
Lecture 7: Dudley’s integral and chaining
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Announcements and plan

• Project proposals due next Tuesday 24.10., send to Konstantin and
supervisor
• One page is enough, instructions on project website (plan how you
split up work among the group)

Plan today
• Pollard: One-step discretization → Finer argument via Dudley’s
integral: Chaining
• Moving from classification to (non-parametric) regression
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Recap: Metric entropy to bound excess risk

• Excess risk R(f̂n)− R(f ?) bounded by generalization gap and
standard concentration terms.
• For bounded losses, generalization gap R(f̂n)− Rn(f̂n) is bounded by
Rademacher complexity w.h.p.
• Can bound (population) R.C. via sup of empirical R.C.
• View the empirical R.C. as expected supremum of subgaussian
process Xθ := 1√n 〈ε, θ〉 for Rademacher vector ε and
θ ∈ H(xn

1 ) = {(h(x1), . . . , h(xn))|h ∈ H}
• Bounded this expectation using the covering number (Pollard’s
bound)
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Recap: Covering number

Proposition (using Pollard’s bound - MW Prop 5.17)
Let δ > 0. If a set of points θ1, . . . , θN is a covering of T in the
metric ρ = ‖·‖2√n , i.e. it satisfies minj ρ(θ, θj) ≤ δ for all θ ∈ T and
supθ,θ′∈T ρ(θ, θ′) ≤ σ, then we have

R̃n(T) ≤ 1√nE sup
θ,θ′∈T

Xθ − Xθ′ ≤ 2[δ + 2σ
√

logN(δ)
n ]

This bound holds in particular for the covering number

Definition (covering number, metric entropy)
For a metric ρ let the ε-covering number N (ε;T, ρ) be the smallest N
such that a set of N points S = {θi}Ni=1 satisfies
maxθ∈S mini ρ(θi , θ) ≤ ε (S is ε-cover). The metric entropy is
logN (ε;T, ρ).
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Recap: Examples
Example I: Smoothly parameterized function class H1 with h s.t.

sup
z
|h(z ; u)− h(z ; u′)| ≤ L‖u − u′‖2

where u ∈ B2(1) ⊂ Rd is the 2-norm ball of radius 1.

Covering number: order log(1 + L
δ ) and Rn(H1) ≤ O(

√
d log n

n ).

Example II: Smooth non-parametric function classes Hα2 with
h : [0, 1]→ R s.t. |h(α)(x)− h(α)(x ′)| ≤ L|x − x ′|
For α = 0, covering number: order L

δ and Rn(H0
2) ≤ O(n−1/3).

For general α we have Rn(Hα2 ) ≤ O(n−
1
2

(2α+2)
(2α+3) ) (MW Ex. 5.10., 5.11.

and 5.21).

Can check for yourself in both cases that the diameter
supθ,θ′∈T ‖θ−θ

′‖2√n is bounded by a constant
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Metric entropy refinement: chaining
• Remember Pollard’s bound with D = supθ,θ̃∈T ρ(θ, θ̃)

R̃n(T) ≤ 2√n inf
δ>0

[δ
√
n + 2D

√
logN(δ)]

• For the last term we’re combining a large D with a small δ (hence
big N(δ)) → lose lose.
• Intuitive question: can we use a finer argument such that small δ is
paired with big N(δ)?

Theorem (Dudley’s entropy integral - MW Thm 5.22.)
Let {Xθ, θ ∈ T} be a zero-mean subgaussian process wrt some metric
ρ. Define D = supθ,θ̃∈T ρ(θ, θ̃). Then for any δ ∈ [0,D] we have

E max
θ,θ̃∈T

Xθ−Xθ̃ ≤ 2E sup
γ,γ′:ρ(γ,γ′)≤δ

Xγ−Xγ′+16
∫ D

δ/4

√
logN (t;T, ρ)dt

Re Tightness: for non-decreasing functions Pollard’s bound yields
O(
(

log n
n

)1/3
) vs. Dudley: O(

(
log n

n

)1/2
) (exercise, nontrivial)
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Example of using Dudley for Lipschitz functions
Remember the examples of the parametric and non-parametric
function classes.

Example I: Smoothly parameterized function class H1 with h s.t.

sup
z
|h(z ; u)− h(z ; u′)| ≤ ‖u − u′‖2

where u ∈ B2(1) ⊂ Rd is the 2-norm ball of radius 1.

The covering number is of order d log(1
δ ).

Example II: Smooth non-parametric function classes H0
2 with

h : [0, 1]d → R s.t. |h(x)− h(x ′)| ≤ ‖x − x ′‖∞.

The covering number is of order (1
δ )d .

With your neighbor: Use these approximate covering numbers to
compute an upper bound for the Rademacher complexity using
Dudley’s entropy integral and compare the rates obtained using
Pollard’s bound (focus on d = 1 first)
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Solution for Example II
Note that we want to find the infimum over δ of the upper bound
R̃n(T) ≤ 2√n infδ>0[δ√n + 16

∫ D
δ/4
√

logN (t;T, ρ)dt] where we used
the same argument to bound E sup

γ,γ′:ρ(γ,γ′)≤δ
Xγ − Xγ′ as in Pollard’s

bound. We are going to ignore constants in almost all steps. . .

Primarily, we need to 1) compute the integral and 2) since the two
terms have opposite tendencies when δ decreases, set both terms to
be of equal order.
• For d ≤ 2, it suffices to upper bound the integral by
∫ D

0
√

logN (t;T, ρ)dt =
∫ D

0 t−d/2dt ≤



2
√
D d = 1

logD d = 2
. No matter

how small we choose δ, we will get a bound of order 1√n .

• For d > 2, we use a more fine-grained upper bound of∫ D
δ/4
√

logN (t;T, ρ)dt =
∫ D
δ/4 t−d/2dt ≤ c(d

2 − 1)−1Ld/2δ−d/2+1

and choosing δ = O(n− 1
d ) makes both terms of equal order.
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Proof of Dudley’s integral: Part I
Define shorthand NT(δ) := N (δ;T, ρ)
• Define L = dlog2

D
δ e sets of δi = D2−i covers Ci of T with

|Ci | = NT(δi ). The finest cover (original/smallest δ) is CL.
• Remember the one-step discretization for Pollard’s bound:

Xθ − Xθ̃ = Xθ − X
θ

(L)
?

+ X
θ

(L)
?
− X

θ̃
(L)
?

+ Xθ̃? − Xθ̃
= 2 sup

ρ(γ,γ′)≤δ
Xγ − Xγ′ + max

θ,θ′∈CL
Xθ − Xθ′

where θ(i)
? denotes closest point of θ in Ci .

• We can now “recursively” act on maxθ,θ′∈CL Xθ − Xθ′ by using the
same argument on the set CL with the coarser cover CL−1.

More generally for any two θ, θ̃ ∈ Ci we have:
Xθ − Xθ̃ ≤ Xθ − X

θ
(i−1)
?

+ X
θ

(i−1)
?
− X

θ̃
(i−1)
?

+ X
θ̃

(i−1)
?
− Xθ̃

≤ 2max
θ∈Ci

Xθ − X
θ

(i−1)
?

+ max
θ,θ′∈Ci−1

Xθ − Xθ′
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Proof of Dudley’s integral: Part II

• note that in maxθ∈CiXθ − X
θ

(i−1)
?

, for each θ ∈ Ci we have θ(i−1)
? be

its closest point, not of the “original” θ inT
• “Rolling out” the induction, we obtain

max
θ,θ̃∈CL

Xθ − Xθ̃ ≤ 2
L∑

i=2
max
θ∈Ci

Xθ − X
θ

(i−1)
?

+ max
θ,θ′∈C1

Xθ − Xθ′

Rolling out from L→ 1 or going from CL to C1, we iteratively
• reduced the cover cardinality until only one element is left
(with large diameter),
• while all the intermediate terms (in sum) are δi−1-subgaussian
(instead of fixed D)
• with increasing δ but decreasing corresponding cover cardinality

10 / 18



Proof of Dudley’s integral: Part III
In order to compute the final expectation observe that

1. max of subgaussians: Xθ − X
θ

(i−1)
?

is a δi−1-subgaussian process →

Emax
θ∈Ci

Xθ − X
θ

(i−1)
?
≤ 2δi−1

√
log |Ci |

2. Covering number non-increasing as δ increases and interval
[D2−(i+1),D2−i ] is of length D2−(i+1) = D2−(i−1) 1

4 :

δi−1
√

log |Ci | = D2−(i−1)
√

logNT(D2−i ) ≤ 4
D2−i∫

D2−(i+1)

√
logNT(t)dt

3. Putting things together and because δL = D2−L ≤ δ

E max
θ,θ̃∈CL

Xθ − Xθ̃ ≤ 4
L∑

i=2
D2−(i−1)

√
logNT(D2−i ) + 2D

√
logNT(D/2)

≤ 16
∫ D

δ/4

√
logNT(t)dt
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Short navigation slide
Whole topic of this class: For each F define f ? = arg minf ∈F R(f ).
Interested in bounding excess risk w.h.p.

R(f̂n)− R(f ?) = R(f̂n)− Rn(f̂n) +

≤0 by optimality︷ ︸︸ ︷
Rn(f̂n)− Rn(f ?) +Rn(f ?)− R(f ?)

• so far: via uniform convergence and Rademacher complexity using

P(sup
h∈H

Eh(Z )− 1
n

n∑

i=1
h(Zi ) ≥ 2Rn(H) + t) ≤ e−

nt2
2b2

for H = ` ◦ F and bounding empirical Rademacher complexity for
finite classes, more generally w/ metric entropy and chaining (today)

This line of reasoning was useful for classification, for the second
half of lectures, we’ll switch to regression. Can we just continue to
use this uniform convergence technique to obtain bounds?
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(Non-)parametric regression setting - fixed design
• Square loss and constrained regression
• Fixed design, i.e. only care about prediction on training inputs
x1, . . . , xn

• Gaussian observation noise, i.e. W = Y − f ?(X ) ∼ N (0, σ2)
• Analyze minimizer f̂ = arg minf ∈F Rn(f ) := 1

n
∑n

i=1(yi − f (xi ))2 or
with penalty f̂ = arg minf ∈F Rn(f ) := 1

n
∑n

i=1(yi − f (xi ))2 + λ‖f ‖F
• Evaluation: Prediction error of some f on fixed design points

‖f − f ?‖2n = 1
n

n∑

i=1
(f (xi )− f ?(xi ))2 = EYRn(f )−σ2 = R(f )−R(f ?)

Partner-Q: Derive a h.p. upper bound for ‖f − f ?‖2n for linear
functions f (x) = 〈w , x〉 with ‖x‖2 ≤ D, ‖w‖2 ≤ B. Further assume
the noise is bounded. Compare a closed-form vs. a uniform law
approach - where might the difference come from? For solution see
Lecture 10
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Warm-up using closed-form solution - linear regression
For linear/kernel regression, can directly analyze closed-form solution
of both ridge and min-norm interpolator. For linear:
• first recall y = Xθ? + w and solution θ̂ = arg minθ∈Rd ‖y − Xθ‖22
• minimizer f̂ (x) = θ̂>x with θ̂ = (X>X )−1X>(Xθ? + w)
• ‖f̂ − f ?‖2n = 1

n‖X (θ̂ − θ?)‖2 = 1
nw>X (X>X )−1X>w

• only need to bound 1
nw>X (X>X )−1X>w → use that the norm of a

Gaussian is a Lipschitz function of Gaussian for concentration (here
with Lipschitz constant

√
rank(X)

n via SVD) and MW Thm 2.26

• Further E 1
nw>X (X>X )−1X>w = σ2 rank(X)

n

This stands in contrast to the uniform law approach where you can
use contraction to obtain a bound using Rademacher complexity of
linear function classes and at most get a 1√n bound
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Beyond closed-form solutions

• First of all, notice the “slow” uniform excess risk bound holds for
any F , including ones for which f ? /∈ F !
• Further, in our argument using uniform law, we used optimality of f̂n
only once

R(f̂n)−R(f ?) = R(f̂n)−Rn(f̂n) +

≤0 by optimality︷ ︸︸ ︷
Rn(f̂n)− Rn(f ?) +Rn(f ?)−R(f ?)

Next few classes: using localized complexities to prove tighter bounds
for particular estimator: global minimizer of square loss for regression!
• Idea: By using optimality of f̂ instead of uniform bound

1. circumvent uniform boundedness
2. can get more restricted function space
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Basic inequality circumventing boundedness and more
Optimality of f̂ yields the basic inequality

Rn(f̂ ) = 1
n

n∑

i=1
(yi − f̂ (xi ))2 ≤ 1

n

n∑

i=1
(yi − f ?(xi ))2 = Rn(f ?)

‖f̂ − f ?‖2n ≤
2σ
n

n∑

i=1
wi (f̂ (xi )− f ?(xi ))

(1)

• Taking expectations defining F? = F − f ?
→ E‖f̂ − f ?‖2n ≤ 2σG̃n(F?(xn

1 )) := Ew supg∈F?
2σ
n
∑n

i=1 wig(xi )
• Gaussian complexity popped out without needing uniform
boundedness (same “order” as Radmacher, satisfies sandwich
relationship, porved in HW 2, for each T)

1
2 log n G̃n(T) ≤ R̃n(T) ≤

√
π
2 G̃n(T)

• But still stuck with a huge function space F !
The trick is to notice eq. 1 restricts function space!
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Motivation for localized Gaussian complexity
• Define ∆̂ = f̂ − f ? for simplicity and the space
F? = {f − f ? : f ∈ F}

• Furthermore we assume that F? is star-shaped, i.e. for any f ∈ F?,
we have αf ∈ F? for all α ∈ [0, 1]

1. Space to control is smaller than all of F? since either
(i) ‖∆̂‖n ≤ δn or
(ii) if ‖∆̂‖n ≥ δn then still ‖∆̂‖2

n ≤ 2σ
n
∑n

i=1 wi ∆̂(xi ) by basic inequality

2. Further for case (ii), if can show w.h.p.

2σ
n

n∑

i=1
wi ∆̂(xi ) ≤ 4‖∆̂‖nδn (2)

for all ‖∆̂‖n ≥ δn then we can plug that into RHS of (ii) to obtain
‖∆̂‖n ≤ 4δn w.h.p.

to be continued. . .
17 / 18

References

Dudley’s integral
• MW Chapter 5

Non-parametric regression
• MW Chapter 13

18 / 18


