Lecture 8: Non-parametric regression
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Announcements

® HW 1 solutions are up, grades released next week
® Project proposals due end of today

® |ecture slides for this week and Friday will be updated by end of
this week - apologies

Plan for today

® Non-parametric prediction error bound

® |ntuition for critical radius
® Examples: sparse linear regression, Lipschitz

® Example non-parametric function space: Reproducing kernel Hilbert
spaces (RKHS)

® Recap of kernels and examples for RKHS

® Friday: prediction error bound for RKHS
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Recap: (Non-)parametric regression setting

® Square loss and constrained regression

® Fixed design, i.e. only care about prediction on training inputs
X1y.-.49Xn

* Gaussian observation noise, i.e. W = Y — f*(X) € N (0, 0?)

* Today, analyze minimizer of the square loss

f= argminger Ro(f) == - 221 (yi — f(xi))?
(and later also with penalty

f= arg mingcr Ry(f) := . Z: 1(vi — ’C(XI))2 + Allf]l#)

® Evaluation: Prediction error of some f on fixed design points

S ()~ () = By Ro(F) 0% = R(F) — R(F")
i=1

IF =2 =
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Recap: Motivation for localized Gaussian complexity

e Define A =f — f* for simplicity, and the space
={f—f*:feF}

® Furthermore we assume that JF* is star-shaped, i.e. for any f € F*,
we have af € F* for all o € [0, 1]

1. Space to control is smaller than all of F* since either
() 1A], <8, or
(ii) if [|All, > 0, then still A2 < 22577 w;A(x;) by basic inequality

2. Further for case (ii), if can show w.h.p.

2
7“ wil(x;) < 4| A|n65 (1)
i=1

for all ||A]|, > 6, then we can plug that into RHS of (ii) to obtain
IA[l5 < 46, w.h.p.
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For which 9, 2. is true
a. By star-shaped assumption on F* step (i) holds in the following:

. Ax " A(x)d, 1
— sup 2 7% A(XI) = sup 2 Z W, (fl) - 5y
|A]|7>6,,AcF~ i HAHI‘I |A||,>6n,AcF* n- = HA n

|n

—~
~

= sup —ZW, < sup —Z

|A|[n=6n,AcF* N i3 |A|[2<8n,AcF* N7

b. eq. 1 follows from h p. bound of this (localized) quantity
LA
; ; < E — (X 52
sup ZW (xi) sup nZW (x;) + 65,

IAIn<sn 1 I1AIn<6n
AeF* AeF*

and if the expectation is bounded, i.e.

n
o A
E sup — Y wA(x) <6
lAln<sn iz
AeF+
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| ocalized Gaussian complexit

Definition (Localized (empirical) Gaussian complexity)

The localized Gaussian complexity around f* of scale ¢ is

0Gn(F*:6,) = 0Gn(F*(x1)NBA(d,)) = sup  — Z w;A(x;)

||A||n<5n,A€f* =

e Hence: Given concentration b., eq. 1, i.e. ||A||, < 46, holds for all
5 that satisfy the implicit inequality 0G,(F*; 8,) < 62

® You can rewrite and say: ||A||, < 4+/td, holds for any t > 1 w.h.p.
if 8, is the smallest § > 0 such that 6G,(F*; ) < 62

e All that's left to do: see that d, exists and show b.

Lemma (Critical radius (MW 13.6.))
For any star-shaped F, it holds that @ is non-increasing and the
critical inequality . (F:6) ) é

) Y

has a smallest solution §, > 0 that we call the critical quantity/radius. /25




lllustration of localized Gaussian complexity
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Figure 1: Blue solid: f(9) = @, Green dashed: f(§) =46
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Prediction error bound for constrained 2-loss minimizer
Theorem (Prediction error bound, MW Thm 13.5.)

If F* is star-shaped, we have for the square loss minimizer f for any
t>1

2
ntép,

B([7 — 2 > 16¢62) < ¢ 523

J/

* Plugging in t = O(log %) and by 42 > O(%) (check yourself) yields
that probability at least 1 — § we have || — £*|]2 < O(log(3)d2)

* As * is unknown, can replace G,(F*;8) by Gn(F — F; ) (or its
star hull MW Eq (13.21.)) to define critical radius ¢,

® Note: the notation for t is different from MW Thm 13.5.

® Proof follows by proof of (modified) b. and noting that
gn(w)= sup 23 w;A(x;) is a Lipschitz function of
|An<Vts, =1
Gaussians and using MW Thm 2.26 (next slide, skipped in class)
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Proof of error bound: tail bounding g,(w) (skipped)
We now establish the tail bound for g,(w)

1. gn(w) as a function of w; ~ N(0,1) is U\j_‘s" Lipschitz so that
n52

P(gn(w) > Egn(w) +5) < e 2% (see Lecture 2 / MW Thm 2.26)
2. Furthermore Eg,(w) = Gn(F; V16,

Qn(}" J)

3. The map 0 — is non-increasing by MW Lemma 13.6.

4. By 2. and definition of 4, we have 0%‘{5) <o gn(}'5 ) <dn

and setting s = t5,%, we obtain

n

P(  sup gZW,-A(X,-) > 2t42)
I1A[n<v/Es, "
nt52
<P( sup ZW, (xi) = 0Gn(F; Vt6,) + t62) < e 202 [

IAln<vEs, =1
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Application 1: /p-constrained sparse linear regression
Let's say we're trying to find the best sparse linear fit

f = arg min ||y — X9H,27

fEifﬁm,s

with Fiins = {f(:) = (0,x) : ||0lo < s}
® In HW 2 we prove 5,,(}"/,-,15; §) < O(cﬂ/w) when

X X
)\max( g

® Hence the critical radius has to satisfy M =4/ L}fd/s) < ;"

® Thus using the theorem, plugging in 62 at equality, we can obtain
with probability at least 1 — ¢

7R <0 (slog(ed/s) log 1/5>

) bounded for all subsets S of size s

n

Also see MW Example 13.16.

10/25




General functions via Dudley’s integral

Corollary (Dudley's integral & critical quantity - MW Cor. 13.7.)

If Fis star—shaped any 6 € [0, 0] such that
52
\/|ogN (6 F* () NBA(3), | - ln)de < o~
52 ’
4o
satisfies the critical inequality. )
Proof via chaining for localized Gaussian complexity for a % cover

2
wogw Fr ) N Ba(8), [ )t +

gn (F 0) < 4o

\F

40

(skipped in class)
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Application 2: General functions via Dudley’s integral

1. Fy: Lipschitz functions on [0,1] and £(0) = 0 has log N'(¢) < O(%)

1 5 1 o (| % Ly (1) 52
o [ oM T < [ (4 e <2eZ

— Rearranging terms yields ||f — £*||2 < §,(F.)? = O(L;f)%

Recall how for Lipschitz functions, the “unlocalized” Dudley bound
from last lec. yields ||[f — F*||2 < O(#) — slower!

2. Fic: f € F1 and convex, has log NV (e) < O((%)%)

1 5 1 1) 1 % (53/4 ) 52
: n ) < — < <
_\/E/O \/Iog]\/(t, fl,c(X1)7 H H”)dt — \/E/O (t) dt = \/ﬁ — 402

— Rearranging terms yields §,(F1 )% = O(("—nz)g)
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Dudley’s integral in localized vs. “global” form

Comparison of how §,(F) vs. R,(F) reflect function size differently,
though in both cases we use Dudley:

® §,(F): Critical quantity reflects difference in metric entropy (size)

D
® R,(F) via Dudley: If integrals [ \/Iog/\/(t;f(xf), | - [|n)dt are
0

bounded, then best is to use that and R.C. gets % rate. (check)

— For both integrals are bounded, Rademacher complexity has %

— does not reflect size difference compared to §,(F)!

® Reason: localized complexity by definition is smaller than global
complexity because of extra restriction on ||A||, norm:

~ 1< n
Gn(F*0n)=E  sup = wiA(x;)
|A||,<6n,AcF* n-=

where F* is “morally as large as F"
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Non-parametric regression for kernel spaces F

® Motivation 1. Non-parametric regression specific function spaces F
for which we can actually find global minimizer 7

® Motivation 2: Intro to ML course: implementable transition from
linear to featurized regression via kernel trick

® Motivation 3: From research: one standard way to think about NN
is that it's just doing kernel regression in an RKHS. Actually,
convolutional neural tangent kernels (based on NN) can predict
CIFAR10 with ~90% test accuracy

Reproducing Kernel Hilbert spaces (RKHS) are nice (in low
dimensions) because we have good analysis tools to get bounds (can
even use to approximate neural networks)

Caveats/limits: “fail" for high-dimensional data (ask us if interested),
only hold for close to initialization for neural networks
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Plan for now

® RKHS primer:

® Definition
® RKHS via kernels
® Representer theorem

® From function space to RKHS (Examples)

® Next time: RKHS as an example for non-parametric prediction error
bounds
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Reproducing Kernel Hilbert spaces

For generic (say e.g. Lipschitz, or non-decreasing) function spaces
its super complicated to search in since infinite dimensional

— RKHS have nice reproducing property that enables efficient search
since one can write solution easily in closed form with matrix vectors

Recall: Hilbert space F with f : X — R is a vector space with

e avalid inner product (-,-) that is symmetric, additive
o (f,f)r >0 for all f, equality iff f =0

Definition (Reproducing kernel Hilbert space - MW Def 12.12.)

A Hilbert space with f : X — R with evaluation functional that is
bounded and linear, i.e. for all x € X there exists L, : F — R with
L. (f) = f(x) and |Lc(f)| < My||f]|+ for all f € F for some M, < oo

— can (i) design RKHS via a kernel directly, or (ii) take Hilbert space
satisfying abstract definition in last slide and find kernel “in hindsight”
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(i) RKHS induced by kernels (recap)

Definition (Reminder - psd kernels)

A bivariate function K : X x X — R is a valid kernel iff K is
symmetric and psd, i.e. for xi,...x,, kernel matrix K € R™" with
Kij := K(xi, xj) is psd

Examples for kernels:

® inner product kernels such as polynomial kernels, but also NTK
[x—=y 5
® RBF kernels such as a-exponential kernels e~ “ with bandwidth

parameter 7 (Gaussian o = 2, Laplacian a = 1)

Theorem (RKHS induced by kernel - MW Thm 12.11.)

Given any psd kernel function IC : X x X — R, there is a unique
Hilbert space Fi in which K is reproducing, i.e. for all x € X,

f(x) = (f,K(-,x))r forall f € F and K(-,x) € F. We call it the
(reproducing kernel) Hilbert space induced by (or associated with) lC.j
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(i) RKHS “induced” via kernel
Given K, how may the induced RKHS Fi look like?

® The idea: First define the following set of functions
N
pre:{ZalC x,)'NEN aeRN x,... XNEX} and

i=1
defining inner product for f = Z ailC(+, xi) and g = Z BilC(-, %i)

é

<f g Fore — ZZQIBJ’C(XHXJ)

i=1j=1

® We call Fx its completion, that is the space including limit objects
of all Cauchy sequences in Fpre (sometimes omitting the subscript)

® K satisfies the following reproducing property in Fx since
(K(xi, ), K(xj, ) e = IC(XHXJ) — forany f =3, BiK(x, )
m

=3 BilK(x, ), K(x, ) ZB/IC X1, ) K(x, ) e = (F,K(x:)) 7
I=1
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Rewriting the (penalized) empirical risk for RKHS
Given the corresponding kernel of an RKHS, we can easily find (the or
a, dependent on A > 0) minimizer f for kernel (ridge) regression by
searching only in a subset Fs.

Proposition (Representer Theorem - MW Prop. 12.33.)

A global empirical risk minimizer in Fy for any loss is in

Fs = span{K(x1,-),...,K(xn,-)}. Further the minimizer of
empirical risk (with any loss) with an additive RKHS norm penalty lies
in Fs.

- J

Hence, we rewrite f(x) = >_.7_; a;K(x;, x) for some o € R" and

search over R" instead!

1
in 5 —Hy — FOIIE + Al Fll%, = ;2'][) -y = FODIE + AllF]

— = K 'K
= min Hy al3 +Aa' Ka

Neighbor-Q: How about when A\ = 0, does the minimizer still lie in
Fs? Isn't this a parametric problem again with parameters «? 19/25

Proof of Representer Theorem for RKHS (skipped)

® We can write f € Fx using the orthogonal decomposition of
Fi =Fs@ Fsi, ie. f =fs+ for with fs € Fs etc.

® By the reproducing property and orthogonality between Fs, Fs.,
we have f(x;) = (fs + fs., K(xi, ) 7. = (fs,K(xi,-))F. so that

19 f f ] f f
e ,,Dy (fs + fsr )(x) 13+ Allfs + fo 13

> =S Uy, fs(x) + A
min nz vi, fs(xi)) + Allfs|| %,

because ||fs|| 7. < ||fs + fs1||7c and with equality only if A=0 [

Reproducing property in RKHS: (KC. (), f)r = f(x) for all f € F
— convergence in JF pointwise convergence
— reduces to n-dim regression problem
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ii) From function class (RKHS) to kernel

Theorem (Existence of kernel, MW Thm 12.13)

Given an RKHS F, there is a unique psd kernel ICx that satisfies the
reproducing property

Proof (skipped during class):

® By the Riesz representation theorem there exists a unique R, with
Lx(f) = (R, ) F

® The corresponding kernel Cr: X x X — R of F reads
Kr(x,y) = (R«, Ry) = R«(y) and is psd, symmetric

® Fx also has bounded evaluation functionals where M, = /K(x, x)
via Cauchy Schwarz

® Fi is the only Hilbert space in which I satisfies the reproducing
property (KCx(+), f)r = f(x) for all f € F (MW Thm 12.11)

21/25

ii) From function class (RKHS) to kernel: Examples
1. Is Fjin = {f : f(x) = (w,x),w € RY} an RKHS?

® Propose K(x,y) = (x, z) as a reproducing kernel

® Following discussion about Fpe we define for f = (wy,-,) and
g = (wg, ) the inner product (f,g) = w/ w,

® By definition the IC then satisfies the reproducing property:

(F(), (,2)) = wf z = f(2)
2. 1s £2(]0,1]) an RKHS?

® Does not converge point-wise, necessary for all RKHS: that is if
f, — f in the Hilbert norm, then it also does for every x by
boundedness of evaluation functional

3. Some restrictions on £2([0,1]) can fix that: Sobolev space on [0, 1]
Wi([0,1]) = {f : [0,1] = R | £(0) =0, " € £>3([0,1])} where
derivative exists aImost everywhere

IP (f,g) fo f'(x)g’(z)dz (interpretable)

Sobolev kernel: IC(X y) = min{x, y}

Checking it's reproducing:

(F(),min{, 2}) = [5 f'(x)Le<odx = [ F/(x)dx = f(2)

can extend to higher order derivatives / smoothness (HW 3) 2225
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Reproducing Kernel Hilbert spaces:

¢ MW Chapter 12
® SC Chapter 4

Non-parametric regression:

¢ MW Chapter 13
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Recap: kernel trick (skipped in class)
The following two slides are for reference, as a recap of kernel trick:
Feature maps are motivated by search in nonlinear function spaces

® Instead of linear function w'x with w € R?, we want w ' ¢(x) with
w € RP where ¢ is feature vector with p elements ¢; : X — R

® |n fact this includes feature maps that satisfy ¢ : X — ¢»(N) where
/5 is the space of square summable sequences

® Define 7 = {f : X = R: f(x) = (w, #(x)),,, with w € £r(N)}
and consider loss /((x,y); f) = I(f(x), y)

Lemma (dependence only on inner products)

There exists a global empirical risk minimizer

f =minfer S50 1 I(yi, F(x;)) such that for any test sample x € X,
f(x) only depends on x, x; via inner products {$(x;), G(Xj) )9y, and

<¢(Xi)a ¢(X)>'HO
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Recap: Proof of Lemma (skipped in class)

Define S = span{¢(x1), ..., d(xn)}

1. Note that because f(x;) = w' ¢(x;), the value of the empirical risk
only depends on ws := [[s w, we can limit search space to w € S.
This is because you can decompose w = ws + wsi with S+ the
orthogonal complement of S and hence w/, ¢(x;) = 0 for all i

2. To search in Fs = {f : f(x) = (w, #(x)),, w € S} we can
parameterize w = > ; a;o(x;) and hence

f(x;) = >oimg ai (o(xi), (b(Xj)>%o and

3. The ERM f can then be obtained by minimizing over a obtaining &
which depends on training points x; only via (¢(x;), qb(xj)>%0

4. Observing that f(x) = 327, &i{p(x;), ®(x)) 3, the proof is complete
[]
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