
Lecture 9: Kernel ridge regression
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Announcements

• HW 2 out tonight, due 9.11. 23:59
• Proofs skipped in class / exercise for home: You are supposed to

fully understand those steps, also of the exercises in class and in the
homework - the oral exam will primarily test your understanding of
how different proof steps fit together

Plan for today
• Another example of prediction error of square-loss minimizer:
Prediction error bound for ERM of norm-bounded RKHS
• Prediction error bound for regularized regression
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Recap: Non-parametric prediction error bound
Definition (Localized (empirical) Gaussian complexity)
The localized Gaussian complexity around f ? of scale δ is

G̃n(F?; δn) := G̃n(F?(xn
1 ) ∩ Bn(δn)) = E sup

‖∆̂‖n≤δn,∆̂∈F?

1
n

n∑

i=1
wi ∆̂(xi )

Lemma (Critical radius, MW 13.6.)
For any star-shaped F , it holds that G̃n(F ;δ)

δ is non-increasing and the
critical inequality G̃n(F ; δ)

δ
≤ δ

σ

has a smallest solution δn > 0 that we call the critical quantity/radius.

Theorem (Prediction error bound, MW Thm 13.5.)
If F? is star-shaped, we have for the square loss minimizer f̂ for any
t ≥ 1

P(‖f̂ − f ?‖2n ≥ 16tδ2
n) ≤ e−

ntδ2
n

2σ2

This essentially means for any δ that satisfies critical inequality we
have ‖f̂ − f ?‖2n ≥ 16δ2 w.h.p.
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Recap: Reproducing Kernel Hilbert Spaces (RKHS)

• Recap motivation of kernel trick and kernel spaces
• abstract definition of reproducing kernel Hilbert spaces → can be
associated uniquely with a kernel K and equal to its induced
(unique) Hilbert space which is the completion of
• Fpre = {∑N

i=1 αiK(·, xi ) : N ∈ N, α ∈ RN , x1, . . . , xN ∈ X} with
inner product 〈K(·, x),K(·, y)〉FK = K(x , y)

Theorem (Existence of kernel, MW Thm 12.13)
Given an RKHS F , there is a unique psd kernel KF that satisfies the
reproducing property

• Flin = {f : f (x) = 〈w , x〉,w ∈ Rd} is an RKHS with
K(x , y) = 〈x , z〉 as a reproducing kernel as a reproducing kernel
f = 〈wf , ·, 〉 and g = 〈wg , ·〉 the inner product 〈f , g〉 = w>f wg
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From function class (RKHS) to kernel: Sobolev spaces

L2([0, 1]) is not an RKHS because convergence not point-wise

Some restrictions on L2([0, 1]) can fix that: Sobolev space on [0, 1]
W1

2 ([0, 1]) = {f : [0, 1]→ R | f (0) = 0, f ′ ∈ L2([0, 1])} where
derivative exists almost everywhere
• IP 〈f , g〉 =

∫ 1
0 f ′(x)g ′(z)dz (interpretable)

• Sobolev kernel: K(x , y) = min{x , y}
• Reproducing prop.:
〈f (·),min{·, z}〉 =

∫ 1
0 f ′(x)1x≤zdx =

∫ z
0 f ′(x)dx = f (z)

• can extend to higher order derivatives / smoothness (HW 2)
Wα

2 ([0, 1]) = {f : [0, 1]→ R | f (α)(0) = 0, f (α) ∈ L2([0, 1])}
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Non-parametric regression in RKHS

Setting: f ? ∈ FK for some kernel K and yi = f ?(xi ) + σwi w/ i.i.d.
wi ∼ N (0, 1)
• Recall the non-parametric (unpenalized) estimate f̂ is defined as

f̂ ∈ arg min
f ∈F

1
n

n∑

i=1
(yi − f (xi ))2 (possibly non-unique)

Today:
• compute generalization bound for f̂ in a particular RKHS
• Minimization of square loss in constrained space
FR = {f ∈ F : ‖f ‖F ≤ R} (ommitting subscript K) or kernel ridge
regression (regularized square loss) using localized complexities
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Unregularized kernel regression
• Given empirical loss 1

n
∑n

i=1(yi − f (xi ))2 and (empirical) prediction
error 1

n
∑n

i=1(yi − f (xi ))2.

• Define the empirical kernel matrix K with Kij := K(xi ,xj )
n (this is the

normalized kernel matrix, more interpretable since eigenvalues
converge to operator eigenvalues)
• Now assume that the empirical kernel matrix is invertible.

Neighbor-Q:
a) What is the minimum value of the empirical loss?
b) How about the prediction error?
c) How about the localized Gaussian complexity?
d) For which kernels is the kernel matrix invertible?

Remember how to rewrite the empirical loss in matrix vector notation.
Compute the localized complexity and critical radius
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Regularized kernel regression
If K is s.t. K is pd/full-rank for all distinct inputs → can interpolate!
In that case the localized Gaussian complexity will be of order 1.

F too large! → require bounded norm FR = {f ∈ F : ‖f ‖F ≤ R}
So we defined the regularized estimator f̂R is defined as

f̂R ∈ arg min
f ∈FR

1
n

n∑

i=1
(yi − f (xi ))2 (possibly non-unique)

By the representer theorem we can then write it as

min
f ∈FR

1
2n‖y − f (xn

1 )‖22 = min
α∈Rn

1
2n‖y − Kα‖22

• We now see eigenvalues of the kernel matrix can be used to bound
prediction error of f̂R w.h.p. via the critical inequality!
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Localized G.C. for RKHS with bounded norm
Lemma (local G.C. for norm-bounded RKHS, MW Cor. 13.18)
Defining µ̂j as eigenvalues of the kernel matrix K we have

G̃n(F1; δ) ≤
√

2
n

√√√√
n∑

j=1
min{δ2, µ̂j}.

In fact, more generally G̃n(Fr ; δ) ≤
√

r2+1
n

√∑n
j=1 min{δ2, µ̂j}.

Definition (R-modified critical quantity δn;R)
We define δn;R to be the smallest δ > 0 satisfying

4√n

√√√√
n∑

j=1
min{δ2, µ̂j} ≤

δ2R
σ

• By Lemma it then holds that σG̃n(F3;δn;R )
δn;R

≤ δn;RR
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Prediction error bound for RKHS with bounded norm
Theorem (Prediction error of norm-bounded RKHS)
Assume f ? ∈ FR . Then we have for least-squares estimate f̂R ∈ FR

‖f̂R − f ?‖2n ≤ c0R2δ2
n;R

with probability ≥ 1− c1e−c′ nR2δ2
n;R

σ2 .

Note: Can easily generalize to f ? 6∈ FR (more technical, without new
core insights) with additional approx. error inf‖f ‖F≤R ‖f − f ?‖2n
Rates for actual kernel spaces F
• Ex. 1: α-smooth functions w/ µ̂j ∼ j−2α → ‖f̂ − f ?‖2n ≤ (Rσ2

n )2/3

• Ex. 2: Gaussian kernel w/ µ̂j ∼ e−cj log j → ‖f̂ − f ?‖2n ≤
σ2 log( Rn

σ
)

n

• For K on compact X empirical matrix eigenvalues µ̂j ∼ µj for big n
where µj are integral operator eigenvalues (Koltchinskii, Gine ’00)
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Proof for Theorem (prediction error of f̂ ∈ FR)
• Scale basic inequality by R to obtain f̃ ? = f ?

R , f̃ = f̂
R , σ̃ = σ

R

1
nR2

n∑

i=1
(yi − f̂ (xi ))2 ≤ 1

nR2

n∑

i=1
(yi − f ?(xi ))2

‖f̃ − f̃ ?‖2n ≤ 2 σ̃n

n∑

i=1
wi (f̃ (xi )− f̃ ?(xi ))

• Since f̃ ?, f̃ ∈ F1, ∆̃ ∈ F?1 = F1 − f̃ ? ⊂ F3 (F2 suffices for
norm-bounded RKHS, but use F3 for penalized later) . . .
• Now argue similar to last lecture

• Want σ̃
n

∑
i wi ∆̃(xi ) ≤ 2‖∆̃‖nδn;R for all ‖∆̃‖n ≥ δn;R for some δn;R

• Using Ew sup∆̃∈F3,‖∆̃‖n≤δ
σ̃
n

∑n
i=1 wi ∆̃(xi ) = σ̃G̃n(F3; δ)

• It’s sufficient that sup
‖∆̃‖n≤δn;R ,∆̃∈F3

σ̃
n

∑n
i=1 wi

∆̃(xi )
δn;R
≤ δn;R where we

ned modified critical inequality σ̃G̃n(F3; δn;R) ≤ δ2
n;R in tail bound

• Observing ‖f̂ − f ?‖2n = R2‖∆̃‖2n yields the theorem. 11 / 20

Proof of Lemma (local. compl. for norm-bounded RKHS)
• By representer theorem, can take sup over FS by parameterizing

∆(·) = 1√n
∑

i αiK(·, xi ) ∈ FS ⊂ F and hence ∆(xn
1 ) = √nKα, s.t.

G̃n(Fr ; δ) = Ew sup
‖∆‖F≤r ,‖∆‖n≤δ

1
n

∑

i
wi ∆(xi )

= 1√nEw sup
α>Kα≤r2,α>K2α≤δ2

w>Kα

• Let K = U>ΛU and θ := ΛUα→ G̃n(Fr ; δ) = 1√nEw maxθ∈T w>θ

with T = {θ ∈ Rn |
∑

i
θ2

i ≤ δ2,
n∑

i=1

θ2
i
µ̂i
≤ r2}

• Let E := {θ ∈ Rn |∑i ηiθ2
i ≤ 1 + r2} ⊃ T w/ ηi = max{δ−2, µ̂−1

i }

max
θ∈E
〈w , θ〉 ⇐⇒ max

θ>diag(ηi )θ≤1+r2
〈w , θ〉 ⇐⇒ max

‖β‖2≤
√

1+r2
〈diag−1/2(ηi )w , β〉

• Hence G̃n(Fr ; δ) ≤
√

1+r2
n Ew

√
∑

i
w2

i
ηi
≤

√
1+r2

n

√∑
i

1
ηi

via
Jensen’s
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Regularized regression guarantees for metric spaces
• So far looked at empirical risk minimizers for the square loss of type
f̂ ∈ arg minf ∈F

1
n

∑n
i=1(yi − f (xi ))2

• But often type we minimize a loss with an additive penalty such as
in ridge regression

f̂λn = arg min
f ∈F

1
2n

n∑

i=1
(yi − f (xi ))2 + λn‖f ‖2F

• With the same definition of δn;R as before

Theorem (Prediction error for reg. estimators - MW Thm 13.17.)
For any convex function class F with a norm and F? star-shaped,
when λn ≥ 2δ2

n;R , there is a universal constant such that for f ? ∈ FR

‖f̂λn − f ?‖2n ≤ cR2(δ2
n;R + λn) w/ prob. ≥ 1− c0e−c1

nR2δ2
n;R

σ2 .

• Again, if f ? 6∈ FR yields add. approx. error inf‖f ‖F≤R ‖f − f ?‖2n
• if additional term λn ∼ δ2

n;R , same order as constrained
• in practice, don’t know δn → choose λn via cross-validation
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Proof of bound for regularized regression estimate
For simplicity we write f̂ for f̂λn

1. By optimality we have
1
2n

n∑

i=1
(f ?(xi ) + σwi − f̂ (xi ))2 + λn‖f̂ ‖2F ≤

σ2

2n

n∑

i=1
w2

i + λn‖f ?‖2F

which yields basic inequality after rearranging terms
1
2‖∆‖

2
n ≤

σ

n

n∑

i=1
wi ∆(xi ) + λn(‖f ?‖2F − ‖f̂ ‖2F )

2. Normalize f ?, f̂ , σ by 1
R like for norm-bounded →

f̃ ?, f̃ , σ̃, ∆̃ = f̃ − f̃ ? (f̃ different than in MW!)
1
2‖∆̃‖

2
n ≤

σ̃

n

n∑

i=1
wi ∆̃(xi )

︸ ︷︷ ︸
T1

+λn(‖f̃ ?‖2F − ‖f̃ ‖2F )︸ ︷︷ ︸
T2

Note that T2 is a new term and ∆̃, f̃ are not necessarily
F-norm-bounded which enters in localized G.C. for FR to bound T1
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Proof of bound for regularized regression estimate

3. Either ‖∆̃‖n;R ≤ δn and we are done, or ‖∆̃‖n > δn;R on which
event we further analyze two events based on the F -norm of ∆̃ and
show that in both events it holds that

c ′‖∆̃‖2n ≤ cδn;R‖∆̃‖n + λn

for different constants c ′, c(details in next slide)

a) on Event 1 ‖f̃ ‖F ≤ 2 using previous arguments on T1 as for the
prediction error for norm-bounded RKHS using the critical inequality
and tail bound, as well as the fact that T2 ≤ ‖f̃ ?‖2F ≤ 1.

b) on Event 2 ‖f̃ ‖F > 2 using a new (peeling) lemma for all
‖∆̃‖F ≥ 1. There we use T2 to “cancel” large norms

4. Solving the quadratic yields ‖∆̃‖2n ≤ c(δ2
n;R + λn) �
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Proof of 4. - regularization plays role of norm-bounding
We use the shorthand δn for δn;R . We now show that on both events
1 & 2, c ′‖∆̃‖2n ≤ cδn‖∆̃‖n + λn for some (different) constants c ′, c

a) Event 1: ‖f̃ ‖F ≤ 2, then ‖∆̃‖F ≤ 3 and we can use slide 10 and
the fact that T2 ≤ 1: → yields 1

2‖∆̃‖2n ≤ cδn;R‖∆̃‖n + λn,

b) Event 2: ‖f̃ ‖F > 2 > 1 ≥ ‖f̃ ?‖F → ‖∆̃‖F ≥ 1
• T1: can still bound T1 using similar idea as in sl. 10, but iteratively

(peeling lemma) on event ‖∆̃‖F ≥ 1 (MW Lem. 13.23) yields with

probability at least ≥ 1− c1e
− nδ2

n
c2σ̃2

sup
∆̃∈F?,‖∆̃‖F≥1

σ̃

n
∑

i
wi ∆̃(xi ) ≤ 2δn‖∆̃‖n + 2δ2

n‖∆̃‖F + ‖∆̃‖
2
n

16 (1)

• T2: λn(‖f̃ ?‖2
F − ‖f̃ ‖2

F ) ≤ 2λn−λn‖∆̃‖F using
‖∆̃‖F ≤ ‖f̃ ‖F + ‖f̃ ?‖F and ‖f̃ ?‖2

F − ‖f̃ ‖2
F ≤ ‖f̃ ?‖F − ‖f̃ ‖F

→ green “swallows” red term for large enough λn ≥ 2δ2
n

→ regularization takes care of not having explicit norm bound!
• Putting things together yields 1

2‖∆̃‖2
n ≤ cδn‖∆̃‖n + 1

16‖∆̃‖2
n + 2λn 16 / 20



Peeling lemma idea - MW Lem. 13.23 (skipped in class)
• The idea is to make T1 depend on the F-norm which we can then
“kill” via regularization (large enough λn)
• By star-shapedness of F we only need to show inequality with sup
over ‖∆̃‖F = 1
• However then, we no longer have ‖∆̃‖n ≥ δn (can essentially only
use the star-shaped argument on one of the norms)
• Then we do something like in chaining - split up event where eq. 1
does not hold and ‖∆̃‖F = 1 (without boundedness of ‖∆̃‖n) into
subevents where ‖∆̃‖n ∈ [tm, tm+1] with tm = 2mδn and union
bound.
• Union bounding with this choice of tm with the usual concentration
bound (Lipschitz function of Gaussians in MW Thm 2.26)

For a detailed proof we refer to the book.
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References

Reproducing Kernel Hilbert spaces:
• MW Chapter 12
• SC Chapter 4

Non-parametric regression:
• MW Chapter 13
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Kernel eigenvalues (skipped in class)
• The empirical and population Gaussian complexities are close within
constants MW Prop 14.25.
• population Gaussian compl. depends on kernel operator eigenvalues
• For K on compact X empirical matrix eigenvalues µ̂j ∼ µj for big n
where µj are integral operator eigenvalues (Koltchinskii, Gine ’00)

Define bounded, linear Hilbert-Schmidt integral operator
TK : L2 → L2 with TKf =

∫ K(x , y)f (y)dy , and we call µj
eigenvalues and ψj eigenfunctions if TKψj = µjψj

Theorem (Mercer’s) (SC Thm 4.49, 4.51, MW Thm 12.20)
For K psd with RKHS FK, there exist eigenfcuntions and eigenvalues
ψj , µj ≥ 0 of TK that satisfy

1. ψj form an ONB in L2(P) and φj = √µjψj is an ONS in FK.
2. K(x , y) = ∑

j µjψj(x)ψj(y) converges in L2(P)
3. If K also continuous, above sum converges absolutely and uniformly

Crucial: µj , ψj depends on distribution P! 19 / 20

Proof of Mercer’s Theorem (skipped in class)

1. Main component: Hilbert-Schmidt Theorem (spectral theorem)
(e.g. Knapp Thm 2.5., any functional analysis book)
• For any kernel, TK is compact, self-adjoint, has eigenspaces
• decomposition of image of TK into ψj (countable) ONB of L2 that

are eigenvectors of TK
• sum converges in L2.

2. Positivity by definition of the operator and kernel psd

3. Why TK maps to FK SC 4.26.: Hoelder ineq, Bochner integrability

4. Absolute uniform convergence of sum for continuous kernel:
Non-decreasing sequences of continuous functions with a continuous
limit converge uniformly (e.g. Rudin 7.13).

Notes in S.C. they define it TK more rigorously
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