
GML 23 - Lecture 12 (Interactive Session): Minimax lower bound for
semi-supervised learning

We will the following tight lower bound on the estimation error:

Theorem 1 (SSL Minimax Rate for Estimation Error). For any 0 < s ≤ 1 the following holds when nu ≳ (1/s)2,
nl ≳

log nu

s2 and d ≥ 2:

inf
ASSL

sup
∥θ∗∥=s

E[Restim(ASSL(Dl,Du), θ∗)] ≳ min
{
s,

√
d

nl + s2nu

}
.

We will prove Theorem 1 via Fano’s method. The proof is divided into the following exercises:

Question 1: Fano’s method for GMMs
Consider an arbitrary set of predictors M = {θi}M

i=0. Prove the following:

inf
ASSL

sup
∥θ∗∥=s

EDl,Du
[Restim(ASSL(Dl,Du), θ∗)] ≥

1
2 min

i,j∈[M ],i̸=j
∥θi − θj∥

(
1 −

1 + nl maxi∈[M ] D(P θi

XY ∥P θ0
XY ) + nu maxi∈[M ] D(P θi

X ∥P θ0
X )

logM

)
,

(1)

where D(·∥·) denotes the KL divergence.

Hint: first, prove that given a collection of distributions {P1, ..., PM } and their mixture distribution Q =
1

M

∑M
i=1 Pi, it holds that

1
M

M∑
i=1

D(Pi∥Q) ≤ 1
M

M∑
i=1

D(Pi∥Q)

for any other distribution Q (Exercise 15.11 in MW).

Solution
We first prove the hint. Assuming existence of all densities, we write for any Q:

1
M

M∑
i=1

D(Pi∥Q) = 1
M

M∑
i=1

∫
pi(x) log

(
pi(x)
q(x)

)
dx = 1

M

M∑
i=1

∫
pi(x) log

(
1

q(x)

)
dx+ const

=
∫
q(x) log

(
q(x)
q(x)

)
dx+ const = D(Q∥Q) + const,

where all const terms do not depend on the distribution Q. Thus, the original expression is minimized by the
mixture distribution Q = Q and the statement follows.

To prove (1), we first note that our set M is a 2δ-packing with δ = 1
2 mini,j∈[M ],i̸=j ∥θi − θj∥2. Combining the

estimation vs. testing lemma (MW Prop 15.1) and Fano’s method, we obtain

inf
ASSL

sup
∥θ∗∥=s

EDl,Du
[Restim(ASSL(Dl,Du), θ∗)] ≥

1
2 min

i,j∈[M ],i̸=j
∥θi − θj∥

(
1 − I(D, J) + log 2

logM

)
.
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For the mutual information, it holds that

I(D, J) = 1
M

M∑
i=1

D(Pθi∥Q),

see also MW Eq. 15.30. We thus have

I(D, J) = 1
M

M∑
i=1

D(Pθi
∥Q) ≤ 1

M

M∑
i=1

D(Pθi
∥Pθ0),

where we have used the hint with the choice Q = Pθ0 . We now recall that Pθi
corresponds to the product

distribution of nl labeled and nu unlabeled samples, i.e. Pθi
= (P θi

XY )nl × (P θi

X )nu . Using the decoupling property
of the KL divergence for product distributions, we thus obtain

1
M

M∑
i=1

D(Pθi
∥Pθ0) = 1

M

M∑
i=1

(nlD(P θi

XY ∥P θ0
XY ) + nuD(P θi

X ∥P θ0
X )).

We now upper bound both averages by the maximum to obtain

I(D, J) ≤ 1
M

M∑
i=1

D(Pθi∥Pθ0) ≤ nl max
i∈[M ]

D(P θi

XY ∥P θ0
XY ) + nu max

i∈[M ]
D(P θi

X ∥P θ0
X ).

Inserting this in Fano’s bound and additionally bounding log 2 < 1 yields the claim.

Question 2: Upper bounds on KL divergence for GMMs
Assume that you are given a packing {θi}M

i=0 which is constructed as follows: given positive absolute constants c0
and C0, we take a c0-packing M̃ = {ψ1, ..., ψM } on the unit sphere Sd−2 such that |M̃| ≥ eC0d. For an absolute
constant α ∈ [0, 1], we now construct the following packing:

M =

θi = s

[√
1 − α2

αψi

]
, ψi ∈ M̃

 ,

and define θ0 =
[
s, 0, ..., 0

]
.

1) Visualize the given packing and study its properties. Where are θ0 and θi located? What is the distance
between different elements of the packing? Is there an intuition for this particular choice? Discuss with
your partner why this choice of a packing is better for use in (1) as compared to, for instance, a uniform
packing on the sphere Sd−1.

2) Compute the KL divergence between two GMMs with identity covariance matrices, i.e. show that

D(P θi

XY ∥P θ0
XY ) = 1

2∥θi − θ0∥2
2 ≤ α2s2, for all i ∈ [M ]. (2)

Solution
1) The given packing maximizes the tradeoff between the max and the min in the lower bound. (θi)i are

points on a “circle” around θ0 = (s, 0, ..., 0) which is located on the sphere Sd−1. Since we have chosen
(θi)i to be the largest possible (up to constants) packing of Sd−2, (θi)i are the maximum amount of
points with distance at least c0 from each other while simultaneously being all relatively close to θ0 due
to the geometry of the sphere. In other words, this construction puts as many points as possible close
to some point θ0 (chosen here to be (s, 0, ..., 0) for simplicity), while maintaining as large as possible
distance between the points themselves (packing). This allows us to optimize the tradeoff between the term
1
2 mini,j∈[M ],i̸=j ∥θi − θj∥2 (which we want to maximize) and D(Pθi

∥Pθ0) (which we want to minimize).

2) We compute

D(P θi

XY ∥P θ0
XY ) =

∫
pθi

XY (x, y) log p
θi

XY (x, y)
pθ0

XY (x, y)
dxdy =

1
2

∫
pθi(x|Y = 1) log p

θi(x|Y = 1)
pθ0(x|Y = 1)dx+ 1

2

∫
pθi(x|Y = −1) log p

θi(x|Y = −1)
pθ0(x|Y = −1)dx.
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Recalling that pθi(x|Y = 1) = 1
(2π)d/2 exp(− 1

2 ∥x − θi∥2
2) and pθi(x|Y = −1) = 1

(2π)d/2 exp(− 1
2 ∥x + θi∥2

2),
we obtain

D(P θi

XY ∥P θ0
XY ) = 1

2D(pθi(x|Y = 1)∥pθ0(x|Y = 1)) + 1
2D(pθi(x|Y = −1)∥pθ0(x|Y = −1)) = 1

2∥θi − θ0∥2
2,

where we have used that the KL divergence between two isotropic Gaussians with means µ1 and µ2 is
equal to 1

2 ∥µ1 − µ2∥2
2. Now due to the construction of the packing it holds for any i that

∥θi − θ0∥2
2 = (s− s

√
1 − α2)2 + s2α2∥ψi∥2

2 = 2s2 − 2s2
√

1 − α2 ≤ 2s2α2,

where we have used that for 0 ≤ α ≤ 1 it holds that 1 −
√

1 − α2 ≤ α2. The claim then follows.

Question 3: Proof of Theorem 1
Assume that additionally to (2), we have proven the following upper bound for the KL divergence between
marginal distributions:

D(P θi

X ∥P θ0
X ) ≤ C∥1

s
θi − 1

s
θ0∥2 ≤ 2Cα2s4. (3)

Utilizing these two results as well as Question 1, prove Theorem 1. (You might need to optimize over one of the
constants.)

Solution
Given the expression

1
2 min

i,j∈[M ],i̸=j
∥θi − θj∥2

(
1 −

1 + nl maxi∈[M ] D(P θi

XY ∥P θ0
XY ) + nu maxi∈[M ] D(P θi

X ∥P θ0
X )

logM

)

from Question 1, we have for our packing 1
2 mini,j∈[M ],i̸=j ∥θi − θj∥2 ≥ 1

2c0sα (follows direcly from θi definition).
Furthermore, we have logM ≤ C0d (as |M̃| ≥ eC0d). Additionally, we insert both bounds for the KL divergence
from Question 2 and 3 to obtain

inf
ASSL

sup
∥θ∗∥=s

EDl,Du [Restim(ASSL(Dl,Du), θ∗)] ≥ 1
2c0sα

(
1 − 1 + nlα

2s2 + 2Cnuα
2s4

C0d

)
.

The RHS is a cubic polynomial in α which we now want to maximize w.r.t. α. We obtain the maximum√
C0d−1

3s2nl+3C1s4nu
. Since 0 ≤ α ≤ 1 and the maximizing value can be larger than 1, we set α to be α =

min
{

1,
√

C0d−1
3s2nl+3C1s4nu

}
. Inserting both values of α in the bound and neglecting multiplicative constants, we

obtain the final result

inf
ASSL

sup
∥θ∗∥=s

E[Restim(ASSL(Dl,Du), θ∗)] ≳ min
{
s,

√
d

nl + s2nu

}
.
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