Lecture 8: Non-parametric regression

Announcements

- HW 1 solutions are up, grades released next week
- Project proposals due end of today
- Lecture slides for this week and Friday will be updated by end of this week - apologies

Plan for today

- Non-parametric prediction error bound
 - Intuition for critical radius
 - Examples: sparse linear regression, Lipschitz
- Example non-parametric function space: Reproducing kernel Hilbert spaces (RKHS)
- Recap of kernels and examples for RKHS
- Friday: prediction error bound for RKHS

Recap: (Non-)parametric regression setting

- Square loss and constrained regression
- Fixed design, i.e. only care about prediction on training inputs x_1, \ldots, x_n
- Gaussian observation noise, i.e. $W = Y f^{\star}(X) \in \mathcal{N}(0, \sigma^2)$
- Today, analyze minimizer of the square loss $\hat{f} = \arg \min_{f \in \mathcal{F}} R_n(f) := \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2$ (and later also with penalty $\hat{f} = \arg \min_{f \in \mathcal{F}} R_n(f) := \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda ||f||_{\mathcal{F}})$
- Evaluation: Prediction error of some f on fixed design points

$$\|f - f^{\star}\|_{n}^{2} = \frac{1}{n} \sum_{i=1}^{n} (f(x_{i}) - f^{\star}(x_{i}))^{2} = \mathbb{E}_{Y} R_{n}(f) - \sigma^{2} = R(f) - R(f^{\star})$$

3 / 25

Recap: Motivation for localized Gaussian complexity

- Define $\hat{\Delta} = \hat{f} f^*$ for simplicity, and the space $\mathcal{F}^* = \{f - f^* : f \in \mathcal{F}\}$
- Furthermore we assume that *F*^{*} is star-shaped, i.e. for any *f* ∈ *F*^{*}, we have α*f* ∈ *F*^{*} for all α ∈ [0, 1]
- Space to control is smaller than all of *F*^{*} since either

 (i) ||Â||_n ≤ δ_n or
 (ii) if ||Â||_n ≥ δ_n then still ||Â||_n² ≤ ^{2σ}/_n ∑_{i=1}ⁿ w_iÂ(x_i) by basic inequality
 - 2. Further for case (ii), if can show w.h.p.

$$\frac{2\sigma}{n}\sum_{i=1}^{n}w_{i}\hat{\Delta}(x_{i}) \leq 4\|\hat{\Delta}\|_{n}\delta_{n}$$
(1)

for all $\|\hat{\Delta}\|_n \ge \delta_n$ then we can plug that into RHS of (ii) to obtain $\|\hat{\Delta}\|_n \le 4\delta_n$ w.h.p.

For which δ_n 2. is true

a. By star-shaped assumption on \mathcal{F}^* step (i) holds in the following:

$$\iff \sup_{\|\hat{\Delta}\|_{n} \ge \delta_{n}, \hat{\Delta} \in \mathcal{F}^{\star}} \frac{\sigma}{n} \sum_{i=1}^{n} w_{i} \frac{\hat{\Delta}(x_{i})}{\|\hat{\Delta}\|_{n}} = \sup_{\|\hat{\Delta}\|_{n} \ge \delta_{n}, \hat{\Delta} \in \mathcal{F}^{\star}} \frac{\sigma}{n} \sum_{i=1}^{n} w_{i} \frac{\hat{\Delta}(x_{i})\delta_{n}}{\|\hat{\Delta}\|_{n}} \frac{1}{\delta_{n}}$$

$$\stackrel{(i)}{=} \sup_{\|\tilde{\Delta}\|_{n} = \delta_{n}, \tilde{\Delta} \in \mathcal{F}^{\star}} \frac{\sigma}{n} \sum_{i=1}^{n} w_{i} \frac{\tilde{\Delta}(x_{i})}{\delta_{n}} \le \sup_{\|\tilde{\Delta}\|_{n} \le \delta_{n}, \tilde{\Delta} \in \mathcal{F}^{\star}} \frac{\sigma}{n} \sum_{i=1}^{n} w_{i} \frac{\tilde{\Delta}(x_{i})}{\delta_{n}}$$
b. eq. 1 follows from h.p. bound of this (localized) quantity
$$\sup_{\|\hat{\Delta}\|_{n} \le \delta_{n}} \frac{\sigma}{n} \sum_{i=1}^{n} w_{i} \hat{\Delta}(x_{i}) \le \mathbb{E} \sup_{\|\hat{\Delta}\|_{n} \le \delta_{n}} \frac{\sigma}{n} \sum_{i=1}^{n} w_{i} \hat{\Delta}(x_{i}) + \delta_{n}^{2}$$
and if the expectation is bounded, i.e.
$$\mathbb{E} \sup_{\|\hat{\Delta}\|_{n} \le \delta_{n}} \frac{\sigma}{n} \sum_{i=1}^{n} w_{i} \hat{\Delta}(x_{i}) \le \delta_{n}^{2}$$

5 / 25

Localized Gaussian complexity Definition (Localized (empirical) Gaussian complexity)

The localized Gaussian complexity around f^{\star} of scale δ is

$$\sigma \widetilde{\mathcal{G}}_n(\mathcal{F}^*; \delta_n) := \sigma \widetilde{\mathcal{G}}_n(\mathcal{F}^*(x_1^n) \cap \mathbb{B}_n(\delta_n)) = \mathbb{E} \sup_{\|\hat{\Delta}\|_n \leq \delta_n, \hat{\Delta} \in \mathcal{F}^*} \frac{\sigma}{n} \sum_{i=1}^n w_i \hat{\Delta}(x_i)$$

- Hence: Given concentration b., eq. 1, i.e. $\|\hat{\Delta}\|_n \leq 4\delta_n$ holds for all δ_n that satisfy the implicit inequality $\sigma \tilde{\mathcal{G}}_n(\mathcal{F}^*; \delta_n) \leq \delta_n^2$
- You can rewrite and say: $\|\hat{\Delta}\|_n \leq 4\sqrt{t}\delta_n$ holds for any $t \geq 1$ w.h.p. if δ_n is the **smallest** $\delta > 0$ such that $\sigma \widetilde{\mathcal{G}}_n(\mathcal{F}^{\star}; \delta) \leq \delta^2$
- All that's left to do: see that δ_n exists and show b.

Lemma (Critical radius (MW 13.6.))

For any star-shaped \mathcal{F} , it holds that $\frac{\widetilde{\mathcal{G}}_n(\mathcal{F};\delta)}{\delta}$ is non-increasing and the critical inequality $\frac{\widetilde{\mathcal{G}}_n(\mathcal{F};\delta)}{\delta} \leq \frac{\delta}{\sigma}$

has a smallest solution $\delta_n > 0$ that we call the critical quantity/radius.

Illustration of localized Gaussian complexity

7 / 25

Prediction error bound for constrained ²-loss minimizer

Theorem (Prediction error bound, MW Thm 13.5.)

If \mathcal{F}^{\star} is star-shaped, we have for the square loss minimizer \widehat{f} for any $t \geq 1$

$$\mathbb{P}(\|\widehat{f} - f^{\star}\|_n^2 \ge 16t\delta_n^2) \le e^{-\frac{nt\delta_n^2}{2\sigma^2}}$$

- Plugging in $t = O(\log \frac{1}{\delta})$ and by $\delta_n^2 \ge O(\frac{1}{n})$ (check yourself) yields that probability at least 1δ we have $\|\hat{f} f^*\|_n^2 \le O(\log(\frac{1}{\delta})\delta_n^2)$
- As f^{*} is unknown, can replace G̃_n(F^{*}; δ) by G̃_n(F − F; δ) (or its star hull MW Eq (13.21.)) to define critical radius δ_n
- Note: the notation for t is different from MW Thm 13.5.
- Proof follows by proof of (modified) b. and noting that $g_n(w) = \sup_{\|\hat{\Delta}\|_n \le \sqrt{t}\delta_n} \frac{\sigma}{n} \sum_{i=1}^n w_i \hat{\Delta}(x_i)$ is a Lipschitz function of Gaussians and using MW Thm 2.26 (next slide, skipped in class)

Proof of error bound: tail bounding $g_n(w)$ (skipped) We now establish the tail bound for $g_n(w)$

1. $g_n(w)$ as a function of $w_i \sim \mathcal{N}(0, 1)$ is $\frac{\sigma\sqrt{t\delta_n}}{\sqrt{n}}$ -Lipschitz so that $\mathbb{P}(g_n(w) \geq \mathbb{E}g_n(w) + s) \leq e^{-\frac{ns^2}{2\sigma^2 t\delta_n^2}}$ (see Lecture 2 / MW Thm 2.26)

2. Furthermore
$$\mathbb{E}g_n(w) = \mathcal{G}_n(\mathcal{F}; \sqrt{t\delta_n})$$

- 3. The map $\delta \to \frac{\widetilde{\mathcal{G}}_n(\mathcal{F};\delta)}{\delta}$ is non-increasing by MW Lemma 13.6.
- 4. By 2. and definition of δ_n we have $\sigma \frac{\widetilde{\mathcal{G}}_n(\mathcal{F};\sqrt{t}\delta_n)}{\sqrt{t}\delta_n} \leq \sigma \frac{\widetilde{\mathcal{G}}_n(\mathcal{F};\delta_n)}{\delta_n} \leq \delta_n$ and setting $s = t\delta_n^2$, we obtain

$$\mathbb{P}(\sup_{\|\hat{\Delta}\|_{n} \leq \sqrt{t}\delta_{n}} \frac{\sigma}{n} \sum_{i=1}^{n} w_{i}\hat{\Delta}(x_{i}) \geq 2t\delta_{n}^{2})$$

$$\leq \mathbb{P}(\sup_{\|\hat{\Delta}\|_{n} \leq \sqrt{t}\delta_{n}} \frac{\sigma}{n} \sum_{i=1}^{n} w_{i}\hat{\Delta}(x_{i}) \geq \sigma\widetilde{\mathcal{G}}_{n}(\mathcal{F}; \sqrt{t}\delta_{n}) + t\delta_{n}^{2}) \leq e^{-\frac{nt\delta_{n}^{2}}{2\sigma^{2}}} \Box$$

Application 1: ℓ_0 -constrained sparse linear regression Let's say we're trying to find the best sparse linear fit

$$\widehat{f} = \mathop{\arg\min}_{f \in \mathcal{F}_{lin,s}} \|y - X\theta\|_n^2$$

with $\mathcal{F}_{\textit{lin},s} = \{f(\cdot) = \langle \theta, x \rangle : \|\theta\|_0 \le s\}$

- In HW 2 we prove $\widetilde{\mathcal{G}}_n(\mathcal{F}_{lin,s}; \delta) \leq O(\delta \sqrt{\frac{s \log(ed/s)}{n}})$ when $\lambda_{\max}(\frac{X_s^{\top} X_s}{n})$ bounded for all subsets S of size s
- Hence the critical radius has to satisfy $\frac{\widetilde{\mathcal{G}}_n(\mathcal{F}_{lin,s};\delta)}{\delta} = \sqrt{\frac{s\log(ed/s)}{n}} \le \frac{\delta_n}{\sigma}$
- Thus using the theorem, plugging in δ_n^2 at equality, we can obtain with probability at least $1-\delta$

$$\|\widehat{f} - f^{\star}\|_n^2 \leq O\left(\frac{s\log(ed/s)\log 1/\delta}{n}\right)$$

Also see MW Example 13.16.

General functions via Dudley's integral

Corollary (Dudley's integral & critical quantity - MW Cor. 13.7.) If \mathcal{F} is star-shaped, any $\delta \in [0, \sigma]$ such that $\frac{16}{\sqrt{n}} \int_{\frac{\delta^2}{2}}^{\delta} \sqrt{\log \mathcal{N}(t; \mathcal{F}^*(x_1^n) \cap \mathbb{B}_n(\delta), \|\cdot\|_n)} dt \leq \frac{\delta^2}{4\sigma}$

satisfies the critical inequality.

Proof via chaining for localized Gaussian complexity for a $\frac{\delta^2}{4\sigma}$ cover

$$\widetilde{\mathcal{G}}_n(\mathcal{F}^{\star};\delta) \leq \frac{16}{\sqrt{n}} \int_{\frac{\delta^2}{4\sigma}}^{\delta} \sqrt{\log \mathcal{N}(t;\mathcal{F}^{\star}(x_1^n) \cap \mathbb{B}_n(\delta), \|\cdot\|_n)} dt + \frac{\delta^2}{4\sigma}$$

(skipped in class)

11 / 25

Application 2: General functions via Dudley's integral

1. \mathcal{F}_L : Lipschitz functions on [0,1] and f(0) = 0 has $\log \mathcal{N}(\epsilon) \le O(\frac{L}{\epsilon})$

$$\frac{1}{\sqrt{n}}\int_0^{\delta} \sqrt{\log \mathcal{N}(t; \mathcal{F}_L(x_1^n), \|\cdot\|_n)} \mathrm{d}t \le \frac{1}{\sqrt{n}}\int_0^{\delta} \left(\frac{L}{t}\right)^{\frac{1}{2}} \mathrm{d}t \le \sqrt{\frac{L\delta}{n}} \le \frac{\delta^2}{4\sigma^2}$$

o Rearranging terms yields $\|\widehat{f} - f^{\star}\|_{n}^{2} \leq \delta_{n}(\mathcal{F}_{L})^{2} = O(\frac{L\sigma^{2}}{n})^{\frac{2}{3}}$

Recall how for Lipschitz functions, the "unlocalized" Dudley bound from last lec. yields $\|\widehat{f} - f^*\|_n^2 \leq O(\frac{1}{n^{1/2}}) \rightarrow \text{slower!}$

2. $\mathcal{F}_{1,c}$: $f \in \mathcal{F}_1$ and convex, has $\log \mathcal{N}(\epsilon) \leq O((\frac{1}{\epsilon})^{\frac{1}{2}})$

$$\frac{1}{\sqrt{n}}\int_0^\delta \sqrt{\log \mathcal{N}(t; \mathcal{F}_{1,c}(x_1^n), \|\cdot\|_n)} \mathrm{d}t \le \frac{1}{\sqrt{n}}\int_0^\delta \left(\frac{1}{t}\right)^{\frac{1}{4}} \mathrm{d}t \le \frac{\delta^{3/4}}{\sqrt{n}} \le \frac{\delta^2}{4\sigma^2}$$

 \rightarrow Rearranging terms yields $\delta_n(\mathcal{F}_{1,c})^2 = O((\frac{\sigma^2}{n})^{\frac{4}{5}})$

Dudley's integral in localized vs. "global" form

Comparison of how $\delta_n(\mathcal{F})$ vs. $\mathcal{R}_n(\mathcal{F})$ reflect function size differently, though in both cases we use Dudley:

- $\delta_n(\mathcal{F})$: Critical quantity reflects difference in metric entropy (size)
- *R_n(F)* via Dudley: If integrals ^D₀ √log *N*(*t*; *F*(*x*ⁿ₁), || · ||_n)d*t* are bounded, then best is to use that and R.C. gets ¹/_{√n} rate. (check) → For both integrals are bounded, Rademacher complexity has ¹/_{√n} → does not reflect size difference compared to δ_n(*F*)!
- Reason: localized complexity by definition is smaller than global complexity because of extra restriction on ||Â||_n norm:

$$\widetilde{\mathcal{G}}_n(\mathcal{F}^{\star};\delta_n) = \mathbb{E} \sup_{\|\hat{\Delta}\|_n \leq \delta_n, \hat{\Delta} \in \mathcal{F}^{\star}} \frac{1}{n} \sum_{i=1}^n w_i \hat{\Delta}(x_i)$$

where \mathcal{F}^{\star} is "morally as large as $\mathcal{F}^{\prime\prime}$

Non-parametric regression for kernel spaces \mathcal{F}

- Motivation 1: Non-parametric regression specific function spaces \mathcal{F} for which we can actually find global minimizer \hat{f} ?
- Motivation 2: Intro to ML course: *implementable* transition from linear to featurized regression via kernel trick
- Motivation 3: From research: one standard way to think about NN is that it's just doing kernel regression in an RKHS. Actually, convolutional neural tangent kernels (based on NN) can predict CIFAR10 with ~90% test accuracy

Reproducing Kernel Hilbert spaces (RKHS) are nice (in low dimensions) because we have good analysis tools to get bounds (can even use to approximate neural networks)

Caveats/limits: "fail" for high-dimensional data (ask us if interested), only hold for close to initialization for neural networks

Plan for now

- RKHS primer:
 - Definition
 - RKHS via kernels
 - Representer theorem
- From function space to RKHS (Examples)
- Next time: RKHS as an example for non-parametric prediction error bounds

Reproducing Kernel Hilbert spaces

For generic (say e.g. Lipschitz, or non-decreasing) function spaces its super complicated to search in since infinite dimensional

 \rightarrow RKHS have nice reproducing property that enables efficient search since one can write solution easily in closed form with matrix vectors

Recall: Hilbert space \mathcal{F} with $f : \mathcal{X} \to \mathbb{R}$ is a vector space with

- a valid inner product $\langle \cdot, \cdot \rangle_{\mathcal{F}}$ that is symmetric, additive
- $\langle f, f \rangle_{\mathcal{F}} \geq 0$ for all f, equality iff f = 0

Definition (Reproducing kernel Hilbert space - MW Def 12.12.)

A Hilbert space with $f : \mathcal{X} \to \mathbb{R}$ with evaluation functional that is bounded and linear, i.e. for all $x \in \mathcal{X}$ there exists $L_x : \mathcal{F} \to \mathbb{R}$ with $L_x(f) = f(x)$ and $|L_x(f)| \le M_x ||f||_{\mathcal{F}}$ for all $f \in \mathcal{F}$ for some $M_x < \infty$

 \rightarrow can (i) design RKHS via a kernel directly, or (ii) take Hilbert space satisfying abstract definition in last slide and find kernel "in hindsight"

(i) RKHS induced by kernels (recap)

Definition (Reminder - psd kernels)

A bivariate function $\mathcal{K} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a valid kernel iff \mathcal{K} is symmetric and psd, i.e. for $x_1, \ldots x_n$, kernel matrix $K \in \mathbb{R}^{n \times n}$ with $K_{ij} := \mathcal{K}(x_i, x_j)$ is psd

Examples for kernels:

- inner product kernels such as polynomial kernels, but also NTK
- RBF kernels such as α -exponential kernels $e^{-\frac{\|x-y\|_2^{\alpha}}{\tau}}$ with bandwidth parameter τ (Gaussian $\alpha = 2$, Laplacian $\alpha = 1$)

Theorem (RKHS induced by kernel - MW Thm 12.11.)

Given any psd kernel function $\mathcal{K} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, there is a unique Hilbert space $\mathcal{F}_{\mathcal{K}}$ in which \mathcal{K} is reproducing, i.e. for all $x \in \mathcal{X}$, $f(x) = \langle f, \mathcal{K}(\cdot, x) \rangle_{\mathcal{F}}$ for all $f \in \mathcal{F}$ and $\mathcal{K}(\cdot, x) \in \mathcal{F}$. We call it the (reproducing kernel) Hilbert space induced by (or associated with) \mathcal{K} .

17 / 25

(i) RKHS "induced" via kernel

Given $\mathcal{K},$ how may the induced RKHS $\mathcal{F}_{\mathcal{K}}$ look like?

• The idea: First define the following set of functions

$$\mathcal{F}_{\mathsf{pre}} = \{\sum_{i=1}^{N} \alpha_i \mathcal{K}(\cdot, x_i) : N \in \mathbb{N}, \alpha \in \mathbb{R}^N, x_1, \dots, x_N \in \mathcal{X}\} \text{ and}$$

defining inner product for $f = \sum_{i=1}^{\ell} \alpha_i \mathcal{K}(\cdot, x_i)$ and $g = \sum_{j=1}^{m} \beta_j \mathcal{K}(\cdot, \tilde{x}_i)$
 $\langle f, g \rangle_{\mathcal{F}_{\mathsf{pre}}} = \sum_{i=1}^{\ell} \sum_{j=1}^{m} \alpha_i \beta_j \mathcal{K}(x_i, \tilde{x}_j)$

- We call $\mathcal{F}_{\mathcal{K}}$ its completion, that is the space including limit objects of all Cauchy sequences in \mathcal{F}_{pre} (sometimes omitting the subscript)
- \mathcal{K} satisfies the following *reproducing property* in $\mathcal{F}_{\mathcal{K}}$ since $\langle \mathcal{K}(x_i, \cdot), \mathcal{K}(x_j, \cdot) \rangle_{\mathcal{F}_{\mathcal{K}}} = \mathcal{K}(x_i, x_j) \rightarrow \text{for any } f = \sum_{l=1}^{m} \beta_l \mathcal{K}(x_l, \cdot)$ $f(x) = \sum_{l=1}^{m} \beta_l \langle \mathcal{K}(x_l, \cdot), \mathcal{K}(x, \cdot) \rangle_{\mathcal{F}_{\mathcal{K}}} = \langle \sum_{l=1}^{m} \beta_l \mathcal{K}(x_l, \cdot), \mathcal{K}(x, \cdot) \rangle_{\mathcal{F}_{\mathcal{K}}} = \langle f, \mathcal{K}(x, \cdot) \rangle_{\mathcal{F}_{\mathcal{K}}}$

Rewriting the (penalized) empirical risk for RKHS

Given the corresponding kernel of an RKHS, we can easily find (the or a, dependent on $\lambda \ge 0$) minimizer \hat{f} for kernel (ridge) regression by searching only in a subset \mathcal{F}_S .

Proposition (Representer Theorem - MW Prop. 12.33.)

A global empirical risk minimizer in $\mathcal{F}_{\mathcal{K}}$ for any loss is in $\mathcal{F}_{S} := span\{\mathcal{K}(x_{1}, \cdot), \dots, \mathcal{K}(x_{n}, \cdot)\}$. Further the minimizer of empirical risk (with any loss) with an additive RKHS norm penalty lies in \mathcal{F}_{S} .

Hence, we rewrite $f(x) = \sum_{i=1}^{n} \alpha_i \mathcal{K}(x_i, x)$ for some $\alpha \in \mathbb{R}^n$ and search over \mathbb{R}^n instead!

$$\begin{split} \min_{f \in \mathcal{F}_{\mathcal{K}}} \frac{1}{2n} \|y - f(x_1^n)\|_2^2 + \lambda \|f\|_{\mathcal{F}_{\mathcal{K}}}^2 &= \min_{f \in \mathcal{F}_S} \frac{1}{2n} \|y - f(x_1^n)\|_2^2 + \lambda \|f\|_{\mathcal{F}_{\mathcal{K}}}^2 \\ &= \min_{\alpha \in \mathbb{R}^n} \frac{1}{2n} \|y - K\alpha\|_2^2 + \lambda \alpha^\top K\alpha \end{split}$$

Neighbor-Q: How about when $\lambda = 0$, does the minimizer still lie in \mathcal{F}_S ? Isn't this a parametric problem again with parameters α ?

Proof of Representer Theorem for RKHS (skipped)

- We can write $f \in \mathcal{F}_{\mathcal{K}}$ using the orthogonal decomposition of $\mathcal{F}_{\mathcal{K}} = \mathcal{F}_{S} \bigoplus \mathcal{F}_{S^{\perp}}$, i.e. $f = f_{S} + f_{S^{\perp}}$ with $f_{S} \in \mathcal{F}_{S}$ etc.
- By the reproducing property and orthogonality between $\mathcal{F}_S, \mathcal{F}_{S^{\perp}}$, we have $f(x_i) = \langle f_S + f_{S^{\perp}}, \mathcal{K}(x_i, \cdot) \rangle_{\mathcal{F}_{\mathcal{K}}} = \langle f_S, \mathcal{K}(x_i, \cdot) \rangle_{\mathcal{F}_{\mathcal{K}}}$ so that

$$\min_{f_{S}+f_{S^{\perp}}\in\mathcal{F}_{\mathcal{K}}}\frac{1}{n}\sum_{i=1}^{n}\ell(y_{i},(f_{S}+f_{S^{\perp}})(x_{i})\|_{2}^{2}+\lambda\|f_{S}+f_{S^{\perp}}\|_{\mathcal{F}_{\mathcal{K}}}^{2}$$
$$\geq\min_{f_{S}\in\mathcal{F}_{S}}\frac{1}{n}\sum_{i=1}^{n}\ell(y_{i},f_{S}(x_{i}))+\lambda\|f_{S}\|_{\mathcal{F}_{\mathcal{K}}}^{2}$$

because $||f_S||_{\mathcal{F}_{\mathcal{K}}} < ||f_S + f_{S^{\perp}}||_{\mathcal{F}_{\mathcal{K}}}$ and with equality only if $\lambda = 0$ Reproducing property in RKHS: $\langle \mathcal{K}_x(\cdot), f \rangle_{\mathcal{F}} = f(x)$ for all $f \in \mathcal{F}$ \rightarrow convergence in \mathcal{F} pointwise convergence \rightarrow reduces to *n*-dim regression problem

ii) From function class (RKHS) to kernel

Theorem (Existence of kernel, MW Thm 12.13)

Given an RKHS \mathcal{F} , there is a unique psd kernel $\mathcal{K}_{\mathcal{F}}$ that satisfies the reproducing property

Proof (skipped during class):

- By the Riesz representation theorem there exists a unique R_x with $L_x(f) = \langle R_x, f \rangle_F$
- The corresponding kernel $\mathcal{K}_{\mathcal{F}} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ of \mathcal{F} reads $\mathcal{K}_{\mathcal{F}}(x, y) = \langle R_x, R_y \rangle = R_x(y)$ and is psd, symmetric
- $\mathcal{F}_{\mathcal{K}}$ also has bounded evaluation functionals where $M_x = \sqrt{\mathcal{K}(x,x)}$ via Cauchy Schwarz
- *F_K* is the only Hilbert space in which *K* satisfies the reproducing property ⟨*K_x*(·), *f*⟩_{*F*} = *f*(*x*) for all *f* ∈ *F* (MW Thm 12.11)

21 / 25

ii) From function class (RKHS) to kernel: Examples 1. Is $\mathcal{F}_{lin} = \{f : f(x) = \langle w, x \rangle, w \in \mathbb{R}^d\}$ an RKHS?

- Propose $\mathcal{K}(x, y) = \langle x, z \rangle$ as a reproducing kernel
- Following discussion about \mathcal{F}_{pre} we define for $f = \langle w_f, \cdot, \rangle$ and $g = \langle w_g, \cdot \rangle$ the inner product $\langle f, g \rangle = w_f^\top w_g$
- By definition the \mathcal{K} then satisfies the reproducing property: $\langle f(\cdot), \langle \cdot, z \rangle \rangle = w_f^\top z = f(z)$

2. Is $\mathcal{L}^2([0,1])$ an RKHS?

• Does not converge point-wise, necessary for all RKHS: that is if $f_n \rightarrow f$ in the Hilbert norm, then it also does for every x by boundedness of evaluation functional

- 3. Some restrictions on $\mathcal{L}^2([0,1])$ can fix that: Sobolev space on [0,1] $\mathcal{W}_2^1([0,1]) = \{f : [0,1] \to \mathbb{R} \mid f(0) = 0, f' \in \mathcal{L}^2([0,1])\}$ where derivative exists almost everywhere
 - IP $\langle f,g\rangle = \int_0^1 f'(x)g'(z)dz$ (interpretable)
 - Sobolev kernel: $\mathcal{K}(x, y) = \min\{x, y\}$
 - Checking it's reproducing: $\langle f(\cdot), \min\{\cdot, z\} \rangle = \int_0^1 f'(x) \mathbb{1}_{x \le z} dx = \int_0^z f'(x) dx = f(z)$

• can extend to higher order derivatives / smoothness (HW 3)

References

Reproducing Kernel Hilbert spaces:

- MW Chapter 12
- SC Chapter 4

Non-parametric regression:

MW Chapter 13

Recap: kernel trick (skipped in class)

The following two slides are for reference, as a recap of kernel trick:

Feature maps are motivated by search in nonlinear function spaces

- Instead of linear function $w^{\top}x$ with $w \in \mathbb{R}^d$, we want $w^{\top}\phi(x)$ with $w \in \mathbb{R}^p$ where ϕ is feature vector with p elements $\phi_j : X \to \mathbb{R}$
- In fact this includes feature maps that satisfy $\phi : X \to \ell_2(\mathbb{N})$ where ℓ_2 is the space of square summable sequences
- Define $\mathcal{F} = \{f : X \to \mathbb{R} : f(x) = \langle w, \phi(x) \rangle_{\mathcal{H}_0} \text{ with } w \in \ell_2(\mathbb{N})\}$ and consider loss l((x, y); f) = l(f(x), y)

Lemma (dependence only on inner products)

There exists a global empirical risk minimizer $\widehat{f} = \min_{f \in \mathcal{F}} \sum_{i=1}^{n} l(y_i, f(x_i))$ such that for any test sample $x \in X$, $\widehat{f}(x)$ only depends on x, x_i via inner products $\langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}_0}$ and $\langle \phi(x_i), \phi(x) \rangle_{\mathcal{H}_0}$

Recap: Proof of Lemma (skipped in class)

Define $S = \text{span}\{\phi(x_1), \ldots, \phi(x_n)\}$

- Note that because f(x_i) = w^Tφ(x_i), the value of the empirical risk only depends on w_S := ∏_S w, we can limit search space to w ∈ S. This is because you can decompose w = w_S + w_{S[⊥]} with S[⊥] the orthogonal complement of S and hence w^T_{S[⊥]}φ(x_i) = 0 for all i
- 2. To search in $\mathcal{F}_S = \{f : f(x) = \langle w, \phi(x) \rangle_{\mathcal{H}_0} w \in S\}$ we can parameterize $w = \sum_{i=1}^n \alpha_i \phi(x_i)$ and hence $f(x_j) = \sum_{i=1}^n \alpha_i \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}_0}$ and
- 3. The ERM \hat{f} can then be obtained by minimizing over α obtaining $\hat{\alpha}$ which depends on training points x_i only via $\langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}_0}$
- 4. Observing that $\hat{f}(x) = \sum_{i=1}^{n} \hat{\alpha}_i \langle \phi(x_i), \phi(x) \rangle_{\mathcal{H}_0}$ the proof is complete

25	1	25
20	/	20