
GML Fall 23 - HW 2: Generalization bounds

1 Data-dependent generalization bound for hard-margin SVM
In this exercise, we will derive a refined upper bound on the population risk of the hard-margin SVM (support
vector machine) solution.

Recall the setting of the first in-lecture exercise, where we analyzed max-margin linear classifiers. The
function class of bounded linear functions is given by FB = {f(x) = 〈w, x〉 : w ∈ Rd, ‖w‖2 ≤ B}, and we
assume that (x, y) come from a joint distribution P and we are given n training datapoints {(xi, yi), i ∈ [n]}.
We made the following assumption:

Assumption A: Covariates x are bounded, P
(
‖x‖2 ≤ D

)
= 1.

Given γ ≥ 0, we define the margin risk Rγ(f) = P
(
Y f(X) ≤ γ

)
and its empirical version Rγn(f) =

1
n

∑n
i=1 1yif(xi)≤γ . In the in-lecture exercise, we proved that with probability at least 1− δ, it holds that for

all f ∈ FB

R0(f) = P
(
Y f(X) ≤ 0

)
≤ Rγn(f) + 2DB

γ
√
n

+ c

√
log(1/δ)

n
(1)

for some constant c > 0. This statement holds for all fixed B and γ. However, the bound eq. 1 becomes less
and less useful as the margin of the data distribution gets smaller, as in this case Rγn(f) remains large for
any f . If we make an additional margin assumption on the distribution, and instead of any f , consider the
specific hard-margin SVM solution, we can obtain a more useful bound:

Assumption B: Data is linearly separable, i.e. there exists w∗ with the smallest `2-norm such that
P
(
y〈w, x〉 ≥ 1

)
= 1.

Definition 1. The hard-margin SVM solution is

fSVM = 〈wSVM , ·〉 where wSVM = arg min
w
‖w‖2 s.t. yi〈w, xi〉 ≥ 1

In particular, for the hard-margin SVM solution the following holds:

Theorem 1 (Distribution-dependent margin bound). Under Assumption A and B, with probability at least
1− δ it holds that

P
(
Y fSVM (X) < 0

)
≤ 2D‖w∗‖2√

n
+ c

√
log(1/δ)

n
,

where c > 0 is some constant.

a) Prove Theorem 1.

The bound of the preceding theorem depends on ‖w∗‖2, which is unknown. In the following, we will derive a
bound which depends on the norm of the output of SVM; hence it can be calculated from the training set
itself. For some training data data, the margin could be larger, and thus we could instantiate eq. 1 with a
larger γ to get a tighter bound:
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Theorem 2 (Data-dependent margin bound). Under Assumptions A and B, with probability at least 1− δ it
holds that

P
(
Y fSVM (X) < 0

)
≤ 2eD‖wSVM‖2√

n
+ c

√
log(1/δ) + log(4 log ‖wSVM‖2)

n
.

Notice that this bound could be tighter than Theorem 1 since ‖wSVM‖2 ≤ ‖w∗‖2.

The proof of Theorem 2 is based on the principle called Structural Risk Minimization (SRM). SRM aims to
alleviate the problem of overfitting which arises when minimizing the empirical risk within a large preselected
function class F . Instead, we could rewrite a (too) complex function class F as a nested sequence of function
classes with increasing complexity: F1 ⊂ F2 ⊂ ..., F =

⋃∞
k=1 Fk. One then minimizes the empirical risk

penalized by some complexity measure of the function class, so that we can find an optimally complex
predictor f ∈ Fk for some k (e.g. a polynomial of degree 5 when F is the space of all polynomials). For more
context read Shalev-Schwartz, Ben-David Chapter 7.

We first prove a result on SRM in b) and then use it to prove 2.

b) (Structural Risk Minimization) As above, assume we are given a function class F which is a union of
a nested sequence of function spaces, i.e. F =

⋃∞
k=1 Fk and F1 ⊂ F2 ⊂ .... Given a positive sequence

(δ1, δ2, ...) which satisfies
∑∞
i=1 δi ≤ δ, we define for each k and each function f ∈ Fk the event

Ek,f = {R0(f)−R0
n(f) ≤ c

√
log 1/δk

n
+ 2Rn(Fk)}.

Assume that for each k, the intersection of these events holds with probability at least 1− δk, i.e.

P

 ⋂
f∈Fk

Ekf

 ≥ 1− δk.

Prove that with probability at least 1− δ it holds for all f ∈ F that

R(f)−Rn(f) ≤ c
√

log(1/δk(f))
n

+ 2Rn(Fk(f)),

where k(f) is the smallest index k s.t. f is contained in Fk.

c) (Data-dependent generalization bound) Prove Theorem 2. Hint: for the proof, you might want to
utilize b) with an appropriate choice of Fk and δk.

1.1 Solution
a) Let B = ‖w?‖2, and consider the set FB =

{
f(x) = 〈w, x〉 : w ∈ Rd, ‖w‖2 ≤ B

}
. By the definition of

the hard-SVM and since ‖wSVM‖2 ≤ ‖w?‖2, it holds that fSVM ∈ FB . Given γ ≥ 0, using Equation (1)
from the assignment sheet, we can see that it holds with probability at least 1− δ for fSVM:

P
(
Y fSVM (X) < 0

)
≤ 1
n

n∑
i=1

IyifSVM (xi)<γ +
2D ‖w∗‖2
γ
√
n

+ c

√
log(1/δ)

n

We now minimize the right-hand side of the above inequality with respect to γ. For γ ≥ 1, we find that
RγSVM,n is 0. Considering the fact that 1

γ (from the Rademacher term in the above bound) is decreasing in
the interval γ ∈ [0, 1], we conclude that the minimum of the RHS is obtained with γ = 1. Therefore,

P
(
Y fSVM (X) < 0

)
≤

2D ‖w∗‖2√
n

+ c

√
log(1/δ)

n
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 points

2



b) From the definition of F we observe that for each f there exists a k(f) that is the smallest index k s.t.
f is contained in Fk. We now compute:

1− δ ≤ 1− δk(f)

≤ P

 ⋂
f ′∈Fk(f)

Ek(f),f ′


≤ P

(
Ek(f),f

)

= P

R(f)−Rn(f) ≤ c

√√√√ log
(

1/δk(f)

)
n

+ 2Rn
(
Fk(f)

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 points

c) Suppose ‖wSVM‖ > 1. Consider the function class F = ∪∞k=1FBk , with

FBk =
{
f(x) = 〈w, x〉 : w ∈ Rd, 1 < ‖w‖2 ≤ Bk

}
and Bk = ek. Let δk = δ

4k2 (which satisfies
∑∞
k=1 δk ≤ δ).

Using Equation (1) from the assignment sheet and the previous sub-question, we have that for all f ∈ F with
probability at least 1− δ, it holds that:

P(Y f(X) < 0) ≤ 2DBk√
n

+ c

√
log(1/δk)

n

If we now let k = dlog(‖w‖2)e we have that:

P(Y fSVM (X) < 0) ≤ 2eD‖wSVM‖2√
n

+ c

√
log(1/δ) + 2 log(4 log(‖wSVM‖2))

n

≤ 2eD‖wSVM‖2√
n

+ c

√
2 log(1/δ) + 2 log(4 log(‖wSVM‖2))

n

≤ 2eD‖wSVM‖2√
n

+ c′
√

log(1/δ) + log(4 log(‖wSVM‖2))
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 points

2 Rates for smooth functions
Read MW Examples 5.10. through Example 5.12. (notice typos in Example 5.11. - it should be δ = εα+γ

everywhere). The non-parametric least-squares estimate is defined as

f̂ = arg min
f∈F

Rn(f) := 1
n

n∑
i=1

(yi − f(xi))2

. In this exercise we derive the prediction error bound for the examples of twice-differentiable functions F(2)
and α-th order Sobolev spaces Wα

2 ([0, 1]) on [0, 1].

F(2) := {f : [0, 1]→ R | ‖f‖∞ + ‖f (1)‖∞ + ‖f (2)‖∞ ≤ C <∞}
Wα

2 ([0, 1]) := {f : [0, 1]→ R | f (i) ∈ L2([0, 1]) and f (i)(0) = 0 ∀i = 0, . . . , α− 1}
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where f (a) stands for the α-th (weak) derivative. Throughout the problem, we assume that f? ∈ F .

a) Prove that the set {fβ , β ∈ {−1,+1}M} in Example 5.10. forms a 2εL-covering in the sup-norm.

b) For the function class

Fα,γ = {f : [0, 1]→ R | ‖f (j)‖∞ ≤ Cj ∀j = 0, . . . , α, |f (α)(x)− f (α)(x′)| ≤ L|x− x′|γ ∀x, x′ ∈ [0, 1]}

we have logN (ε;Fα,γ , ‖ · ‖∞) = O(( 1
ε )

1
α+γ ). Use this fact to establish the following prediction

error bound for the non-parametric least-squares estimate f̂ with F = F(2) for positive constants
c0, c1, c2 which may depend on C but not on n, σ2

P(‖f̂ − f?‖2
n ≥ c0(σ

2

n
) 4

5 ) ≤ c1e−c2(n/σ2)1/5

c) For α-th order Sobolev kernels, assume that the empirical eigenvalues decay with rate µ̂j = j−2α and
we minimize the square loss in the constrained function class F = {f ∈ Wα

2 ([0, 1]) : ‖f‖F ≤ 1}. Show
that the prediction error of the non-parametric least-squares estimate reads

P
[
‖f̂ − f?‖2

n ≥ c0(σ
2

n
)

2α
2α+1

]
≤ c1e−c2( n

σ2 )
1

2α+1
.

2.1 Solution
a) We prove that the set {fβ , β ∈ {−1,+1}M} is a 2εL-cover of FL by showing that for any f ∈ FL it is

possible to construct a sequence β such that ‖f − fβ‖∞ ≤ 2εL.

For an arbitrary f ∈ FL, let us construct β = {β1, ..., βM} in the following way:

β1 = sgn(f(ε)); βk+1 = sgn
(
f((k + 1)ε)− lkεL)

)
,∀k ≥ 1

where lk ∈ Z is the level in the grid on the vertical axis that approximates f(kε) according to the
previous choices of {β1, ..., βk}. Assuming the whole β is known and the function f is completely
determined, we can write fβ(kε) = lkεL.

As shown in Exercise 5.10 from MW, fβ ∈ FL,∀β ∈ {−1,+1}M . So what remains to be proved is that
an arbitrary f ∈ FL is 2εL-covered by fβ , with β defined as above. More formally, we have to show
that ‖f − fβ‖∞ ≤ 2εL.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 pt

We propose a proof by induction over the M intervals that |f(kε)− fβ(kε)| ≤ εL,∀k ∈ [M ]. An essential
premise for several steps in the proof is that f is L-Lipschitz. For the first interval we have for any
x ∈ [0, ε] that:

sup
x∈[0,ε]

∣∣f(x)− fβ(x)
∣∣ = sup

x∈[0,ε]

∣∣∣∣f(x)− εL · sgn(f(x))x
ε

∣∣∣∣
≤ sup
x∈[0,ε]

∣∣f(x)
∣∣+
∣∣∣∣εL · sgn(f(x))x

ε

∣∣∣∣
≤ 2εL

For the inductive step, we assume that supx∈[0,kε] |f(x) − fβ(x)| ≤ 2εL and want to show that
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supx∈(kε,(k+1)ε] |f(x)− fβ(x)| ≤ 2εL.

sup
x∈(kε,(k+1)ε]

|f(x)− fβ(x)| = sup
x∈(kε,(k+1)ε]

∣∣∣∣∣f(x)−
(
fβ(kε) + εL · sgn(f(x)− fβ(kε))x− kε

ε

)∣∣∣∣∣
= sup
x∈(kε,(k+1)ε]

∣∣∣∣∣f(x)− fβ(kε) + fβ(kε)−
(
fβ(kε) + εL · sgn(f(x)− fβ(kε))x− kε

ε

)∣∣∣∣∣
≤ sup
x∈(kε,(k+1)ε]

∣∣sgn(f(x)− fβ(kε))
∣∣ · ∣∣∣∣∣∣f(x)− fβ(kε)

∣∣− εLx− kε
ε

∣∣∣∣
≤ sup
x∈(kε,(k+1)ε]

∣∣∣∣∣∣f(x)− fβ(kε)
∣∣− εLx− kε

ε

∣∣∣∣
≤ 2εL

The last inequality holds because on the one hand we have that 0 ≤ εLx−kεε ≤ εL and on the other
hand 0 ≤

∣∣f(x)− fβ(kε)
∣∣ ≤ ∣∣f(x)− f(kε) + f(kε)− fβ(kε)

∣∣ ≤ 2εL.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 pt
Remark: A similar argument can be used to show that the same set is a εL-cover of Fl, but in this
case one would have to be more careful to keep into account the smoothness of a function f ∈ FL
inside the quadrants as well.

b) The main idea is to bound the error of the non-parametric least-square estimate using the prediction
error bound in Lecture 4/5 (MW Theorem 13.5). We set out to find a δn that satisfies the critical
inequality and thus makes the bound in the theorem hold. We can use Dudley’s integral to bound the
localized Gaussian complexity in the critical inequality. One such result is given by Theorem on slide 7
Lecture 5 (MW Corollary 3.17). We use this to select the δn.

Concretely, for the function class Fα,γ , we can start by rewriting the integral as follows:

l
1√
n

∫ δ

δ2
4σ

√
logN (t;Fα,γ , ‖ · ‖∞)dt ≤ 1√

n

∫ δ

0

√
logN (t;Fα,γ , ‖ · ‖∞)dt

= 1√
n

∫ δ

0

(
1
t

) 1
2(α+γ)

dt

= O
(

1√
n
δ1− 1

2(α+γ)

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 pt

Using Corollary 13.7 from MW we can conclude that in order to choose a δn that satisfies the critical
inequality it is sufficient to select a value that satisfies 1√

n
δ1− 1

2(α+γ) ≤ O
(
δ2

4σ

)
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 pt

By rearranging the terms we obtain δ2
n ≈ σ2

n

2(α+γ)
2(α+γ)+1 .

By the definition of F(2), we see that F(2) ⊂ F1,1 by the fundamental theorem of calculus. The final

result follows now by plugging the value of δ2
n = cσ

2

n

4
5 into the prediction error bound (note that we

choose t = 1 in the bound by notation in lecture, which differs from the notation in the book).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 pt
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c) The solution follows the derivation in Example 13.20 in MW. We use the bound on the localized
Gaussian complexity of a norm-bounded RKHS introduced in lecture 6 (see Lemma on slide 8). We
then plug this into the critical inequality to choose a δn that satisfies it, thus bounding the prediction
error with high probability.

We start from the aforementioned lemma in the lecture. Let us choose k ∈ N such that µ̂k = k−2α ≥
δ2 ≥ (k + 1)−2α = µ̂k+1 i.e. the index k of the smallest eigenvalue larger than δ.

G̃n(Wα
2 ([0, 1]); δ) ≤

√
2
n

√√√√ n∑
j=1

min{δ2, µ̂j}

=
√

2
n

√√√√ n∑
j=1

min{δ2,
1
j2α }

=
√

2
n

√√√√kδ2 +
n∑

j=k+1

1
j2α

(i)
≤
√

2
n

√
kδ2 +

∫ ∞
k+1

1
t2α

dt

=
√

2
n

√
kδ2 +O

(
(k + 1)1−2α

)
(ii)=
√

2
n

√
O (kδ2)

The resulting second term can be then upper bounded by an integral as we did in (i). In (ii) we use the
fact that, by the definition of k, kδ2 ≥ (k + 1)1−2α.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 pt

In order to get rid of the dependence on k, we can further upper bound kδ2 like kδ2 ≤ δ2− 1
α by using

the left-hand side inequality in the definition of k. We obtain that:

G̃n(Wα
2 ([0, 1]); δ) ≤

√
2
n

√
O (kδ2) ≤ O


√
δ2− 1

α

n


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 pt

Using Corollary 13.7 from MW it follows that in order to satisfy the critical inequality, it suffices

to choose a δ such that
√

δ2− 1
α

n ≤ O
(
δ2

σ

)
. After conveniently rearranging the terms we arrive at

δ2
n ≈

(
σ2

n

) 2α
2α+1 .

Plugging everything into the statement of Theorem 13.5 from MW, like we did for part a), concludes
the proof.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 pt

3 Sparse linear functions
We already looked at the complexity of linear function classes with a margin γ and `2 norm constraint in
previous homeworks and lectures. In this exercise we bound the Gaussian complexity of a smaller subset of
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`2 constrained balls i.e.

FB,s = {f(·) = 〈θ, x〉 : ‖θ‖0 ≤ s, ‖θ‖2 ≤ B}

This is a useful quantity as it gives intuition for why constraining the function class to sparse linear classifiers
(as in the computationally infeasible case of sparse linear regression) can help to decrease the sample complexity
below dimension d.

a) Define X ∈ Rn×d as consisting of rows x1, . . . , xn the sample covariate vectors. Let the matrix
XS ∈ Rn×|S| be the submatrix of X consisting of columns of X that are indexed by S. First show
that the Gaussian complexity Gn(FB,s(xn1 )) can be rewritten as 1√

n
E supθ〈θ, X

Tw√
n
〉. Use this fact to

establish Gn(FB,s(xn1 )) ≤ BEw max|S|=s ‖
X>S w
n ‖2.

b) Define wS = 1√
n
X>S w. Assuming that for all subsets S of cardinality s we have λmax

(X>S XS
n

)
≤ C2,

prove that
P(‖wS‖2 ≥

√
sC + δ) ≤ e−

δ2
2C2

Hint: The Euclidean norm is a Lipschitz function.

c) Use the preceding parts to show

Gn(FB,s(xn1 )) ≤ O(BC

√
s log( eds )

n
)

d) We use the set

F̃B,s = {f(·) = 〈θ, x〉 : ‖θ‖0 ≤ s,
‖Xθ‖2√

n
≤ B}

for bounding the prediction error of the best linear sparse approximation. Prove that

Gn(F̃B,s(xn1 )) ≤ O

B
√
s log( eds )

n


3.1 Solution

a) To rewrite the Gaussian complexity we simply rearrange some terms and use the matrix notation for
the points xn1 . We then use Cauchy-Schwarz inequality to pull out the supremum of ‖θ‖2 and arrive at
the final result. In what follows, we denote with � the elementwise product and for a set S ⊆ [d] and
the vector 1S ∈ Rn is defined as (1S)i = 1, for i ∈ S and 0 otherwise.

It is important to observe that any sparse θ with ‖θ‖0 ≤ s can be written as θ = θ � 1Sθ , where
Sθ ⊂ [d] is the set of indices of the non-zero values of θ and thus |Sθ| ≤ s.
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Gn(FB,s(xn1 )) = 1
n
E sup

θ

n∑
i=1

wi〈θ, xi〉

= 1√
n
E sup

θ

n∑
i=1
〈θ, wixi√

n
〉

= 1√
n
E sup

θ
〈θ, X

Tw√
n
〉 . . . . . .2 pt

= 1√
n
E sup
θ,|Sθ|=s

〈θ � 1Sθ ,
XTw√
n
〉

CS
≤ 1√

n
E sup
θ,|Sθ|=s

‖θ‖2
‖1TSθ �X

Tw‖2√
n

≤ BE max
|S|=s

‖XT
S w‖2

n
. . . . . .3 pt

b) A key insight for solving this is to notice that for any i ∈ [s], (wS)i is a linear combination of iid
standard Gaussians. This means that it is itself distributed according to a Gaussian N (0,

∑n
j=0(XS)2

ij).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 pt

Moreover it is important to point out that the norm of wS is C-Lipschitz wrt w because
‖wS‖ = ‖ 1√

n
XT
S w‖ ≤ C‖w‖. This allows us to use Theorem 2.26 from MW from which it follows that

‖wS‖ − E‖wS‖ is sub-Gaussian with parameter C.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 pt

E[‖wS‖2] = E

[
‖X

T
S w√
n
‖2

]
= E

[√
wTXSXT

S w

n

]
(i)
≤

√√√√E

[
wTXSXT

S w

n

]
=

√√√√E

[
tr
(
wTXSXT

S w
)

n

]

(ii)=

√√√√E

[
tr
(
XSXT

S ww
T
)

n

]
=

√√√√ tr
(
XSXT

S E
[
wwT

])
n

=

√
tr
(
XSXT

S

)
n

(iii)=

√√√√ s∑
i=0

λi

(
XSXT

S

n

)
≤

√√√√sλmax

(
XSXT

S

n

)
≤ C
√
s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 pt
This yields the following:

P
[
‖wS‖ ≥ C

√
s+ δ

]
≤ P

[
‖wS‖ ≥ E[‖wS‖] + δ

]
≤ e

−δ2

2C2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 pt

Inequality (i) follows from Jensen, in (ii) we have used the cyclic property of the trace. The identity (iii)
uses the fact that the trace of the matrix A is equal to the sum of its eigenvalues, denoted by λi(A).
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c) For point a) we have proved that the Gaussian complexity is bounded by the expectation of the
maximum of a finite collection of random variables.

As we stated in part b), the random variable ‖wS‖ − E‖wS‖ is zero-mean and sub-Gaussian with
parameter C for any S.
Notice that there are

(
d
s

)
ways to select the set S ⊂ [d]. We can use the inequality for the expectation

of the maximum of sub-Gaussian random variables that we derived in the previous homework, because
it applies for random variables that are not independent as well (as is the case here). Thus we arrive at
the following:

Gn(FB,s(xn1 )) ≤ BE max
|S|=s

‖XT
S w‖2

n

= B
C
√
s√
n

+BE max
|S|=s

‖wS‖2 − C
√
s√

n

≤ BC
√
s√
n

+BE max
|S|=s

‖wS‖2 − E‖wS‖2√
n

≤ BC
√
s√
n

+BO

C
√

log
(
d
s

)
n

 . . . . . .4 pt

(i)
≤ B

C
√
s√
n

+BO

C
√√√√s log

(
ed
s

)
n


(ii)
≤ BCO


√
s log( eds )

n

 . . . . . . . . . . . .1 pt

Inequality (i) employs the fact that
(
d
s

)
≤
(
ed
s

)s
and inequality (ii) follows from the fact that we ignore

constants (hiding them inside the big-O notation) and
√
s ≤

√
s log

(
ed
s

)
.

d) The main idea is to use the same arguments as before in parts a), b) and c) but applied for a different
Lipschitz function.

From part a) we have that:

Gn(FB,s(xn1 )) = 1√
n
E sup

θ
〈X

Tw√
n
, θ〉 = 1√

n
E sup
|S|=s

sup
θS

〈X
T
S w√
n
, θS〉

We can rewrite the inner product to take advantage of the upper bound on ‖Xθ√
n
‖2.
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Gn(FB,s(xn1 )) = 1√
n
E sup
|S|=s

sup
θS

〈X
T
S w√
n
, θS〉

= 1√
n
E sup
|S|=s

sup
θS

〈w, XSθS√
n
〉

= 1√
n
E sup
|S|=s

sup
θS

〈wS ,
XSθS√

n
〉

≤ B√
n
E sup
|S|=s

‖wS‖2

We denoted by wS the orthogonal projection of w onto span(XS) and by P [XS ] ∈ Rs×n the projection
operator. By the orthogonality of the projection, the norm of wS is 1-Lipschitz wrt w. So given parts
b) and c), the conclusion follows by taking C = 1√

n
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 pt

4 Bonus: Classification error bounds for hard margin support
vector machines (SVM)

In this exercise, we derive upper bounds for the 0− 1 classification error of hard margin SVMs, also called
max-`2-margin classifiers, and defined by:

θ̂ = argmax
θ∈Rd

min
(x,y)∈D

y
〈θ, x〉
‖θ‖2

(2)

where D = {(xi, yi)}ni=1 is the dataset consisting of n input features/label pairs. We remark that the
hard-margin SVM is obtained when running logistic regression until convergence on separable data.

For this exercise, we assume that the dataset D is generated by drawing iid samples form the following
generative data distribution (x, y) ∼ P where the labels y are uniformly distributed on {−1,+1} and the
input features are in the form of x = [yr, x̃] with x̃ ∼ N (0, Id−1). Furthermore, let γ be the max-`2-margin of
D in its last d− 1 coordinates, defined by

γ = max
θ∈Rd−1

min
(x,y)∈D

y
〈θ̂, x2:d〉
‖θ̂‖2

(3)

A simple geometric argument shows that the max-`2-margin classifier (up to rescalings) points in the same
direction as

θ̂ = [r, γθ̃] (4)
where ‖θ̃‖2 = 1.

a) Compute the test error of the max-`2-margin classifier in function of γ and r, i.e. for (x, y) ∼ P, what is
P [yθ̂>x < 0]? What is the dependence on r?

b) Note that γ is a random variable dependent on n and d. We aim to understand the dependence of the
accuracy on n and d. Hence, we want to derive non-asymptotic high probability bounds on γ. Let
X̃ ∈ Rn×(d−1) be the datamatrix in the last d− 1 dimensions, i.e. row i in X̃ equals xi,[2:d]. Show that

γ ≤ smax(X̃)√
n

(5)

where smax(X̃) is the largest singular value of the datamatrix X.

10



c) Recall that each entry of X̃ is i.i.d. standard normal Gaussian distributed. To achieve non-asymptotic
bounds on smax(X̃), we first prove the following Lemma in two steps.

Lemma 1. Let X ∈ R(n×d) be such that all entries are i.i.d. normal distributed. Then,
E
[
smax(X)

]
<
√
d+
√
n

i) Recall that smax(X) = maxu∈Sd−1,v∈Sn−1〈Au, v〉 equals the supremum of the Gaussian process
Xu,v = 〈Au, v〉. Define Yu,v = 〈g, u〉+ 〈h, v〉 where g ∈ Rd and h ∈ Rn are independent standard
normal distributed variables. Show that

E
∣∣Xu,v −Xu′,v′

∣∣2 ≤ E
∣∣Yu,v − Yu′,v′ ∣∣2 (6)

ii) To finish the proof of Lemma 1, we use the following important result:

Lemma 2: Slepian’s inequality Consider two Gaussian processes (Xt)t∈T and (Yt)t∈T whose
increments satisfy Equation (4) for all ((u, v), (u′, v′)) ∈ T . Then E[supt∈TXt] ≤ E[supt∈TYt]

Prove Lemma 1 using Lemma 2.

d) Use Theorem 2.26 in MW and Lemma 1 to prove that smax(X̃) ≤
√
d+
√
n+ t with a probability of at

least 1− 2e−t2/2.

4.1 Solution
a) Using that θ̂ = [r, γθ̃], we find that

P
[
yθ̂>x < 0

]
= P

yrx1 + γ

d∑
i=2

xiθ̃i−1 < 0

 = P

r2 + γ

d∑
i=2

xiθ̃i−1 < 0

 , (7)

where we used that x1 = yr. Note that
∑d
i=2 xiθ̃i−1 is a sum of independent Gaussian distributed

random variables (RVs). Recall that the sum of two Gaussian distributed RVs is again a Gaussian
distributed RV with a variance equaling the square sum of the variances and the mean the sum of the
means. Using this fact, we find that

∑d
i=2 xiθ̃i−1 is standard normal distributed since

∑d−1
i=1 θ̃

2 = 1 and

P
[
yθ̂>x < 0

]
= Φ

(
−r

2

γ

)
, (8)

where Φ denotes the cumulative density function of a normal distributed RV. Clearly, the test error is
monotonically decreasing in r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 pt

b) We can rewrite the definition of the max-`2-margin γ as follows:

γ = max
θ∈Rd−1,‖θ‖2=1

min
(x,y)∈D

y〈θ̃, x2:d〉. (9)

Let 1n denote the all ones vector of size n and recall that the labels y are independent of the last d− 1
coordinates of the input features x. Using the definition of X̃ and the fact that a standard normal
distributed RV times an independet RV which take the values +1 or −1 remains a standard normal
distributed RV, we can write

γ = max
θ∈Rd−1,‖θ‖2=1

b

subject to θ>X̃ > b1n,
(10)

11



where the greater than sign is elementwise. Recall the following important property of the maximal
singular value: for any vector θ with ‖θ‖2 = 1, we have that ‖θ>X̃‖2 < smax(X̃). Hence, taking the
norms on both sides yields smax > b‖1n‖2 such that b < smax/

√
n. . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 pt

c) i) Using the definition of Xu,v, we find that

E[|Xu,v −Xu′,v′ |2] = E
[∣∣〈Au, v〉 − 〈Au′, v′〉∣∣2] = E


∣∣∣∣∣∣
d∑
i=1

n∑
j=1

ai,j(uiv′j − u′ivj)

∣∣∣∣∣∣
2
 , (11)

where ai,j is the (i, j)th entry of A and normal distributed. Since all entries of A are i.i.d. standard
normal distributed the cross terms of the expectation are 0, i.e. E[ai,jai′,j′ ] = 0 if i 6= i′ or j 6= j′

and the non-cross terms satisfy E[a2
i,j ] = 1. We find that

E
[∣∣Xu,v −Xu′,v′

∣∣2] =
∣∣〈u, v〉 − 〈u′, v′〉∣∣2 =

∣∣〈u− u′, v − v′〉∣∣2 ≤ ‖u− u′‖2
2 + ‖v − v′‖2

2. (12)

Similarly, from the right hand side, where in this case h, g are vectors as entries i.i.d. normal
distributed RVs, we find that

E
[∣∣Yu,v − Yu′,v′∣∣2] = ‖u− u′‖2 + ‖v − v′‖2. (13)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 pt

ii) Using Slepian’s Lemma, we find that

E
[
smax(X)

]
= E

[
max
(u,v)

Xu,v

]
≤ E

[
max
(u,v)

Yu,v

]
= E

[
max
(u,v)
〈g, u〉+ 〈h, v〉

]
. (14)

Clearly, maxu〈g, u〉 is achieved by setting u = g
‖g‖2

. Hence, we find that

E[smax(X)] ≤ ‖g‖2 + ‖h‖2 =
√
d+
√
n. (15)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 pt

d) We can write the matrix X as a vector of size Rd×n. If the maximum singular value functional is a
1-Lipschitz function, then Theorem 2.26 yields the result directly. Note that for any matrices A1, A2 of
size Rn×d it holds that

∣∣smax(A1)− smax(A2)
∣∣ =

∣∣∣∣∣ max
θ∈Rd,‖θ‖2=1

‖A1θ‖2 − max
θ′∈Rd,‖θ‖2=1

‖A2θ
′‖2

∣∣∣∣∣ . (16)

Without loss of generality, we assume that smax(A1) > smax(A2). We find∣∣∣∣∣ max
θ∈Rd,‖θ‖2=1

‖A1θ‖2 − max
θ′∈Rd,‖θ‖2=1

‖A2θ
′‖2

∣∣∣∣∣ ≤ max
θ∈Rd,‖θ‖2=1

‖A1θ‖2 − ‖A2θ‖2 ≤ ‖A1 −A2‖F , (17)

where ‖A1 −A2‖F is the Frobenius norm of A1 −A2. Hence, the maximum singular value functional is
a 1-Lipschitz function, which concludes the proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 pt
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