
GML Fall 23 - HW 1: Concentration, uniform and margin bounds

1 Optional Warm-up: Optimality of polynomial Markov
Chernoff’s bound is obtained via Markov’s inequality. In this question we show that Markov’s inequality

is actually tight. Furthermore, the k-th moment Markov bounds are in fact never worse than the Chernoff
bound based on the moment generating function. a) Find a non-negative random variable X for which
Markov’s inequality is met with equality at a point a > 0. b) Suppose that X ≥ 0 and that EeλX exists in an
interval around zero. Given some δ > 0 and integer k = 1, 2, . . . show that

inf
k=0,1,...

E|X|k

δk
≤ inf

λ>0

EeλX

eλδ

1.1 Solution
a) Consider a random variable X with the pdf pX(x) = δa(x), i.e. X = a with probability 1. Then

E[X] = a, P (X ≥ a) = 1 and thus we have

1 = P (X ≥ a) ≤ E [X]
a

= a

a
= 1.

b) We suppose that for λ ∈ (−∆, ∆), the expectation E
[
eλX

]
exists. Given a λ ∈ (−∆, ∆), we write

E
[
eλX

]
= E

∑
k≥0

λkXk

k!

 =
∑
k≥0

λkE
[
Xk
]

k! ,

where we have used the Fubini-Tonelli theorem in the case of nonnegative measurable functions. To
relate E

[
Xk
]

to the LHS, we rewrite

E
[
Xk
]

=
δkE

[
Xk
]

δk
≥ δk inf

k′≥0

E
[
Xk′

]
δk′ .

Thus,

E
[
eλX

]
=

λkE
[
Xk
]

k! ≥ inf
k′≥0

E
[
Xk′

]
δk′

∑
k≥0

λkδk

k! = inf
k′≥0

E
[
Xk′

]
δk′ eλδ.

Dividing by eλδ and taking the infimum over λ yields the inequality.

2 Concentration and kernel density estimation
Let {Xi}n

i=1 be an i.i.d. sequence of random variables drawn from a density f on the real line. A standard
estimate of f is the kernel density estimate:

fn(x) := 1
nh

n∑
i=1

K

(
x−Xi

h

)
,

1



where K : R→ [0,∞) is a kernel function satisfying
∫∞

−∞ K(t) dt = 1, and h > 0 is a bandwidth parameter.
Suppose that we assess the quality of fn using the L1-norm:

∥fn − f∥1 :=
∫ ∞

−∞
|fn(t)− f(t)| dt.

Prove that:
P
[
∥fn − f∥1 ≥ E[∥fn − f∥1] + δ

]
≤ e− nδ2

18 .

2.1 Solution
We write the i.i.d. random variables (X1, ..., Xn) as a random vector and define the function

g(X1, ..., Xn) = ∥f − fn(X1, ..., Xn)∥1.

We show that g satisfies the bounded differences property with L = 2
n : For x = (x1, ..., xn) ∈ Rn and k ∈ [n],

define xk by xk
i = xi if i ̸= k, and xk

k = y, where y ∈ R. We calculate

|g(x)− g(xk)| = |∥f − fn(x)∥1 − ∥f − fn(xk)∥1| ≤ ∥fn(x)− fn(xk)∥1

= 1
nh

∫ ∣∣∣∣∣K
(

t− xk

h

)
−K

(
t− y

h

)∣∣∣∣∣ dt

≤ 1
n

(∫
K(u− xk/h)du +

∫
K(u′ − y/h)du′

)
≤ 2

n
.

Thus, by the (one-sided) bounded differences inequality (Corollary 2.21 in MW), we obtain

P
(
∥f − fn∥1 ≥ E

[
∥f − fn∥1

]
+ δ
)
≤ e

−2δ2

n 4
n2 = e− nδ2

2 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 points

3 Sub-Gaussian maxima
In this exercise we prove an inequality used repeatedly in later lectures. Let {Xi}n

i=1 be a sequence of
zero-mean random variables, each subgaussian with parameter σ. The random variables Xi are not assumed
to be independent. a) Prove that for all n ≥ 1 we have

E max
i=1,...,n

Xi ≤
√

2σ2 log n.

Hint: the exponential is a convex function. b) Prove that for all n ≥ 2 we have

E max
i=1,...,n

|Xi| ≤
√

2σ2 log(2n) ≤ 2
√

σ2 log n.

3.1 Solution
We consider the moment generating function of maxi∈[n] Xi. Since exp(λ ·) is a convex function, we utilize
Jensen’s inequality to obtain

exp

λE

[
max
i∈[n]

Xi

] ≤ E

exp
(

λ max
i∈[n]

Xi

) .
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We can interchange exp and max to obtain

E

exp
(

λ max
i∈[n]

Xi

) = E

[
max
i∈[n]

eλXi

]
≤ E

 n∑
i=1

eλXi

 =
n∑

i=1
E
[
eλXi

]
≤ neλ2σ2/2,

using the subgaussianity of the i.i.d. variables. In total, we have

exp

λE

[
max
i∈[n]

Xi

] ≤ neλ2σ2/2.

Solving for E
[
maxi∈[n] Xi

]
, we get

E

[
max
i∈[n]

Xi

]
≤ 1

λ
(log(n) + λ2σ2/2) = log(n)

λ
+ λσ2/2.

This expression is minimized for λ∗ =
√

2 log n

σ , where it achieves the value
√

2σ2 log n.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 points

b) We have
max
i∈[n]
|Xi| = max

i∈[n]
max{−Xi, Xi} = max{−X1, X1, ...,−Xn, Xn},

which is a maximum over 2n subgaussian random variables. Thus, we have by (a)

E

[
max
i∈[n]
|Xi|

]
≤
√

2σ2 log 2n =
√

2σ2(log n + log 2) ≤
√

2σ22 log n = 2
√

σ2 log n,

where we have used n ≥ 2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 points

4 Bonus: Sharper tail bounds for bounded variables: Bennett’s
inequality

Read MW Chapter 2 and learn about subexponential tail bounds and Bernstein’s inequality, yielding some
more tail bounds for empirical means of random variables satisfying conditions other than the subgaussian
one. Bernstein’s inequality is sometimes tighter for bounded variables than when applying the subgaussian
bound. In this problem we prove an even tighter bound for bounded variables, known as Bennett’s inequality
a) Consider a zero-mean random variable such that |Xi| ≤ b for some b > 0. Prove that

logEeλXi ≤ σ2
i λ2 eλb − 1− λb

(λb)2

for all λ ≥ 0, where σ2
i = Var(Xi). b) Given independent random variables X1, . . . , Xn satisfying the

condition of part (a), let σ2 := 1
n

∑n
i=1 σ2

i be the average variance. Prove Bennett’s inequality

P

 1
n

n∑
i=1

Xi ≥ δ

 ≤ e− nσ2
b2 h
(

bδ
σ2

)
where h(t) := (1 + t) log(1 + t)− t for t ≥ 0. c) Bonus: Show that Bennett’s inequality is at least as good as
Bernstein’s inequality.
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4.1 Solution
a) First, note that the function f(x) = ex−1−x

x2 is positive and monotonically increasing over x ≥ 0, which
is easy to verify by expanding ex . Therefore, f(λXi) is bounded by f(λb), where we use that λ ≥ 0.
We can write:

EeλXi = E
∞∑

k=0

(λXi)k

k! = 1 + λ EXi︸︷︷︸
=0(zero mean)

+E

λ2X2
i

eλXi − 1− λXi

(λXi)2︸ ︷︷ ︸
=f(λXi)


≤ 1 + λ2σ2

i f(λb)

⇒ logEeλXi ≤ λ2σ2
i

eλb − 1− λb

(λb)2 ≤ σ2
i

b2 (eλb − 1− λb)

where the last line follows from the definition of f and uses the numerical inequality log(1 + x) ≤ x for
x ≥ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 points

b) By monotonicity of the exponential function and Markov’s inequality we can bound P( 1
n

∑
i Xi ≥ δ) ≤

E exp(
∑

i

λ
n Xi)

exp(λδ) like for Chernoff’s bound. Since this holds for any λ ≥ 0, we ultimately choose the one to
achieve the best (lowest) probability. By independence we have by setting λ← λ

n

E
n∏

i=1
exp(λ

n
Xi) =

n∏
i=1

E exp(λ

n
Xi) ≤ exp

(
nσ2

b2 (exp(bλ

n
)− 1− bλ/n)

)
.

Finally, substituting into Markov’s inequality we obtain

P

 1
n

∑
i

Xi ≥ δ

 ≤ exp
(

nσ2

b2 (e bλ
n − 1− bλ

n
− b2λδ

nσ2 )
)

(⋆)

In order to take the infimum over λ, we differentiate the term w.r.t λ and find that the derivative
vanishes at λ = n

b (log( bδ
σ2 ) + 1). Plugging it into the right hand side of (⋆) concludes the proof.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 points

c) Denote A := bt
σ2 and recall the inequalities for the concentration of a single random variable: Bernstein’s

inequality: P[X ≥ t] ≤ exp(− t2

2(σ2+bt) )
Bennett’s inequality: P[X ≥ t] ≤ exp(−σ2

b2 h(A))
First, we show that for non-negative A ≥ 0, h(A) ≥ A2

2(A+1) :

h(A) = (1 + A) log(1 + A)−A ≥ A2

2(A + 1)

⇔g(A) := 2 log(1 + A)− 2A

A + 1 −
A2

(A + 1)2 ≥ 0

Clearly, g(0) = 0. Hence, the claim follows when showing that g′(A) ≥ 0 for any A ≥ 0:

g′(A) = 2
1 + A

− 2
(1 + A)2 −

2A

(1 + A)3 ≥ 0

⇔ 2(A + 1)2 − 2(A + 1)− 2A

(1 + A)3 = 2A2

(1 + A)3 ≥ 0
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Rewriting the exponent of the RHS of the Bernstein’s inequalit, one can show that it is an upper bound
on the exponent in Bennett’s inequality:
− t2

2(σ2+bt) = −σ2

b2

b2t2
σ2

2(σ2+bt) = −σ2

b2
btA

2(σ2+bt) = −σ2

b2
A

2( σ2
bt +1)

= −σ2

b2
A

2( 1
A +1) = −σ2

b2
A2

2+2A ≥ −
σ2

b2 h(A).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 points

5 Sharp upper bounds on binomial tails
Let {Xi}n

i=1 be an i.i.d. sequence of Bernoulli variables with parameter α ∈ (0, 1
2 ], and consider the binomial

random variable Zn =
∑n

i=1 Xi. The goal of this exercise is to prove, for any δ ∈ (0, α), a sharp upper bound
on the tail probability P [Zn ≤ δn]. a) Show that

P [Zn ≤ δn] ≤ e−nD(δ∥α),

where the quantity
D(δ ∥ α) := δ log δ + (1− δ) log(1− δ)

is the Kullback–Leibler divergence between the Bernoulli distributions with parameters δ and α, respectively.
b) Show that the bound from part (a) is strictly better than the Hoeffding bound for all δ ∈ (0, α).

5.1 Solution
a) By Chernoff, we have

P (Zn ≤ δn) ≤
E
[
eλZn

]
eλδn

= e−λδn(αeλ + (1− α))n,

where we have inserted the moment generating function of the binomial distribution. Taking the log of
both sides and setting the derivative of the RHS w.r.t. λ to zero, we obtain

−δ + αeλ

αeλ + 1− α
= 0,

which yields
λ∗ = log δ(1− α)

α(1− δ) = log
(

1− α

1− δ

)
− log

(
α

δ

)
.

Inserting λ∗ in the logarithm of the RHS, we obtain

logP (Zn ≤ δn) ≤ −n[λ∗δ− log(αeλ∗
+(1−α))] = −n[(δ−1) log

(
1− α

1− δ

)
−δ log

(
α

δ

)
] = −nD(δ ∥ α).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 points
b) Any bounded random variable (X ∈ [a, b]) is sub-Gaussian with parameter at most (b−a)

2 . Thus, Xi are
sub-Gaussian with parameter 1/2. By Hoeffding, we have

P (Zn ≤ δn) = P
(
(Zn − αn) ≤ (δn− αn)

)
≤ exp

(
−n(δ − α)2

)
.

It remains to compare D(δ ∥ α) and (δ − α)2 for δ ∈ (0, α). At δ = α, both functions are zero and their
first derivatives are zero. The second derivative of (δ − α)2 at δ = α is 2, whereas the second derivative
of D(δ ∥ α) at δ = α is 1

α(1−α) , which is larger than 4 for α ∈ (0, 1/2). This yields the claim.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 points
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6 Robust estimation of the mean
Suppose we want to estimate the mean µ of a random variable X from a sample X1, · · · , Xn, drawn

independently from the distribution of X. We want an ϵ-accurate estimate of the mean, i.e., one that falls
with probability ≥ 1 − δ in the interval [µ − ϵ, µ + ϵ]. Show that a sample size of N = O

(
log(δ−1) σ2

ϵ2

)
suffices to compute an ϵ-accurate estimate of the mean with probability at least 1− δ. Hint: Compute the
median of log(δ−1) weak estimates.

6.1 Solution
We divide the proof into two steps, where we first construct weak learners which are with probability at least
p > 1

2 an ϵ-accurate estimate of the mean (for simplicity, we can simply choose p = 3/4). In a second step,
we then show that the median of the weak learners is with proability at least 1− δ an ϵ-accurate estimate of
the mean.

Step 1 : We begin with the construction of K weak learners µi. For this, we divide the dataset into K-parts
equally large of size NK and compute the mean µi for each of this subset. By Chebyshev’s inequality, we get
that

P(|µ− µi| > ϵ) ≤ σ2

NKϵ2 .

In particular, when choosing NK ≥ 4σ2

ϵ2 , we have that with probability at least 3/4, µi is an ϵ-accurate
estimate of the mean.

Step 2 : Let µ̃ be the median of the K estimates µi, which are by construction all independent. Furthermore,
define the variables ϕi = 1

[
µi ∈ [−ϵ + µ, ϵ + µ]

]
and S =

∑
bi. We can upper bound the probability that µ̃

is not an ϵ-accurate estimate of the mean by:

P(|µ̃− µ| > ϵ) ≤ P(
∑

bi <
K

2 ) = P(
∑

bi − p <
K

2 −Kp).

We can now apply Hoeffdings inequality, which gives us

P(
∑

bi − p <
K

2 −Kp) ≤ exp
(
−

2( K
2 − pK)2∑K

i=1(1− 0)2

)
= exp

(
−1

2K(1
2 − p)2

)
= δ

where we choose p = 1
4 and K = ⌈32 log(δ−1)⌉. Hence we can conclude the proof.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 points

7 Best-arm identification
We now look at an interesting application of concentration bounds. Assume that we have K newly developed
drugs to cure a disease and denote with µk ∈ [0, 1] the probability of getting cured by the k-th drug, which
is assumed to be unknown. In order to determine the best drug k⋆ with the highest chance of a successful
treatment µ⋆ = µk⋆ = max

k
µk, we treat different volunteers in a clinical trial with one drug each and

record the outcome. We model the observation of the outcome on one patient as sampling from a Bernoulli
distribution with parameter µk. We denote with Xk,i ∈ {0, 1} the random variable indicating whether the
i-th volunteer treated with the k-th drug was successful.

In a randomized control trial, all drugs would have the same probability of getting assigned to any patient
throughout the trial. In this exercise, we want to study an adaptive algorithm that assigns treatment
depending on the outcome of previous treatments. The goal is to assign the drugs in a way such that for
some δ ∈ (0, 1), with probability ≥ 1− δ, the algorithm finds the best drug k⋆ in as few volunteers as possible.
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This is ethically more reasonable than assigning a “bad” drug to patients even when their results are clearly
inferior to others in the trial.

Context: This problem is often referred to as a best-arm identification problem. In adaptive or online learning
scenarios, where at each time step we sample from one of k distributions {P1, · · · ,PK} is often called a
multi-armed bandit. Pulling an arm k then corresponds to sampling from Pk. In our case they are Bernoulli
distributions with means {µ1, · · · , µK}.

In this exercise, we analyze a specific type of algorithm to solve the problem called the Successive Elimination
algorithm.

Algorithm 1: Successive Elimination
S0 = {1, · · · , K} ;
for 1 ≤ t ≤ ∞ do

Pull all arms in St−1 to obtain samples Xk,t ∼ Dk with k ∈ St−1;
Update St = St−1 − {i ∈ St−1 : ∃k ∈ St−1 : µ̂k,t − U(t, δ/K) > µ̂i,t + U(t, δ/K)};
Stop when |St| = 1;

end

Notation:

• St: The active set of arms.
• µ̂k,t := 1

t

∑t
i=1 Xk,i: Estimated mean of the reward µk for arm k after t pulls.

• U(t, δ): An any-time confidence interval, such that for any arm k,

P

 ∞⋃
t=1
{|µ̂k,t − µk| ≥ U(t, δ)}

 ≤ δ.

The goal of this exercise is to prove Theorem 1 where we show that the Successive Elimination algorithm
is correct and derive an upper bound on the maximum amount of steps needed to for the algorithm to terminate.

Theorem 1. With probability ≥ 1− δ:

1. For any t ≥ 1, the best arm k⋆ is contained in the set St.

2. There exists an any-time confidence interval U such that the Successive Elimination algorithm terminates
after O(

∑K
k ̸=k⋆ △−2

k log(K△−1
k )) samples with △k := µ⋆ − µk and the O notation is with respect to K

and △k for a constant δ.

We first prove that with high probability the best arm stays in the active set St for all t until termination.

a) Define E as the event that for any t ≥ 1, the estimated reward µ̂k,t of any arm k is not contained in the
confidence interval U(t, δ/K) around the true mean µk, i.e.

E :=
K⋃

k=1

∞⋃
t=1
{|µ̂k,t − µk| > U(t, δ/K)}.

Show that P(E) ≤ δ.

b) Prove statement 1 in Theorem 1.

It is not yet shown whether and after how many steps the algorithm terminates. To do so, we derive a
sufficiently tight any-time confidence interval U based on the concentration inequalities discussed in the
lecture.
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c) Let {Zt}∞
t=1 be i.i.d bounded random variables with Zt ∈ [a, b] with a ≤ b. Show that

U =
√

(b− a)2 log(4t2/δ)
2t

is a valid any-time confidence interval for the random variable Zt. Hint: Use Hoeffding’s bound and
union bound.

d) Bonus: Prove statement 2 in Theorem 1.

7.1 Solution
a) First, by the Union bound,

P(E) ≤
K∑

k=1
P(

∞⋃
t=1
{|µ̂k,t − µk| > U(t, δ/K)}).

Next, we already know from the definition of the any-time confidence interval that

P

 ∞⋃
t=1
{|µ̂k,t − µk| > U(t, δ/K)}

 ≤ δ/K.

Hence, combining these results, we get P(E) ≤
∑K

k=1 δ/K = δ. . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 points

b) We assume that Ec holds and show that the best arm k⋆ will never be dropped. The proof then the
follows trivially from a). Any arm k, with 1 ≤ k ≤ K, will only be dropped by the algorithm if there
exists t ≥ 1 and i ∈ St−1 such that k ∈ St−1 and

µ̂i,t − U(t, δ/K) > µ̂k,t + U(t, δ/K).

Now consider k∗. Ec holds by assumption and for any t ≥ 1 we have:

µ̂k⋆,t ≥ µk⋆ − U(t, δ/K)

Furthermore, for any t ≥ 1 and 1 ≤ i ≤ K that µi ≥ µ̂i,t − U(t, δ/K). By definition µk⋆ ≥ µi, and we
get:

µ̂k⋆,t + U(t, δ/K) > µk⋆ ≥ µi > µ̂i,t − U(t, δ/K)
Meaning that k⋆ is never dropped, hence completing the proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 points

c) First, we take the Union bound to obtain

P

 ∞⋃
t=1
{
∣∣µ̂k,t − µk

∣∣ > U(t, δ)}

 ≤ ∞∑
t=1

P
(∣∣µ̂k,t − µk

∣∣ ≥ U(t, δ)
)
≤

∞∑
t=1

P

1
t

∣∣∣∣∣∣
t∑

s=1
Zs − EZs

∣∣∣∣∣∣ ≥ U(t, δ)


Next, note that the case where a = b follows trivially. Hence we can assume a < b and observe that the
random variable Zi is a σ-subgaussian random variable with parameter σ = b−a

2 . Therefore, we can
apply Hoeffindgs inequality:

P

1
t

∣∣∣∣∣∣
t∑

s=1
Zs − EZs

∣∣∣∣∣∣ ≥ U(t, δ)

 ≤ 2 exp
(
− tU(t, δ)

2σ2

)
= 2 exp

(
− t(b− a)2 log(4t2/δ)

2t b−a
4

)

= 2 exp(− log(4t2/δ)) = 2 δ

4t2
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where the factor 2 in front of the exponential comes from the fact that we take a two sided bound, i.e.

P

1
t

∣∣∣∣∣∣
t∑

s=1
Zs − EZs

∣∣∣∣∣∣ ≥ U(t, δ)

 = P

1
t

t∑
s=1

Zs − EZs ≥ U(t, δ)

+ P

1
t

t∑
s=1

Zs − EZs ≥ −U(t, δ)

 .

Plugging this equation into the previous equation gives the desired solution:

P

 ∞⋃
t=1
{
∣∣µ̂k,t − µk

∣∣ > U(t, δ)}

 ≤ ∞∑
t=1

δ

2t2 ≤ δ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 points

d) We can again assume that the event Ec holds. Clearly, for any k ̸= k⋆, we know that the algorithm
removes the k-th when

µ̂k⋆,t − U(t, δ/K) > µ̂k,t + U(t, δ/K). (1)

While the arm can also drop earlier, we note that we are only interested in an upper bound for the
total amount of samples. Next, because Ec holds by assumption, we have that µ̂k⋆,t ≥ µ⋆ − U(t, δ/K)
and µk + U(t, δ/K) ≥ µ̂k,t. Therefore, Equation 1 is guaranteed to hold as long as:

µ⋆ − 2U(t, δ/K) > µk + 2U(t, δ/K).

As a result, we obtain that the k-th arm must drop if

△k > 4U(t, δ/K).

Next, the goal is to show that we can find a constant c > 0 independent of 0 < △k ≤ 1 and K ≥ 1,
such that for Tk = c△−2

k log(K△−1
k ), we have that △k > 4U(Tk, δ/K).

As a result, and because U(t, δ/K) is monotonically decreasing with respect to t, we can conclude that the
k-th arm will be removed by the algorithm at least after ⌈Tk⌉ steps. Plugging the expression for U from c)
into the above equation, we get that

△k ≥ 4

√
log( 4K

δ (c△−2
k log(K△−1

k ))2)
2c△−2

k log(K△−1
k )

(2)

⇔ 1 ≥
16 log( 4n

δ (c△−2
k log(K△−1

k ))2)
2c log(K△−1

k )
(3)

Clearly, for any fixed 1 ≥ △k > 0 and n ≥ 1, we can find c such that the inequality holds. Hence, the only
thing we need to show is that we do not require c→∞ as K →∞ or △k → 0. However, this follows trivially
from the fact that a log(b) = log(ba). We can conclude that there exists c > 0 such that the inequality holds
for all △k and n. As a result, we can see that the total amount of samples for the algorithm needed to
terminate is at most ∑

k ̸=k⋆

⌈Tk⌉ =
∑

k ̸=k⋆

⌈c△−2
k log(K△−1

k )⌉ = O(
∑

k ̸=k⋆

△−2
k log(K△−1

k )).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 points
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