has
N(5;B,, p) = (1+ %)d using volume ratio bound

- N((S;H(z{’),\l-lln)SN( Ba(1), ]| - Hz)<(1+—)d
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R.C. rates for function classes: Nonparametric example

We now move on to an infinite-dimensional function class

Example Il: Smooth non-parametric function classes H5 with
h:[0,1] = R s.t. [Al®)(x) — Al (x")| < L|x — x|

® We use bounds for N (0; HS, || - ||ec) and thus
N0 H(z0), [ - 1n) S N6 H, || - [lo0)

® For a = 0, using the sandwich inequality and constructing a

packing, we get for any z{

1
N (8 H3, || - loo) = O(e"?) — log N'(6; 13, | - [loc) = 5

and hence we have R,(H3) < O(n~1/3) (see MW Example 5.10.).

® For general a, we have log NV (0; HS, || - [|0) < (5 )o++1 and hence

1 (2a+2

obtain rates of R,(HS) < O(n 2@+)) (MW Ex. 5.11.).
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