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Classical wisdom: Avoid fitting noise 

degree 𝑚 = 20 with ridge

Traditionally: want to avoid fitting noise perfectly for better (optimal) generalization. 

degree 𝑚 = 20
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Double descent on neural networks
Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise

Source: [Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever ’20]

interpolation threshold:
training error = 0

After interpolation threshold, we have a second “descent” (double descent)

follow blue curve:
model at convergence

1

Trained #
of epochs
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Harmless interpolation on neural networks 
Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise

For large models, interpolation is not worse than regularization (harmless interpolation)

Source: [Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever ’20]

2

compare
blue (at convergence)
with red curve 
(best stopping time)

Trained #
of epochs

interpolation threshold:
training error = 0
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Are these observations unique to neural networks?

M
SE

%𝑤
−
𝑤
⋆

""

Here we run gradient descent on 𝑦 − 𝑋𝑤
"
" with 𝑤# = 0 for 𝑦 = 𝑋𝑤⋆ + 𝜉 with 𝑋, 𝜉 standard Gaussians

Harmless interpolation

for large 𝑑/𝑛

Second Descent

after interpolation
1

2

Analogous surprising observations can be made for linear models!

interpolation threshold d: # features
n: # samples

At convergence
Early stopped
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Interpolating models on two ends of analyzability

Neural network interpolators

• are found by using 1st order methods 

to minimize non-convex losses 

• feature learning with overparameterization

∼ e.g. width of hidden layers

Linear interpolators

• are interpolators that minimize

convex optimization problems

• fixed 𝑑 features with overparameterization

∼ in terms of how much larger 𝑑 ≫ 𝑛

complexity to analyze model 
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High-level talk outline

• Observations for interpolating models

o ”Second” descent

o Harmless interpolation

• Explanation for the phenomena for linear interpolators

o Previous intuition: Bias-variance trade-off by varying degree overparameterization

o New complementary intuition: Bias-variance trade-off by varying inductive bias

o Tight bounds show how moderate inductive bias can yield fast error rates
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Previous work for min-ℓ!-norm interpolators
Interpolators %𝑤 = argmin$ 𝑤

"
s. t. 𝑦 = 𝑋𝑤 vs. Regularized estimator: 𝑦 − 𝑋𝑤

"
"
+ 𝜆 𝑤

"
"

Linear model 𝑦% = ⟨𝑤⋆, 𝑥%⟩ + 𝜉% with i.i.d. 𝑥% ∼ 𝑁(0, I), some 𝜉% ∼ 𝑁 0, 𝜎"

M
SE

%𝑤
−
𝑤
⋆

""

Previous bounds* explain harmless interpolation & second descent: As &
'

increases, variance decreases!

*[HMRT’19, MM’19, BLLT ’19, MVSS ‘20] 
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Previous work for min-ℓ!-norm interpolators
Interpolators %𝑤 = argmin$ 𝑤

"
s. t. 𝑦 = 𝑋𝑤 vs. Regularized estimator: 𝑦 − 𝑋𝑤

"
"
+ 𝜆 𝑤

"
"

Linear model 𝑦% = ⟨𝑤⋆, 𝑥%⟩ + 𝜉% with i.i.d. 𝑥% ∼ 𝑁(0, I), some 𝜉% ∼ 𝑁 0, 𝜎"

Are we happy? No, as opposed to NN, error overall is actually high for large &
'

as the bias increases!

M
SE

%𝑤
−
𝑤
⋆

""

Bayes error
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What’s missing? Structure…

Problem: Estimator has no “clue” where to search (all directions are equally valid)

• Line of work shows that min-ℓ"-interpolator can generalize well*

but only for very specialized covariance Σ in practice Σ is fixed! 

Classical intuition for 𝑑 ≫ 𝑛: good estimation only possible if 

• we assume simple structure of 𝒘⋆ (such as sparsity) and

• the estimator has a strong matching inductive bias encouraging structural simplicity

Question: What kind of interpolators can learn 𝑤⋆ well for large 𝑑 ≫ 𝑛?

*[BLLT ‘19, TB ‘20, MNSBHS ’21, LS ‘22]
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Benefits of strong inductive bias (recap)
Example for structural simplicity: sparsity 𝑤⋆

#
= 𝑠 ≪ 𝑑

Estimators with weak (no) inductive bias: encouraging small 𝑤
"

norm

Matching strong inductive bias : small 𝑤 #/ 𝑤 ( norm encouraging sparsity structure

Basis pursuit: argmin$ 𝑤
(
𝑠. 𝑡. 𝑦 = 𝑋𝑤

Lasso: argmin) 𝑦 − 𝑋𝑤| "" + 𝜆 𝑤 |(

Noiseless
𝑦 = 𝑋𝑤⋆

Noisy
𝑦 = 𝑋𝑤⋆ + 𝜉

when observations are noisy

Perfect recovery
w.h.p. for 𝑛~𝑠 log 𝑑

Estimation error
minimax rate 𝑂 * +,- &

'
for optimal 𝜆
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Old: Bias-variance trade-off via model complexity

Lasso: argmin) 𝑦 − 𝑋𝑤| "" + 𝜆 𝑤 |(
Noisy

𝑦 = 𝑋𝑤⋆ + 𝜖

Estimation error
𝑂 * +,- &

'
for optimal 𝜆

optimal 𝜆

decreasing fit of noise via increasing 𝜆

variance

bias

MSE

But interpolators cannot attenuate noise-fitting by choosing an optimal 𝜆!
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Our work: Bias-variance trade-off via inductive bias

decreasing “strength of inductive bias” via increasing 𝑝
p=1 p=2

Min-ℓ.-norm interpolation %𝑤 = argmin$ 𝑤
.
𝑠. 𝑡. 𝑦 = 𝑋𝑤

Noisy
𝑦 = 𝑋𝑤⋆ + 𝜖

variance

bias

MSE

sweet spot

Interpolators cannot attenuate by increasing 𝑝 (decreasing structural bias)!



14

Setting for presentation of our results (simplified)

• Function space: linear models 𝑓 𝑥 = ⟨𝑤, 𝑥⟩ with 𝑥, 𝑤 ∈ ℝ&

• Data model for 𝒏 samples: 𝑦% = ⟨𝑤⋆, 𝑥%⟩ + 𝜉% with 𝑥% ∼ 𝑁(0, 𝐼) and noise 𝜉% ∼ 𝑁(0, 𝜎")

with sparse 𝑤⋆ = (1,0, … , 0) with unknown location (for simplicity of presentation)

• Degree of overparameterization: 𝑑 ≍ 𝑛/, 𝛽 > 1

• Minimum-ℓ𝐩-norm interpolators for 𝒑 ∈ [𝟏, 𝟐]: %𝑤 = argmin$ 𝑤
.
s. t. 𝑦 = 𝑋𝑤

• Performance measure: prediction error 𝔼1∼3 #,5 𝑥, %𝑤 − 𝑤⋆ " = %𝑤 − 𝑤⋆ "
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For isotropic Gaussians, %𝑤 − 𝑤⋆ "
> 𝑐 > 0 for any 𝛽 > 1 (𝑑 ≍ 𝑛/) even as 𝑛 → ∞

Recap for 𝑝 = 2

p=1 p=2

variance

bias

MSE

sweet spot

Min-ℓ.-norm interpolation %𝑤 = argmin$ 𝑤
.
𝑠. 𝑡. 𝑦 = 𝑋𝑤

Noisy
𝑦 = 𝑋𝑤⋆ + 𝜖
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(Slow) rate for 𝑝 = 1

Previous work for the i.i.d. noise case:

Ω 𝜎"/ log &
'

lower bounds [MVSS ‘19]            𝑂(𝜎") upper bounds  [KZSS ’21, CLG ‘20] 

(who studied adversarial, vanishing noise)

Theorem [WDY’ 21](simplified) – Tight bounds for min-ℓ(-norm interpolators

There exists a universal constant 𝑐 > 0, s.t. whenever 𝑑 ≍ 𝑛! with 𝛽 > 1, 𝑛 ≥ 𝑐 w.h.p. 

(𝑤 − 𝑤⋆ # =
𝜎#

log 𝑑/𝑛
+ 𝑂

𝜎#

log$/# 𝑑/𝑛
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(Slow) rate for 𝑝 = 1

• This is a lower & upper bound for Gaussian 𝑋

• Experimentally, the bound is also tight beyond 

Gaussian 𝑋, but hard to show!

Note: The same bound holds for classification

*in [DRSY ‘22]

M
SE

%𝑤
−
𝑤
⋆

""

Theorem [WDY’ 21](simplified) – Tight bounds for min-ℓ(-norm interpolators

There exists a universal constant 𝑐 > 0, s.t. whenever 𝑑 ≍ 𝑛! with 𝛽 > 1, 𝑛 ≥ 𝑐 w.h.p. 

(𝑤 − 𝑤⋆ # =
𝜎#

log 𝑑/𝑛
+ 𝑂

𝜎#

log$/# 𝑑/𝑛
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(Slow) rate for 𝑝 = 1

No! Interpolator Ω (
678 '

vs. regularized 𝑂 * 678 '
'

Yes! Variance decreases, similar intuition as for 𝑝 = 2

Harmless interpolation for large 𝛽

Second Descent after interpolation1

2

Theorem [WDY’ 21](simplified) – Tight bounds for min-ℓ(-norm interpolators

There exists a universal constant 𝑐 > 0, s.t. whenever 𝑑 ≍ 𝑛! with 𝛽 > 1, 𝑛 ≥ 𝑐 w.h.p. 

%𝑤 − 𝑤⋆ "
= 9!

(/;()678 '
+ 𝑂( 9!

( /;( 678 ')"/!
) (plugging in 𝑑, 𝑛 relation)
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Our work: Bias-variance trade-off via inductive bias

Min-ℓ.-norm interpolation %𝑤 = argmin$ 𝑤
.
𝑠. 𝑡. 𝑦 = 𝑋𝑤

Noisy
𝑦 = 𝑋𝑤⋆ + 𝜖

variance

bias

MSE

𝑝 = 2: 
rate Θ(1)

𝑝 = 1:
rate Θ (

678 '

So far the extremes of very strong (𝑝 = 1) and no 𝑝 = 2 inductive bias perform badly  
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Fast rates with 𝑝 ∈ 1,2
Theorem [DRSY’ 22]  (informal) – Upper & lower bounds for min-ℓ.-norm interpolators

For 𝑑 ≍ 𝑛! with 1 < 𝛽 ≤ &/#
&'(

, and min-ℓ&-norm interpolators with 1 < p < 2 and 𝑛 large enough, 

we obtain with high probability, error rates of order g𝑂(𝑛;=) with α as in graph below

rate ()

be
tte

r

• order-matching upper & lower bound

• for fixed 𝛽,  some 𝑝 > 1 close to 1 gets best rate

• for 𝛽 ≈ 2, rates close to g𝑂 (
'

Note: technique applies to classification (see paper)
and allows extension to  𝛴 ≠ 𝐼 and s-sparse 𝑤⋆

degree of overparameterization 𝛽

ra
te

 e
xp

on
en

t α

constant
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Fast rates with 𝑝 ∈ 1,2

Harmless interpolation

Second Descent after interpolation1

2

Theorem [DRSY’ 22]  (informal) – Upper & lower bounds for min-ℓ.-norm interpolators

For 𝑑 ≍ 𝑛! with 1 < 𝛽 ≤ &/#
&'(

, and min-ℓ&-norm interpolators with 1 < p < 2 and 𝑛 large enough, 

we obtain with high probability, error rates of order g𝑂(𝑛;=) with α as in graph below

rate ()

be
tte

r

degree of overparameterization 𝛽

ra
te

 e
xp

on
en

t α

constant
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Fast rates with 𝑝 ∈ 1,2 - caveat…  

Caveat:

• “Large enough” actually requires

(
678 678 &

≲ 𝑝 − 1 → very large d

• cannot obtain best 𝑝 for given 𝛽

Theorem [DRSY’ 22]  (informal) – Upper & lower bounds for min-ℓ.-norm interpolators

For 𝑑 ≍ 𝑛! with 1 < 𝛽 ≤ &/#
&'(

, and min-ℓ&-norm interpolators with 1 < p < 2 and 𝑛 large enough, 

we obtain with high probability, error rates of order g𝑂(𝑛;=) with α as in graph below

rate ()

be
tte

r

degree of overparameterization 𝛽

ra
te

 e
xp

on
en

t α

constant
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Our work: Bias-variance trade-off via inductive bias

Min-ℓ.-norm interpolation %𝑤 = argmin$ 𝑤
.
𝑠. 𝑡. 𝑦 = 𝑋𝑤

Noisy
𝑦 = 𝑋𝑤⋆ + 𝜖

variance

bias

MSE

𝑝 = 2: 
rate Θ(1)

𝑝 = 1:
rate Θ (

678 '

1 < 𝑝 < 2:

𝑂
1
𝑛=
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Bias-variance tradeoff for 𝑝 ∈ (1,2)

Es
tim

at
ed

 e
rr

or

For 𝑝 = 1, variance and “sensitivity to noise” larger than for 𝑝 = 2

→ increasing 𝑑 vs. 𝑛 does not regularize enough even though it has relatively small bias. 

Trade-off between bias and variance for interpolators via strength of inductive bias!

M
SE

 
%𝑤
−
𝑤
⋆

""

for 𝑑 = 20000, 𝑛 = 400 for 𝑑 = 5000, 𝑛 = 100

MSE
MSE
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Experimental results for classification

Real-world experiment:
Leukemia dataset with 𝑑 ∼ 7000, 𝑛 ∼ 70

Synthetic experiment:
Isotropic Gaussians with 𝑑 ∼ 5000, 𝑛 ∼ 100

Experimental results: hard-ℓ>-margin SVM for σ: proportion of random label flips
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The tale of two “new” bias-variance trade-offs
Our new intuition for interpolators

%𝑤 = argmin$ 𝑤
.
𝑠. 𝑡. 𝑦 = 𝑋𝑤

Bias-variance tradeoff via inductive bias 

decreasing “strength of inductive bias” via increasing 𝑝

p=1 p=2
variance

bias

sweet 
spot

MSE
sweet 
spot

Previous intuition for interpolators:

%𝑤 = argmin$ 𝑤
.
𝑠. 𝑡. 𝑦 = 𝑋𝑤

Bias-variance trade-off via overparameterization

decreasing effect of noise via increasing 𝑑?@@/𝑛
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Papers discussed in the talk 
• Wang*, Donhauser*, Yang “Tight bounds for minimum l1-

norm interpolation of noisy data”, AISTATS ‘22

• Donhauser, Ruggeri, Stojanovic, Yang “Fast rates for noisy 

interpolation require rethinking the effects of inductive bias”, 

ICML ’22

sml.inf.ethz.chSML group:


