GML 23 - Lecture 12 (Interactive Session): Minimax lower bound for semi-supervised learning

We will the following tight lower bound on the estimation error:
Theorem 1 (SSL Minimax Rate for Estimation Error). For any $0<s \leq 1$ the following holds when $n_{u} \gtrsim(1 / s)^{2}$, $n_{l} \gtrsim \frac{\log n_{u}}{s^{2}}$ and $d \geq 2$.

$$
\inf _{\mathcal{A}_{S S L}} \sup _{\left\|\theta^{*}\right\|=s} \mathbb{E}\left[\mathcal{R}_{\text {estim }}\left(\mathcal{A}_{S S L}\left(\mathcal{D}_{l}, \mathcal{D}_{u}\right), \theta^{*}\right)\right] \gtrsim \min \left\{s, \sqrt{\frac{d}{n_{l}+s^{2} n_{u}}}\right\}
$$

We will prove Theorem 1 via Fano's method. The proof is divided into the following exercises:

Question 1: Fano's method for GMMs

Consider an arbitrary set of predictors $\mathcal{M}=\left\{\theta_{i}\right\}_{i=0}^{M}$. Prove the following:

$$
\begin{align*}
& \inf _{\mathcal{A}_{\mathrm{SSL}}}^{\sup _{\left\|\theta^{*}\right\|=s} \mathbb{E}_{\mathcal{D}_{l}, \mathcal{D}_{u}}\left[\mathcal{R}_{\mathrm{estim}}\left(\mathcal{A}_{\mathrm{SSL}}\left(\mathcal{D}_{l}, \mathcal{D}_{u}\right), \theta^{*}\right)\right] \geq} \\
& \frac{1}{2} \min _{i, j \in[M], i \neq j}\left\|\theta_{i}-\theta_{j}\right\|\left(1-\frac{1+n_{l} \max _{i \in[M]} D\left(P_{X Y}^{\theta_{i}} \| P_{X Y}^{\theta_{0}}\right)+n_{u} \max _{i \in[M]} D\left(P_{X}^{\theta_{i}} \| P_{X}^{\theta_{0}}\right)}{\log M}\right) \tag{1}
\end{align*}
$$

where $D(\cdot \| \cdot)$ denotes the KL divergence.
Hint: first, prove that given a collection of distributions $\left\{P_{1}, \ldots, P_{M}\right\}$ and their mixture distribution $\bar{Q}=$ $\frac{1}{M} \sum_{i=1}^{M} P_{i}$, it holds that

$$
\frac{1}{M} \sum_{i=1}^{M} D\left(P_{i} \| \bar{Q}\right) \leq \frac{1}{M} \sum_{i=1}^{M} D\left(P_{i} \| Q\right)
$$

for any other distribution Q (Exercise 15.11 in MW).

Solution

We first prove the hint. Assuming existence of all densities, we write for any Q :

$$
\begin{aligned}
\frac{1}{M} \sum_{i=1}^{M} D\left(P_{i} \| Q\right) & =\frac{1}{M} \sum_{i=1}^{M} \int p_{i}(x) \log \left(\frac{p_{i}(x)}{q(x)}\right) d x=\frac{1}{M} \sum_{i=1}^{M} \int p_{i}(x) \log \left(\frac{1}{q(x)}\right) d x+\text { const } \\
& =\int \bar{q}(x) \log \left(\frac{\bar{q}(x)}{q(x)}\right) d x+\text { const }=D(\bar{Q} \| Q)+\text { const }
\end{aligned}
$$

where all const terms do not depend on the distribution Q. Thus, the original expression is minimized by the mixture distribution $Q=\bar{Q}$ and the statement follows.
To prove (1), we first note that our set \mathcal{M} is a 2δ-packing with $\delta=\frac{1}{2} \min _{i, j \in[M], i \neq j}\left\|\theta_{i}-\theta_{j}\right\|_{2}$. Combining the estimation vs. testing lemma (MW Prop 15.1) and Fano's method, we obtain

$$
\begin{aligned}
& \inf _{\mathcal{A}_{\mathrm{SSL}}} \sup _{\left\|\theta^{*}\right\|=s} \mathbb{E}_{\mathcal{D}_{l}, \mathcal{D}_{u}}\left[\mathcal{R}_{\mathrm{estim}}\left(\mathcal{A}_{\mathrm{SSL}}\left(\mathcal{D}_{l}, \mathcal{D}_{u}\right), \theta^{*}\right)\right] \geq \\
& \frac{1}{2} \min _{i, j \in[M], i \neq j}\left\|\theta_{i}-\theta_{j}\right\|\left(1-\frac{I(\mathcal{D}, J)+\log 2}{\log M}\right)
\end{aligned}
$$

For the mutual information, it holds that

$$
I(\mathcal{D}, J)=\frac{1}{M} \sum_{i=1}^{M} D\left(P_{\theta_{i}} \| \bar{Q}\right)
$$

see also MW Eq. 15.30. We thus have

$$
I(\mathcal{D}, J)=\frac{1}{M} \sum_{i=1}^{M} D\left(P_{\theta_{i}} \| \bar{Q}\right) \leq \frac{1}{M} \sum_{i=1}^{M} D\left(P_{\theta_{i}} \| P_{\theta_{0}}\right)
$$

where we have used the hint with the choice $Q=P_{\theta_{0}}$. We now recall that $P_{\theta_{i}}$ corresponds to the product distribution of n_{l} labeled and n_{u} unlabeled samples, i.e. $P_{\theta_{i}}=\left(P_{X Y}^{\theta_{i}}\right)^{n_{l}} \times\left(P_{X}^{\theta_{i}}\right)^{n_{u}}$. Using the decoupling property of the KL divergence for product distributions, we thus obtain

$$
\frac{1}{M} \sum_{i=1}^{M} D\left(P_{\theta_{i}} \| P_{\theta_{0}}\right)=\frac{1}{M} \sum_{i=1}^{M}\left(n_{l} D\left(P_{X Y}^{\theta_{i}} \| P_{X Y}^{\theta_{0}}\right)+n_{u} D\left(P_{X}^{\theta_{i}} \| P_{X}^{\theta_{0}}\right)\right)
$$

We now upper bound both averages by the maximum to obtain

$$
I(\mathcal{D}, J) \leq \frac{1}{M} \sum_{i=1}^{M} D\left(P_{\theta_{i}} \| P_{\theta_{0}}\right) \leq n_{l} \max _{i \in[M]} D\left(P_{X Y}^{\theta_{i}} \| P_{X Y}^{\theta_{0}}\right)+n_{u} \max _{i \in[M]} D\left(P_{X}^{\theta_{i}} \| P_{X}^{\theta_{0}}\right)
$$

Inserting this in Fano's bound and additionally bounding $\log 2<1$ yields the claim.

Question 2: Upper bounds on KL divergence for GMMs

Assume that you are given a packing $\left\{\theta_{i}\right\}_{i=0}^{M}$ which is constructed as follows: given positive absolute constants c_{0} and C_{0}, we take a c_{0}-packing $\tilde{\mathcal{M}}=\left\{\psi_{1}, \ldots, \psi_{M}\right\}$ on the unit sphere S^{d-2} such that $|\tilde{\mathcal{M}}| \geq e^{C_{0} d}$. For an absolute constant $\alpha \in[0,1]$, we now construct the following packing:

$$
\mathcal{M}=\left\{\theta_{i}=s\left[\begin{array}{c}
\sqrt{1-\alpha^{2}} \\
\alpha \psi_{i}
\end{array}\right], \quad \psi_{i} \in \tilde{\mathcal{M}}\right\}
$$

and define $\theta_{0}=[s, 0, \ldots, 0]$.

1) Visualize the given packing and study its properties. Where are θ_{0} and θ_{i} located? What is the distance between different elements of the packing? Is there an intuition for this particular choice? Discuss with your partner why this choice of a packing is better for use in (1) as compared to, for instance, a uniform packing on the sphere S^{d-1}.
2) Compute the KL divergence between two GMMs with identity covariance matrices, i.e. show that

$$
\begin{equation*}
D\left(P_{X Y}^{\theta_{i}} \| P_{X Y}^{\theta_{0}}\right)=\frac{1}{2}\left\|\theta_{i}-\theta_{0}\right\|_{2}^{2} \leq \alpha^{2} s^{2}, \text { for all } i \in[M] \tag{2}
\end{equation*}
$$

Solution

1) The given packing maximizes the tradeoff between the max and the min in the lower bound. $\left(\theta_{i}\right)_{i}$ are points on a "circle" around $\theta_{0}=(s, 0, \ldots, 0)$ which is located on the sphere S^{d-1}. Since we have chosen $\left(\theta_{i}\right)_{i}$ to be the largest possible (up to constants) packing of $S^{d-2},\left(\theta_{i}\right)_{i}$ are the maximum amount of points with distance at least c_{0} from each other while simultaneously being all relatively close to θ_{0} due to the geometry of the sphere. In other words, this construction puts as many points as possible close to some point θ_{0} (chosen here to be $(s, 0, \ldots, 0)$ for simplicity), while maintaining as large as possible distance between the points themselves (packing). This allows us to optimize the tradeoff between the term $\frac{1}{2} \min _{i, j \in[M], i \neq j}\left\|\theta_{i}-\theta_{j}\right\|_{2}$ (which we want to maximize) and $D\left(P_{\theta_{i}} \| P_{\theta_{0}}\right)$ (which we want to minimize).
2) We compute

$$
\begin{aligned}
& D\left(P_{X Y}^{\theta_{i}} \| P_{X Y}^{\theta_{0}}\right)=\int p_{X Y}^{\theta_{i}}(x, y) \log \frac{p_{X Y}^{\theta_{i}}(x, y)}{p_{X Y}^{\theta_{0}}(x, y)} d x d y= \\
& \frac{1}{2} \int p^{\theta_{i}}(x \mid Y=1) \log \frac{p^{\theta_{i}}(x \mid Y=1)}{p^{\theta_{0}}(x \mid Y=1)} d x+\frac{1}{2} \int p^{\theta_{i}}(x \mid Y=-1) \log \frac{p^{\theta_{i}}(x \mid Y=-1)}{p^{\theta_{0}}(x \mid Y=-1)} d x .
\end{aligned}
$$

Recalling that $p^{\theta_{i}}(x \mid Y=1)=\frac{1}{(2 \pi)^{d / 2}} \exp \left(-\frac{1}{2}\left\|x-\theta_{i}\right\|_{2}^{2}\right)$ and $p^{\theta_{i}}(x \mid Y=-1)=\frac{1}{(2 \pi)^{d / 2}} \exp \left(-\frac{1}{2}\left\|x+\theta_{i}\right\|_{2}^{2}\right)$, we obtain

$$
D\left(P_{X Y}^{\theta_{i}} \| P_{X Y}^{\theta_{0}}\right)=\frac{1}{2} D\left(p^{\theta_{i}}(x \mid Y=1) \| p^{\theta_{0}}(x \mid Y=1)\right)+\frac{1}{2} D\left(p^{\theta_{i}}(x \mid Y=-1) \| p^{\theta_{0}}(x \mid Y=-1)\right)=\frac{1}{2}\left\|\theta_{i}-\theta_{0}\right\|_{2}^{2}
$$

where we have used that the KL divergence between two isotropic Gaussians with means μ_{1} and μ_{2} is equal to $\frac{1}{2}\left\|\mu_{1}-\mu_{2}\right\|_{2}^{2}$. Now due to the construction of the packing it holds for any i that

$$
\left\|\theta_{i}-\theta_{0}\right\|_{2}^{2}=\left(s-s \sqrt{1-\alpha^{2}}\right)^{2}+s^{2} \alpha^{2}\left\|\psi_{i}\right\|_{2}^{2}=2 s^{2}-2 s^{2} \sqrt{1-\alpha^{2}} \leq 2 s^{2} \alpha^{2}
$$

where we have used that for $0 \leq \alpha \leq 1$ it holds that $1-\sqrt{1-\alpha^{2}} \leq \alpha^{2}$. The claim then follows.

Question 3: Proof of Theorem 1

Assume that additionally to (2), we have proven the following upper bound for the KL divergence between marginal distributions:

$$
\begin{equation*}
D\left(P_{X}^{\theta_{i}} \| P_{X}^{\theta_{0}}\right) \leq C\left\|\frac{1}{s} \theta_{i}-\frac{1}{s} \theta_{0}\right\|^{2} \leq 2 C \alpha^{2} s^{4} \tag{3}
\end{equation*}
$$

Utilizing these two results as well as Question 1, prove Theorem 1. (You might need to optimize over one of the constants.)

Solution

Given the expression

$$
\frac{1}{2} \min _{i, j \in[M], i \neq j}\left\|\theta_{i}-\theta_{j}\right\|_{2}\left(1-\frac{1+n_{l} \max _{i \in[M]} D\left(P_{X Y}^{\theta_{i}} \| P_{X Y}^{\theta_{0}}\right)+n_{u} \max _{i \in[M]} D\left(P_{X}^{\theta_{i}} \| P_{X}^{\theta_{0}}\right)}{\log M}\right)
$$

from Question 1, we have for our packing $\frac{1}{2} \min _{i, j \in[M], i \neq j}\left\|\theta_{i}-\theta_{j}\right\|_{2} \geq \frac{1}{2} c_{0} s \alpha$ (follows direcly from θ_{i} definition). Furthermore, we have $\log M \leq C_{0} d$ (as $\left.|\tilde{\mathcal{M}}| \geq e^{C_{0} d}\right)$. Additionally, we insert both bounds for the KL divergence from Question 2 and 3 to obtain

$$
\inf _{\mathcal{A}_{\mathrm{SSL}}}^{\sup _{\left\|\theta^{*}\right\|=s} \mathbb{E}_{\mathcal{D}_{l}, \mathcal{D}_{u}}\left[\mathcal{R}_{\mathrm{estim}}\left(\mathcal{A}_{\mathrm{SSL}}\left(\mathcal{D}_{l}, \mathcal{D}_{u}\right), \theta^{*}\right)\right] \geq \frac{1}{2} c_{0} s \alpha\left(1-\frac{1+n_{l} \alpha^{2} s^{2}+2 C n_{u} \alpha^{2} s^{4}}{C_{0} d}\right) ~ . ~}
$$

The RHS is a cubic polynomial in α which we now want to maximize w.r.t. α. We obtain the maximum $\sqrt{\frac{C_{0} d-1}{3 s^{2} n_{l}+3 C_{1} s^{4} n_{u}}}$. Since $0 \leq \alpha \leq 1$ and the maximizing value can be larger than 1 , we set α to be $\alpha=$ $\min \left\{1, \sqrt{\frac{C_{0} d-1}{3 s^{2} n_{l}+3 C_{1} s^{4} n_{u}}}\right\}$. Inserting both values of α in the bound and neglecting multiplicative constants, we obtain the final result

$$
\inf _{\mathcal{A}_{\mathrm{SSL}}} \sup _{\left\|\theta^{*}\right\|=s} \mathbb{E}\left[\mathcal{R}_{\mathrm{estim}}\left(\mathcal{A}_{S S L}\left(\mathcal{D}_{l}, \mathcal{D}_{u}\right), \theta^{*}\right)\right] \gtrsim \min \left\{s, \sqrt{\frac{d}{n_{l}+s^{2} n_{u}}}\right\}
$$

