Can semi-supervised learning use all the data effectively? A lower bound perspective

Alexandru Țifrea*, Gizem Yüce*, Amartya Sanyal, Fanny Yang ETH Zürich, EPFL

Semi-supervised learning (SSL)

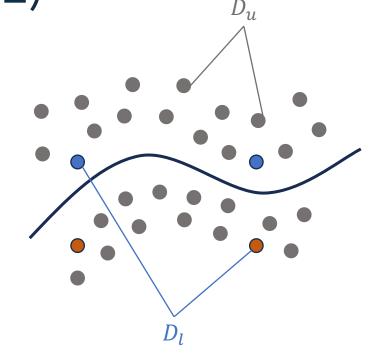
Setting: labeled data \mathcal{D}_l ; unlabeled data \mathcal{D}_u

Two naïve (and wasteful) learning algorithms:

- Supervised learning (SL): Use only \mathcal{D}_l , and ignore \mathcal{D}_u
- Unsupervised learning+ (UL+):
 - 1) Use **only** \mathcal{D}_u to learn decision boundary
 - 2) Assign labels to decision regions using \mathcal{D}_l

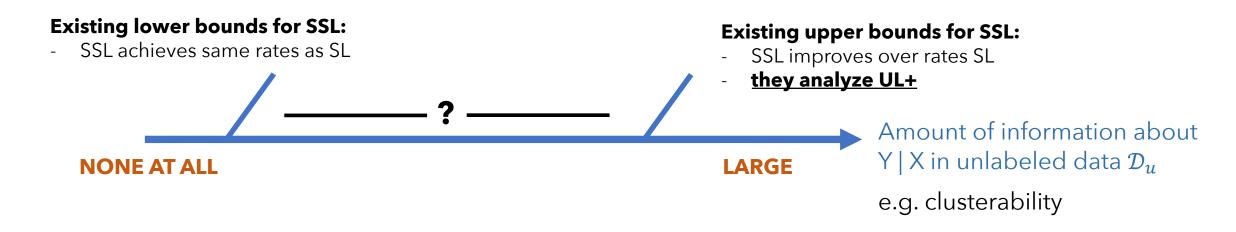
Empirical evidence: SSL algorithms can use \mathcal{D}_l and \mathcal{D}_u more effectively \Rightarrow lower prediction error than both (optimal) SL and UL+

How fundamental is the improvement of SSL over SL and UL+? e.g. rate improvement?



Comparing SSL to SL and UL+ for classification

Goal: Compare SSL, SL, UL+ via error lower and upper bounds for classification



Can SSL **simultaneously** improve over the minimax rates of **both** SL and UL+?

To answer, we need a tight minimax lower bound for SSL

Choosing a problem setting

Setting = class of distributions P_{XY} , class of algorithms

We want a setting such that:

- 1) Can vary the difficulty of the SSL task
 - i.e. amount of information about Y | X captured in \mathcal{D}_u
- 2) There exist known minimax rates for SL and UL+

Distributions: symmetric 2-GMM with isotropic components $P_Y = Unif\{-1, 1\}$ and $P_{X|Y}^{\theta^*} = \mathcal{N}(Y\theta^*, I_d)$, with $||\theta^*||_2 = s$

Algorithms: \mathcal{A} that outputs a linear classifier $\hat{\theta} = \mathcal{A}(\mathcal{D}_l, \mathcal{D}_u)$ i.e. $\hat{y} = sign(\langle \hat{\theta}, x \rangle)$ where $\mathcal{D}_l \sim (P_{XY}^{\theta^*})^{n_l}$ and $\mathcal{D}_u \sim (P_X^{\theta^*})^{n_u}$

Minimax rate of SSL for 2-GMMs

Evaluation metric: $\mathcal{R}_{estim}(\theta, \theta^*) \coloneqq \|\theta - \theta^*\|_2$ (see paper for excess risk)

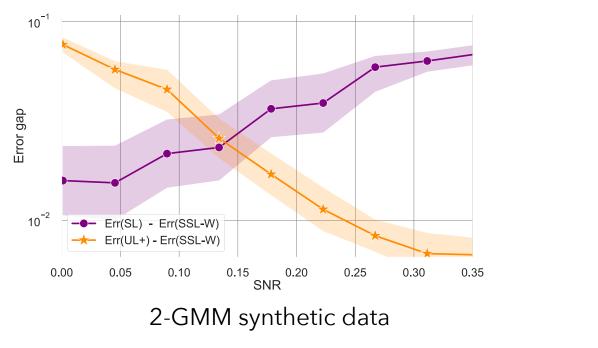
Theorem (Informal) For large enough n_l , n_u and $s \in (0,1]$ $\inf_{\mathcal{A}_{SSL}} \sup_{\|\theta^*\|=s} \mathbb{E}[\mathcal{R}_{estim}(\mathcal{A}_{SSL}(\mathcal{D}_l, \mathcal{D}_u), \theta^*)] \asymp \min\left\{s, \sqrt{\frac{d}{n_l + s^2 n_u}}\right\}$ $-\theta^*$

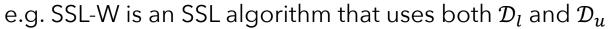
- \asymp hides constant factors
- **dependence on s** allows to study the intermediate regime

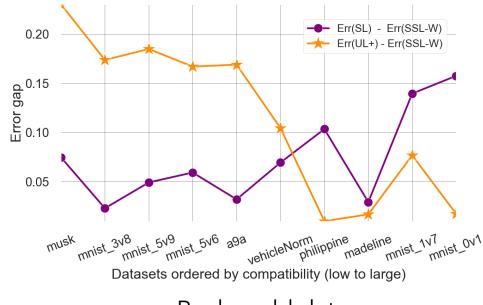
Consequence: no SSL algorithm can achieve better rates than both SL and UL+ simultaneously

Conclusion & Future work

- No rate improvement possible with SSL over SL and UL+
- But is it possible to prove that certain SSL algorithms improve over both SL and UL+?







Real-world data

Thank you!

Overview of the exercises

Question 1: understand the setting of the question, apply Fano's method to the GMM setting with some modification to arrive at the final expression.

Question 2: understand the packing construction, develop intuition why specific packings are often better than uniform packings. Derive an upper bound on the KL divergence between the joint distributions of GMMs.

Question 3: analyze and understand results from the two previous exercise. Figure out how to put them together to obtain the final result. Make conclusions on the performance of semi-supervised learning algorithms in the GMM setting.