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Classical wisdom: Avoid fitting noise
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Traditionally: want to avoid fitting noise perfectly for better (optimal) generalization.



Double descent on neural networks

Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise
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@ After interpolation threshold, we have a second “"descent” (double descent)

Source: [Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever '20]



Harmless interpolation on neural networks

Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise
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@ For large models, interpolation is not worse than regularization (harmless interpolation)

Source: [Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever '20]



Are these observations unique to neural networks?

Analogous surprising observations can be made for linear models!

Here we run gradient descent on ||y — XWll; with wy, = 0 for y = Xw* + & with X, & standard Gaussians

@ Second Descent

after interpolation

— At convergence
- - Early stopped

d: # features
n: # samples

Harmless interpolation

for large d/n




Interpolating models on two ends of analyzability

Neural network interpolators Linear interpolators

« are found by using 1st order methods + are interpolators that minimize
to minimize non-convex losses ‘ convex optimization problems

« feature learning with overparameterization » fixed d features with overparameterization
~ e.g. width of hidden layers ~ in terms of how much larger d > n

complexity to analyze model



High-level talk outline

- Observations for interpolating models

o "Second” descent

o Harmless interpolation

- Explanation for the phenomena for linear interpolators

o Previous intuition: Bias-variance trade-off by varying degree overparameterization
o New complementary intuition: Bias-variance trade-off by varying inductive bias

o Tight bounds show how moderate inductive bias can yield fast error rates



Previous work for min-#,-norm interpolators

— MSE
Bias
Variance

. . 2 2
Interpolators W = argmin,, ||W||2 s.t.y = Xw vs. Regularized est|mator:||y — XW||2 + /1||W||2

Linear model y; = (w*, x;) + & with i.i.d. x; ~ N(0,1), some &; ~ N(0,02)
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Previous bounds* explain harmless interpolation & second descent: As —increases, variance decreases!

IHMRT 19, MM"19, BLLT "19, MVSS '20]




Previous work for min-#,-norm interpolators

. . 2 2
Interpolators W = argmin,, ||w||2 s.t.y = Xw vs. Regularized est|mator:||y — XW||2 + /1||W||2

Linear model y; = (w*, x;) + & with i.i.d. x; ~ N(0,1), some &; ~ N(0,02)
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Are we happy? No, as opposed to NN, error overall is actually high for large % as the bias increases!




What's missing? Structure...

Problem: Estimator has no “clue” where to search (all directions are equally valid)
« Line of work shows that min-#,-interpolator can generalize well*

but only for very specialized covariance X % in practice X is fixed!

Question: What kind of interpolators can learn w* well for large d > n?

Classical intuition for d > n: good estimation only possible if
* weassume and

« the estimator has a strong matching inductive bias encouraging structural simplicity

F[BLLT 19, TB 20, MNSBHS 21, LS 22]



Benetfits of strong inductive bias (recap)

Estimators with weak (no) inductive bias: encouraging small ||W||2 norm

Matching strong inductive bias : small ||W||O/||W||1 norm encouraging sparsity structure

Noiseless Basi . _ _y Perfect recovery
y = Xw* asis pursuit: argmin,, [|lwl| s.t. y = Xw w.h.p. for n~s log d
‘ when observations are noisy
Estimation error
Noisy ) . (s log d)
. : _ minimax rate O
= Xw*+ & Lasso: argminy, ||y — Xw|[3 + |Iw|,

for optimal A



Old: Bias-variance trade-off via model complexity

Estimation error

Noisy
; . ; _ 2 slogd
Y= Xw* +e Lasso: argminy, |ly — Xw||3 + |lwll; 0( - )
for optimal 4
MSE

optimal 4
bias ></ ¢
variance >

decreasing fit of noise via increasing 4

But interpolators cannot attenuate noise-fitting by choosing an optimal A!




Our work: Bias-variance trade-off via inductive bias

Noisy , . P :
y=Xw* + ¢ Min-£,-norm interpolation W = argmin,, ||w||p s.t.y = Xw
A
MSE
\
sweet spot
N >< *
variance ™
p=1 p=2

decreasing “strength of inductive bias” via increasing p

Interpolators cannot attenuate by increasing p (decreasing structural bias)!




Setting for presentation of our results (simplified)

+  Function space: linear models f(x) = (w, x) with x, w € R%
- Data model for n samples: y;, = (', x;) + & with x; ~ N(0,1) and noise §; ~ N(0,02)
with sparse (for simplicity of presentation)

« Degree of overparameterization: d = nf, g > 1

*  Minimum-£,-norm interpolators for p € [1,2]: W = argmin,, ||W||p s.t.y = Xw

. . ~ 2
+  Performance measure: prediction error E,_y ) ((x, W —w"))* = ||W - W*||



Recap forp = 2

Noisy , . P :
y=Xw* + ¢ Min-£,-norm interpolation W = argmin,, ||w||p s.t.y = Xw

a

MSE

\
sweet spot
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variance s
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: : : . 2
For isotropic Gaussians, || —w*||” > ¢ > 0forany § > 1(d < nf)evenasn - o




(Slow) rate forp =1

Previous work for the i.i.d. noise case:

Q (az/log (%)) lower bounds [MVSS "19] 0(c?) upper bounds [KZSS 21, CLG '20]

(who studied adversarial, vanishing noise)

Theorem [WDY' 21](simplified) - Tight bounds for min-€;-norm interpolators

There exists a universal constant ¢ > 0, s.t. wheneverd =nf with > 1,n > cw.h.p.

1w — wH||? —0—24_0 e
~ log (d/n) log3/2 (d/n)




(Slow) rate forp =1

Theorem [WDY' 21](simplified) - Tight bounds for min-#;-norm interpolators

There exists a universal constant ¢ > 0, s.t. wheneverd = nf with g > 1,n>cw.h.p.
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*in [DRSY 22]



(Slow) rate forp =1

ONNC

Theorem [WDY' 21](simplified) - Tight bounds for min-£1-norm interpolators

g2

® 2
[lw —w*||” = S —

There exists a universal constant ¢ > 0, s.t. wheneverd =nf with g > 1,n>cw.h.p.

o( ((B-1) log n)3/2)

g2

(plugging in d,n relation)

Second Descent after interpolation

Harmless interpolation for large

J Yes! Variance decreases, similar intuition as for p = 2

x No! Interpolator Q (ﬁ) vs. regularized 0 (s IC;lgn)



Our work: Bias-variance trade-off via inductive bias

Noisy
y=Xw*+e¢€

Min-£,-norm interpolation W = argmin,, ||w||p s.t.y = Xw
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So far the extremes of very strong (p = 1) and no (p = 2) inductive bias perform badly



Fast rates with p € (1,2)

Theorem [DRSY' 22] (informal) - Upper & lower bounds for min-£,-norm interpolators

Fordznﬁwith1<,8S§

2 and min-£,-norm interpolators with 1 < p < 2 and n large enough,
=

we obtain with high probability, error rates of order O(n~%) with a as in graph below

constant 0.0 5= mm e
S 0.2
c
o © /
0.4+
v o
1 a | N P Minimax rate
Q 6 0.6 1 —— p=1.01
10) —o— p=1.1
v 4(-0’ —n— p=1.2
“~ 0.8 —— p=1.4
--- p=1land2
1 | o
rate = 104 e A T
1.0 1.5 2.0 2.5 3.0 3.5 4.0

degree of overparameterization 8

« order-matching upper & lower bound

« forfixed B, some p > 1 close to 1 gets best rate

« forf =~ 2, ratescloseto 0 (%)

Note: technique applies to classification (see paper)
and allows extension to X # I and s-sparse w*
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Fast rates with p € (1,2)

Theorem [DRSY' 22] (informal) - Upper & lower bounds for min-£,-norm interpolators

Ford =nf with1<p < P2 and min-£,-norm interpolators with 1 < p < 2 and n large enough,

p-1

we obtain with high probability, error rates of order O(n~%) with a as in graph below
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Fast rates with p € (1,2) - caveat...

Theorem [DRSY' 22] (informal) - Upper & lower bounds for min-£,-norm interpolators

Ford =nf with1<p < P2 and min-£,-norm interpolators with 1 < p < 2 and n large enough,

p-1

we obtain with high probability, error rates of order O(n~%) with a as in graph below
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Caveat:
« “Large enough” actually requires

1

S<p—1-
ostogd S P 1 - very large d

m) cannot obtain best p for given 8
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Our work: Bias-variance trade-off via inductive bias

Noisy , . P :
y=Xw* + ¢ Min-£,-norm interpolation W = argmin,, ||w||p s.t.y = Xw
A
MSE >
bias
|
variance
e ——— —
p=1: 1<p<2 p =2:

rate O (;) 0 ( 1 ) rate O(1)



Bias-variance tradeoff for p € (1,2)

For p = 1, variance and “sensitivity to noise” larger than forp = 2

— increasing d vs. n does not regularize enough even though it has relatively small bias.
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Trade-off between bias and variance for interpolators via strength of inductive bias!




Experimental results for classification

Experimental results: hard-£,-margin SVM for o: proportion of random label flips
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Synthetic experiment: Real-world experiment:
Isotropic Gaussians with d ~ 5000,n ~ 100 Leukemia dataset with d ~ 7000,n ~ 70
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The tale of two “new” bias-variance trade-offs

Previous intuition for interpolators: Our new intuition for interpolators
#w = argmin,, ||w||p s.t.y =Xw w = argmin,, ||w||p s.t.y =Xw
Bias-variance trade-off via overparameterization Bias-variance tradeoff via inductive bias
\ A
1 MSE —»
sweet sweet
spot spot
v — bias >< v
«—— Vvariance \‘

p=1 p=2

decreasing effect of noise via increasing d,. s /n decreasing "“strength of inductive bias” via increasing p
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Papers discussed in the talk

_/"\_SML group: sml.inf.ethz.ch

Wang*, Donhauser*, Yang “Tight bounds for minimum 11-

norm interpolation of noisy data”, AISTATS 22

Donhauser, Ruggeri, Stojanovic, Yang “Fast rates for noisy
interpolation require rethinking the effects of inductive bias”,

ICML 22
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