
Lecture 8: Non-parametric regression
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Announcements
• HW 1 solutions are up, grades released next week
• Project proposals due end of today
• Lecture slides for this week and Friday will be updated by end of
this week - apologies

Plan for today
• Non-parametric prediction error bound

• Intuition for critical radius
• Examples: sparse linear regression, Lipschitz

• Example non-parametric function space: Reproducing kernel Hilbert
spaces (RKHS)
• Recap of kernels and examples for RKHS
• Friday: prediction error bound for RKHS
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Recap: (Non-)parametric regression setting

• Square loss and constrained regression
• Fixed design, i.e. only care about prediction on training inputs
x1, . . . , xn

• Gaussian observation noise, i.e. W = Y − f ?(X ) ∈ N (0, σ2)
• Today, analyze minimizer of the square loss
f̂ = arg minf ∈F Rn(f ) := 1

n
∑n

i=1(yi − f (xi ))2

(and later also with penalty
f̂ = arg minf ∈F Rn(f ) := 1

n
∑n

i=1(yi − f (xi ))2 + λ‖f ‖F )
• Evaluation: Prediction error of some f on fixed design points

‖f − f ?‖2n = 1
n

n∑

i=1
(f (xi )− f ?(xi ))2 = EYRn(f )−σ2 = R(f )−R(f ?)
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Recap: Motivation for localized Gaussian complexity
• Define ∆̂ = f̂ − f ? for simplicity, and the space
F? = {f − f ? : f ∈ F}

• Furthermore we assume that F? is star-shaped, i.e. for any f ∈ F?,
we have αf ∈ F? for all α ∈ [0, 1]

1. Space to control is smaller than all of F? since either
(i) ‖∆̂‖n ≤ δn or
(ii) if ‖∆̂‖n ≥ δn then still ‖∆̂‖2

n ≤ 2σ
n
∑n

i=1 wi ∆̂(xi ) by basic inequality

2. Further for case (ii), if can show w.h.p.

2σ
n

n∑

i=1
wi ∆̂(xi ) ≤ 4‖∆̂‖nδn (1)

for all ‖∆̂‖n ≥ δn then we can plug that into RHS of (ii) to obtain
‖∆̂‖n ≤ 4δn w.h.p.
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For which δn 2. is true
a. By star-shaped assumption on F? step (i) holds in the following:

⇐⇒ sup
‖∆̂‖n≥δn,∆̂∈F?

σ

n

n∑

i=1
wi

∆̂(xi )
‖∆̂‖n

= sup
‖∆̂‖n≥δn,∆̂∈F?

σ

n

n∑

i=1
wi

∆̂(xi )δn

‖∆̂‖n︸ ︷︷ ︸
=:∆̃

1
δn

(i)= sup
‖∆̃‖n=δn,∆̃∈F?

σ

n

n∑

i=1
wi

∆̃(xi )
δn

≤ sup
‖∆̃‖n≤δn,∆̃∈F?

σ

n

n∑

i=1
wi

∆̃(xi )
δn

b. eq. 1 follows from h.p. bound of this (localized) quantity

sup
‖∆̂‖n≤δn
∆̃∈F?

σ

n

n∑

i=1
wi ∆̂(xi ) ≤ E sup

‖∆̂‖n≤δn
∆̃∈F?

σ

n

n∑

i=1
wi ∆̂(xi ) + δ2

n

and if the expectation is bounded, i.e.

E sup
‖∆̂‖n≤δn
∆̂∈F?

σ

n

n∑

i=1
wi ∆̂(xi ) ≤ δ2

n
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Localized Gaussian complexity
Definition (Localized (empirical) Gaussian complexity)
The localized Gaussian complexity around f ? of scale δ is

σG̃n(F?; δn) := σG̃n(F?(xn
1 )∩Bn(δn)) = E sup

‖∆̂‖n≤δn,∆̂∈F?

σ

n

n∑

i=1
wi ∆̂(xi )

• Hence: Given concentration b., eq. 1, i.e. ‖∆̂‖n ≤ 4δn holds for all
δn that satisfy the implicit inequality σG̃n(F?; δn) ≤ δ2

n

• You can rewrite and say: ‖∆̂‖n ≤ 4
√
tδn holds for any t ≥ 1 w.h.p.

if δn is the smallest δ > 0 such that σG̃n(F?; δ) ≤ δ2

• All that’s left to do: see that δn exists and show b.
Lemma (Critical radius (MW 13.6.))
For any star-shaped F , it holds that G̃n(F ;δ)

δ is non-increasing and the
critical inequality G̃n(F ; δ)

δ
≤ δ

σ

has a smallest solution δn > 0 that we call the critical quantity/radius.
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Illustration of localized Gaussian complexity

Figure 1: Blue solid: f (δ) = G̃n(F ;δ)
δ , Green dashed: f (δ) = δ
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Prediction error bound for constrained 2-loss minimizer
Theorem (Prediction error bound, MW Thm 13.5.)
If F? is star-shaped, we have for the square loss minimizer f̂ for any
t ≥ 1

P(‖f̂ − f ?‖2n ≥ 16tδ2
n) ≤ e−

ntδ2
n

2σ2

• Plugging in t = O(log 1
δ ) and by δ2

n ≥ O( 1
n ) (check yourself) yields

that probability at least 1− δ we have ‖f̂ − f ?‖2n ≤ O(log(1
δ )δ2

n)

• As f ? is unknown, can replace G̃n(F?; δ) by G̃n(F − F ; δ) (or its
star hull MW Eq (13.21.)) to define critical radius δn

• Note: the notation for t is different from MW Thm 13.5.
• Proof follows by proof of (modified) b. and noting that
gn(w) = sup

‖∆̂‖n≤
√

tδn

σ
n

n∑
i=1

wi ∆̂(xi ) is a Lipschitz function of

Gaussians and using MW Thm 2.26 (next slide, skipped in class)
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Proof of error bound: tail bounding gn(w) (skipped)
We now establish the tail bound for gn(w)

1. gn(w) as a function of wi ∼ N (0, 1) is σ
√

tδn√n -Lipschitz so that

P(gn(w) ≥ Egn(w) + s) ≤ e−
ns2

2σ2tδ2n (see Lecture 2 / MW Thm 2.26)

2. Furthermore Egn(w) = G̃n(F ;
√
tδn)

3. The map δ → G̃n(F ;δ)
δ is non-increasing by MW Lemma 13.6.

4. By 2. and definition of δn we have σ G̃n(F ;
√

tδn)√
tδn

≤ σ G̃n(F ;δn)
δn

≤ δn

and setting s = tδ2
n, we obtain

P( sup
‖∆̂‖n≤

√
tδn

σ

n

n∑

i=1
wi ∆̂(xi ) ≥ 2tδ2

n)

≤ P( sup
‖∆̂‖n≤

√
tδn

σ

n

n∑

i=1
wi ∆̂(xi ) ≥ σG̃n(F ;

√
tδn) + tδ2

n) ≤ e−
ntδ2

n
2σ2
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Application 1: `0-constrained sparse linear regression
Let’s say we’re trying to find the best sparse linear fit

f̂ = arg min
f ∈Flin,s

‖y − Xθ‖2n

with Flin,s = {f (·) = 〈θ, x〉 : ‖θ‖0 ≤ s}

• In HW 2 we prove G̃n(Flin,s ; δ) ≤ O(δ
√

s log(ed/s)
n ) when

λmax(X>S XS
n ) bounded for all subsets S of size s

• Hence the critical radius has to satisfy G̃n(Flin,s ;δ)
δ =

√
s log(ed/s)

n ≤ δn
σ

• Thus using the theorem, plugging in δ2
n at equality, we can obtain

with probability at least 1− δ

‖f̂ − f ?‖2n ≤ O
(
s log(ed/s) log 1/δ

n

)

Also see MW Example 13.16.
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General functions via Dudley’s integral
Corollary (Dudley’s integral & critical quantity - MW Cor. 13.7.)
If F is star-shaped, any δ ∈ [0, σ] such that

16√n

δ∫

δ2
4σ

√
logN (t;F?(xn

1 ) ∩ Bn(δ), ‖ · ‖n)dt ≤ δ2

4σ

satisfies the critical inequality.

Proof via chaining for localized Gaussian complexity for a δ2
4σ cover

G̃n(F?; δ) ≤ 16√n

δ∫

δ2
4σ

√
logN (t;F?(xn

1 ) ∩ Bn(δ), ‖ · ‖n)dt + δ2

4σ

(skipped in class)
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Application 2: General functions via Dudley’s integral
1. FL: Lipschitz functions on [0, 1] and f (0) = 0 has logN (ε) ≤ O(L

ε )

1√n

∫ δ

0

√
logN (t;FL(xn

1 ), ‖ · ‖n)dt ≤ 1√n

∫ δ

0

(
L
t

) 1
2

dt ≤
√

Lδ
n

(!)
≤ δ2

4σ2

→ Rearranging terms yields ‖f̂ − f ?‖2n ≤ δn(FL)2 = O(Lσ2
n ) 2

3

Recall how for Lipschitz functions, the “unlocalized” Dudley bound
from last lec. yields ‖f̂ − f ?‖2n ≤ O( 1

n1/2 ) → slower!

2. F1,c : f ∈ F1 and convex, has logN (ε) ≤ O((1
ε ) 1

2 )

1√n

∫ δ

0

√
logN (t;F1,c(xn

1 ), ‖ · ‖n)dt ≤ 1√n

∫ δ

0

(1
t

) 1
4
dt ≤ δ3/4

√n
(!)
≤ δ2

4σ2

→ Rearranging terms yields δn(F1,c)2 = O((σ2
n ) 4

5 )
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Dudley’s integral in localized vs. “global” form
Comparison of how δn(F) vs. Rn(F) reflect function size differently,
though in both cases we use Dudley:
• δn(F): Critical quantity reflects difference in metric entropy (size)

• Rn(F) via Dudley: If integrals
D∫
0

√
logN (t;F(xn

1 ), ‖ · ‖n)dt are

bounded, then best is to use that and R.C. gets 1√n rate. (check)
→ For both integrals are bounded, Rademacher complexity has 1√n
→ does not reflect size difference compared to δn(F)!
• Reason: localized complexity by definition is smaller than global
complexity because of extra restriction on ‖∆̂‖n norm:

G̃n(F?; δn) = E sup
‖∆̂‖n≤δn,∆̂∈F?

1
n

n∑

i=1
wi ∆̂(xi )

where F? is “morally as large as F”
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Non-parametric regression for kernel spaces F
• Motivation 1: Non-parametric regression specific function spaces F
for which we can actually find global minimizer f̂ ?
• Motivation 2: Intro to ML course: implementable transition from
linear to featurized regression via kernel trick
• Motivation 3: From research: one standard way to think about NN
is that it’s just doing kernel regression in an RKHS. Actually,
convolutional neural tangent kernels (based on NN) can predict
CIFAR10 with ~90% test accuracy

Reproducing Kernel Hilbert spaces (RKHS) are nice (in low
dimensions) because we have good analysis tools to get bounds (can
even use to approximate neural networks)

Caveats/limits: “fail” for high-dimensional data (ask us if interested),
only hold for close to initialization for neural networks
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Plan for now

• RKHS primer:
• Definition
• RKHS via kernels
• Representer theorem

• From function space to RKHS (Examples)
• Next time: RKHS as an example for non-parametric prediction error
bounds
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Reproducing Kernel Hilbert spaces
For generic (say e.g. Lipschitz, or non-decreasing) function spaces
its super complicated to search in since infinite dimensional

→ RKHS have nice reproducing property that enables efficient search
since one can write solution easily in closed form with matrix vectors

Recall: Hilbert space F with f : X → R is a vector space with
• a valid inner product 〈·, ·〉F that is symmetric, additive
• 〈f , f 〉F ≥ 0 for all f , equality iff f = 0

Definition (Reproducing kernel Hilbert space - MW Def 12.12.)
A Hilbert space with f : X → R with evaluation functional that is
bounded and linear, i.e. for all x ∈ X there exists Lx : F → R with
Lx (f ) = f (x) and |Lx (f )| ≤ Mx‖f ‖F for all f ∈ F for some Mx <∞

→ can (i) design RKHS via a kernel directly, or (ii) take Hilbert space
satisfying abstract definition in last slide and find kernel “in hindsight”
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(i) RKHS induced by kernels (recap)
Definition (Reminder - psd kernels)
A bivariate function K : X × X → R is a valid kernel iff K is
symmetric and psd, i.e. for x1, . . . xn, kernel matrix K ∈ Rn×n with
Kij := K(xi , xj) is psd

Examples for kernels:
• inner product kernels such as polynomial kernels, but also NTK
• RBF kernels such as α-exponential kernels e−

‖x−y‖α2
τ with bandwidth

parameter τ (Gaussian α = 2, Laplacian α = 1)

Theorem (RKHS induced by kernel - MW Thm 12.11.)
Given any psd kernel function K : X × X → R, there is a unique
Hilbert space FK in which K is reproducing, i.e. for all x ∈ X ,
f (x) = 〈f ,K(·, x)〉F for all f ∈ F and K(·, x) ∈ F . We call it the
(reproducing kernel) Hilbert space induced by (or associated with) K.
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(i) RKHS “induced” via kernel
Given K, how may the induced RKHS FK look like?
• The idea: First define the following set of functions

Fpre = {
N∑

i=1
αiK(·, xi ) : N ∈ N, α ∈ RN , x1, . . . , xN ∈ X} and

defining inner product for f = ∑̀
i=1

αiK(·, xi ) and g =
m∑

j=1
βjK(·, x̃i )

〈f , g〉Fpre =
∑̀

i=1

m∑

j=1
αiβjK(xi , x̃j)

• We call FK its completion, that is the space including limit objects
of all Cauchy sequences in Fpre (sometimes omitting the subscript)
• K satisfies the following reproducing property in FK since
〈K(xi , ·),K(xj , ·)〉FK = K(xi , xj) → for any f = ∑m

l=1 βlK(xl , ·)

f (x) =
m∑

l=1
βl〈K(xl , ·),K(x , ·)〉FK = 〈

m∑

l=1
βlK(xl , ·),K(x , ·)〉FK = 〈f ,K(x , ·)〉FK
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Rewriting the (penalized) empirical risk for RKHS
Given the corresponding kernel of an RKHS, we can easily find (the or
a, dependent on λ ≥ 0) minimizer f̂ for kernel (ridge) regression by
searching only in a subset FS .

Proposition (Representer Theorem - MW Prop. 12.33.)
A global empirical risk minimizer in FK for any loss is in
FS := span{K(x1, ·), . . . ,K(xn, ·)}. Further the minimizer of
empirical risk (with any loss) with an additive RKHS norm penalty lies
in FS .

Hence, we rewrite f (x) = ∑n
i=1 αiK(xi , x) for some α ∈ Rn and

search over Rn instead!

min
f ∈FK

1
2n‖y − f (xn

1 )‖22 + λ‖f ‖2FK = min
f ∈FS

1
2n‖y − f (xn

1 )‖22 + λ‖f ‖2FK

= min
α∈Rn

1
2n‖y − Kα‖22 + λα>Kα

Neighbor-Q: How about when λ = 0, does the minimizer still lie in
FS? Isn’t this a parametric problem again with parameters α? 19 / 25

Proof of Representer Theorem for RKHS (skipped)

• We can write f ∈ FK using the orthogonal decomposition of
FK = FS

⊕FS⊥ , i.e. f = fS + fS⊥ with fS ∈ FS etc.
• By the reproducing property and orthogonality between FS ,FS⊥ ,
we have f (xi ) = 〈fS + fS⊥ ,K(xi , ·)〉FK = 〈fS ,K(xi , ·)〉FK so that

min
fS +fS⊥∈FK

1
n

n∑

i=1
`(yi , (fS + fS⊥)(xi )‖22 + λ‖fS + fS⊥‖2FK

≥ min
fS∈FS

1
n

n∑

i=1
`(yi , fS(xi )) + λ‖fS‖2FK

because ‖fS‖FK < ‖fS + fS⊥‖FK and with equality only if λ = 0 �

Reproducing property in RKHS: 〈Kx (·), f 〉F = f (x) for all f ∈ F
→ convergence in F pointwise convergence
→ reduces to n-dim regression problem
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ii) From function class (RKHS) to kernel

Theorem (Existence of kernel, MW Thm 12.13)
Given an RKHS F , there is a unique psd kernel KF that satisfies the
reproducing property

Proof (skipped during class):
• By the Riesz representation theorem there exists a unique Rx with
Lx (f ) = 〈Rx , f 〉F
• The corresponding kernel KF : X × X → R of F reads
KF (x , y) = 〈Rx ,Ry 〉 = Rx (y) and is psd, symmetric
• FK also has bounded evaluation functionals where Mx =

√
K(x , x)

via Cauchy Schwarz
• FK is the only Hilbert space in which K satisfies the reproducing
property 〈Kx (·), f 〉F = f (x) for all f ∈ F (MW Thm 12.11)
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ii) From function class (RKHS) to kernel: Examples
1. Is Flin = {f : f (x) = 〈w , x〉,w ∈ Rd} an RKHS?

• Propose K(x , y) = 〈x , z〉 as a reproducing kernel
• Following discussion about Fpre we define for f = 〈wf , ·, 〉 and

g = 〈wg , ·〉 the inner product 〈f , g〉 = w>f wg
• By definition the K then satisfies the reproducing property:
〈f (·), 〈·, z〉〉 = w>f z = f (z)

2. Is L2([0, 1]) an RKHS?
• Does not converge point-wise, necessary for all RKHS: that is if

fn → f in the Hilbert norm, then it also does for every x by
boundedness of evaluation functional

3. Some restrictions on L2([0, 1]) can fix that: Sobolev space on [0, 1]
W1

2 ([0, 1]) = {f : [0, 1]→ R | f (0) = 0, f ′ ∈ L2([0, 1])} where
derivative exists almost everywhere
• IP 〈f , g〉 =

∫ 1
0 f ′(x)g ′(z)dz (interpretable)

• Sobolev kernel: K(x , y) = min{x , y}
• Checking it’s reproducing:
〈f (·),min{·, z}〉 =

∫ 1
0 f ′(x)1x≤zdx =

∫ z
0 f ′(x)dx = f (z)

• can extend to higher order derivatives / smoothness (HW 3)

HW 2 for different order Sobolev
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References

Reproducing Kernel Hilbert spaces:
• MW Chapter 12
• SC Chapter 4

Non-parametric regression:
• MW Chapter 13
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Recap: kernel trick (skipped in class)
The following two slides are for reference, as a recap of kernel trick:

Feature maps are motivated by search in nonlinear function spaces
• Instead of linear function w>x with w ∈ Rd , we want w>φ(x) with
w ∈ Rp where φ is feature vector with p elements φj : X → R

• In fact this includes feature maps that satisfy φ : X → `2(N) where
`2 is the space of square summable sequences
• Define F = {f : X → R : f (x) =

〈
w , φ(x)

〉
H0

with w ∈ `2(N)}
and consider loss l((x , y); f ) = l(f (x), y)

Lemma (dependence only on inner products)
There exists a global empirical risk minimizer
f̂ = minf ∈F

∑n
i=1 l(yi , f (xi )) such that for any test sample x ∈ X,

f̂ (x) only depends on x , xi via inner products
〈
φ(xi ), φ(xj)

〉
H0

and〈
φ(xi ), φ(x)

〉
H0
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Recap: Proof of Lemma (skipped in class)

Define S = span{φ(x1), . . . , φ(xn)}
1. Note that because f (xi ) = w>φ(xi ), the value of the empirical risk

only depends on wS := ∏
S w , we can limit search space to w ∈ S.

This is because you can decompose w = wS + wS⊥ with S⊥ the
orthogonal complement of S and hence w>S⊥φ(xi ) = 0 for all i

2. To search in FS = {f : f (x) =
〈
w , φ(x)

〉
H0

w ∈ S} we can
parameterize w = ∑n

i=1 αiφ(xi ) and hence
f (xj) = ∑n

i=1 αi
〈
φ(xi ), φ(xj)

〉
H0

and

3. The ERM f̂ can then be obtained by minimizing over α obtaining α̂
which depends on training points xi only via

〈
φ(xi ), φ(xj)

〉
H0

4. Observing that f̂ (x) = ∑n
i=1 α̂i〈φ(xi ), φ(x)〉H0 the proof is complete
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