

Fast rates for noisy interpolation require rethinking the effects of inductive bias

October 25th 2022, Mathematics of Machine Learning, BCAM Bilbao

Fanny Yang, K. Donhauser

joint with G. Wang, S. Stojanovic, Marco Milanta, N. Ruggeri, Michael Aerni

Statistical Machine Learning group, CS department, ETH Zurich

Classical wisdom: Avoid fitting noise

Traditionally: want to avoid fitting noise perfectly for better (optimal) generalization.

Double descent on neural networks

Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise

Source: [NKBYBS '20]

Harmless interpolation on neural networks

Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise

Story of this talk...

Question today: What are "mechanisms" so that interpolators \hat{f} with $\hat{f}(x_i) = y_i$ exhibit

) second descent (2) harmless interpolation (3) good generalization, focusing on

Our observation: One key mechanism is the "simplicity of the structure" of the interpolator

Further, the strength of the "simplicity/inductive bias" has counterintuitive effect on interpolators

compared to classical wisdom on regularized estimators!

We don't: propose to use interpolators in practice \rightarrow optimally regularized can't be beat

Examples for strong inductive biases

- Strong inductive bias ≜ strong bias towards simple structure of "optimal" model ≜ less flexibility
- Examples for strong structural biases we discuss today:

Linear interpolators:	Kernel interpolators:	Neural networks:
sparsity $ w _0 \ll d$	filter size for convolutional models	
Ŭ		rotational invariance

The role of the inductive bias for interpolators

Examples for strong inductive biases

Strong inductive bias ≜ strong bias towards simple structure of "optimal" model ≜ less flexibility

Examples for strong structural biases we discuss today:

Linear regression setting (for this talk)

- Function space: linear models $f(x) = \langle w, x \rangle$ with $x, w \in \mathbb{R}^d$
- Data model for *n* samples: $y_i = \langle w^*, x_i \rangle + \xi_i$ with $x_i \sim N(0, I)$ and noise $\xi_i \sim N(0, \sigma^2)$

with sparse $w^* = (1, 0, ..., 0)$ with unknown location (for simplicity of presentation)

- Degree of overparameterization (high-dimensional regime): $d \approx n^{\beta}$, $\beta > 1$
- Linear estimators we compare: for $p \in [1, 2]$

implicit bias of 1st order methods

- Minimum- ℓ_p -norm interpolators: $\widehat{w} = \operatorname{argmin}_w ||w||_p$ s. t. y = Xw
- compared against classical regularized estimators: $\widehat{w}_{\lambda} = \operatorname{argmin}_{w} ||y Xw||^{2} + \lambda ||w||_{p}^{p}$
- **Performance measure**: prediction error $\mathbb{E}_{x \sim N(0,I)} (\langle x, \widehat{w} w^* \rangle)^2 = ||\widehat{w} w^*||^2$

(Similar bounds also hold for max- ℓ_p -margin classification $\widehat{w} = argmin_w ||w||_p s.t. y_i \langle x_i, w \rangle \ge 1 \forall i$)

10

Varying inductive bias strength via $p \in [1,2]$

Goal today: populate with high-dimensional tight non-asymptotic rates

Weak inductive bias: p = 2 (inconsistent)

Interpolators $\widehat{w} = \operatorname{argmin}_{w} ||w||_{2}$ s.t. y = Xw vs. Regularized estimator: $\widehat{w}_{\lambda} = ||y - Xw||_{2}^{2} + \lambda ||w||_{2}^{2}$ Linear model $y_{i} = \langle w^{*}, x_{i} \rangle + \xi_{i}$ with i.i.d. $x_{i} \sim N(0, I)$, some $\xi_{i} \sim N(0, \sigma^{2})$

Increasing d/n (\approx "overparameterization) is "implicitly regularizing" as variance decreases

Weak inductive bias: p = 2 (inconsistent)

Interpolators $\widehat{w} = \operatorname{argmin}_{w} ||w||_{2}$ s.t. y = Xw vs. Regularized estimator: $\widehat{w}_{\lambda} = ||y - Xw||_{2}^{2} + \lambda ||w||_{2}^{2}$ Linear model $y_{i} = \langle w^{*}, x_{i} \rangle + \xi_{i}$ with i.i.d. $x_{i} \sim N(0, I)$, some $\xi_{i} \sim N(0, \sigma^{2})$

Weak inductive bias: p = 2 (second descent)

Interpolators $\widehat{w} = \operatorname{argmin}_{w} ||w||_{2}$ s.t. y = Xw for $y_{i} = \langle w^{*}, x_{i} \rangle + \xi_{i}$ with $w^{*} = 0$ some $\xi_{i} \sim N(0, \sigma^{2})$ Hence $\widehat{w} = \operatorname{argmin}_{w} ||w||_{2}$ s.t. $\xi = Xw$

As $\frac{d}{n}$ increases (assume fixed *n* and increase $d \rightarrow d + 1$):

Variance decreases: if $w^* = 0$,

given min-norm solution \hat{w}_d for d, for d + 1 we know

 $(\widehat{w}_d, 0)$ is also interpolating $\rightarrow ||\widehat{w}_{d+1}||_2 \leq ||\widehat{w}_d||_2$

Bias increases because "harder to find signal" in d + 1

Weak inductive bias: p = 2 (inconsistent)

Interpolators $\widehat{w} = \operatorname{argmin}_{w} ||w||_{2}$ s.t. y = Xw vs. Regularized estimator: $\widehat{w}_{\lambda} = ||y - Xw||_{2}^{2} + \lambda ||w||_{2}^{2}$ Linear model $y_{i} = \langle w^{*}, x_{i} \rangle + \xi_{i}$ with i.i.d. $x_{i} \sim N(0, I)$, some $\xi_{i} \sim N(0, \sigma^{2})$

For isotropic Gaussians, $||\widehat{w} - w^*||^2 > c > 0$ for any $\beta > 1$ ($d \approx n^{\beta}$) even as $n \to \infty$ due to high bias!

*consistent only for very spiked covariance Σ [HMRT'19, MM'19, BLLT '19, MVSS '20] \checkmark in practice Σ is fixed!

Weak inductive bias: p = 2 (inconsistent)

Interpolators $\widehat{w} = \operatorname{argmin}_{w} ||w||_{2}$ s. t. y = Xw vs. Regularized estimator: $\widehat{w}_{\lambda} = ||y - Xw||_{2}^{2} + \lambda ||w||_{2}^{2}$ Linear model $y_{i} = \langle w^{*}, x_{i} \rangle + \xi_{i}$ with i.i.d. $x_{i} \sim N(0, I)$, some $\xi_{i} \sim N(0, \sigma^{2})$

*consistent only for very spiked covariance Σ [HMRT'19, MM'19, BLLT '19, MVSS '20] $\frac{1}{2}$ in practice Σ is fixed!

Varying inductive bias strength via $p \in [1,2]$

Benefits of strong inductive bias (recap)

Remember structural simplicity of ground truth: sparsity $||w^*||_0 = s \ll d$

Weak (no) inductive bias: encouraging small $||w||_2$ norm

Matching strong inductive bias : small $||w||_0/||w||_1$ norm encouraging sparsity structure

Interpolators are forced to fit noise!

- Classical theorems for ℓ_1 -penalized:
 - good rates by trading off via λ
 fitting noise (variance) vs
 fit of noiseless function (bias)
- But interpolators have to fit noise perfectly
 - ightarrow cannot attenuate noise-fitting using λ

Open problem: How much does min- ℓ_1 -norm interpolation suffer from noise fitting?

Strong inductive bias: p = 1 (consistent but slow)

Previous work for the i.i.d. noise case:

 $\Omega\left(\sigma^2/\log\left(\frac{d}{n}\right)\right)$ lower bounds [MVSS '19]

$$O(\sigma^2)$$
 upper bounds [KZSS '21, CLG '20

(who studied adversarial, vanishing noise)

Theorem [WDY' 21](simplified) – Tight bounds for min- ℓ_1 -norm interpolators

There exists a universal constant c > 0, s.t. whenever $d \approx n^{\beta}$ with $\beta > 1$, $n \geq c$ w.h.p.

$$\left|\left|\widehat{w} - w^{\star}\right|\right|^{2} = \frac{\sigma^{2}}{\log\left(d/n\right)} + O\left(\frac{\sigma^{2}}{\log^{3/2}\left(d/n\right)}\right)$$

The proof is based on localized uniform convergence and CGMT [KZSS '21] - who however don't show tight bounds and hence consistency

Strong inductive bias: p = 1 (consistent but slow)

Theorem [WDY' 21](simplified) – Tight bounds for min- ℓ_1 -norm interpolators

There exists a universal constant c > 0, s.t. whenever $d = n^{\beta}$ with $\beta > 1$, $n \ge c$ w.h.p.

$$\left|\left|\widehat{w} - w^{*}\right|\right|^{2} = \frac{\sigma^{2}}{\log\left(d/n\right)} + O\left(\frac{\sigma^{2}}{\log^{3/2}\left(d/n\right)}\right)$$

- This is a lower & upper bound for Gaussian X
- Experimentally, the bound is also tight beyond

Gaussian X, but hard to show!

Note: The same bound holds for classification

*in [DRSY '22]

Strong inductive bias: p = 1 (consistent but slow)

Theorem [WDY' 21](simplified) – Tight bounds for min- ℓ_1 -norm interpolators There exists a universal constant c > 0, s.t. whenever $d = n^{\beta}$ with $\beta > 1$, $n \ge c$ w.h.p. $\left|\left|\widehat{w} - w^*\right|\right|^2 = \frac{\sigma^2}{(\beta - 1)\log n} + O\left(\frac{\sigma^2}{((\beta - 1)\log n)^{3/2}}\right) \quad (\text{plugging in } d, n \text{ relation})$ 1) second descent 2 harmless interpolation 3 good generalization Yes! Variance decreases, No! Variance too large! Consistent but Interpolator $\Omega\left(\frac{1}{\log n}\right)$ similar intuition as for p = 2still slow rate! vs. regularized $O\left(\frac{s \log n}{n}\right)$

So far: Interpolators still poor for p = 1

So far: Interpolators are poor for p = 1, 2

So far: Interpolators are poor for p = 1, 2

- Evaluate MSE $||\widehat{w} w^*||^2 \sim \widetilde{\Theta}(n^{\alpha})$ with rate exponent α
- minimax optimal rate, e.g. for (best) regularized estimator with p = 1 (LASSO)

$$\left|\left|\widehat{w}_{\lambda} - w^{\star}\right|\right|^{2} = \widetilde{\Theta}(n^{-1}) \rightarrow \alpha = -1$$

• Interpolators with
$$p = 1, 2$$
:

 $\left|\left|\widehat{w} - w^{\star}\right|\right|^{2} = \widetilde{\Theta}(1) \rightarrow \alpha = 0$

How close can we get to $\alpha = -1$ with ℓ_p -norm interpolators with $p \in (1,2)$?

Medium inductive bias: Fast rates with $p \in (1,2)$

Theorem [DRSY' 22] (informal) – Upper & lower bounds for min- ℓ_p -norm interpolators

For $d = n^{\beta}$ with $1 < \beta \le \frac{p/2}{p-1'}$ and min- ℓ_p -norm interpolators with 1 and <math>n large enough,

we obtain with high probability, error rates of order $\tilde{\Theta}(n^{-\alpha})$ with α as in graph below

- order-matching upper & lower bound
- for fixed β , some p > 1 close to 1 gets best rate
- for $\beta \approx 2$, rates close to $\widetilde{\Theta}\left(\frac{1}{n}\right)$

Note: technique applies to classification (see paper) and allows extension to $\Sigma \neq I$ and s-sparse w^{*}

Medium inductive bias: Fast rates with $p \in (1,2)$

Theorem [DRSY' 22] (informal) – Upper & lower bounds for min- ℓ_p -norm interpolators

For $d = n^{\beta}$ with $1 < \beta \le \frac{p/2}{p-1'}$ and min- ℓ_p -norm interpolators with 1 and <math>n large enough,

we obtain with high probability, error rates of order $\tilde{O}(n^{-\alpha})$ with α as in graph below

Fast rates with $p \in (1,2)$ - caveat...

Theorem [DRSY' 22] (informal) – Upper & lower bounds for min- ℓ_p -norm interpolators

For $d = n^{\beta}$ with $1 < \beta \le \frac{p/2}{p-1'}$ and min- ℓ_p -norm interpolators with 1 and <math>n large enough,

we obtain with high probability, error rates of order $\tilde{O}(n^{-\alpha})$ with α as in graph below

Caveat:

• "Large enough" actually requires

 $\frac{1}{\log \log d} \lesssim p - 1 \rightarrow \text{very large } \mathbf{d}$

- Only holds for Gaussians
- \blacktriangleright cannot obtain best p for given β

Experimental results for $p \in [1,2]$ (synthetic)

For p = 1, variance and "sensitivity to noise" larger than for p = 2

 \rightarrow increasing *d* vs. *n* does not regularize enough even though it has relatively small bias.

Trade-off between bias and variance for interpolators via strength of inductive bias!

Experimental results for classification (real-world)

Experimental results: hard- ℓ_p -margin SVM for σ : proportion of random label flips

Full picture for $p \in [1, 2]$

 $\widehat{w} = \operatorname{argmin}_{w} ||w||_{p} s.t.y = Xw$

- p = 1 best for noiseless interpolation but $p = 1 + \epsilon$ best for noisy interpolation!
- New bias-variance trade-off that shows for medium inductive bias:

From linear to non-linear

Example IIa: Filter size of convolutional kernels

• Convolutional kernel with filter size *q*:

•

• consider patches $\left\{x_k^{(q)}\right\}_{k=1}^d$ of size q of vector $x \in \mathbb{R}^d$

• and average of nonlinear function over these patches $\mathcal{K}(x,z) = \frac{1}{d} \sum_{i=1}^{d} \kappa \left(\frac{\left\langle x_{k}^{(q)}, z_{k}^{(q)} \right\rangle}{a} \right)$

 $x \sim \mathcal{U}(\{-1,1\}^d)$ and $y = f^*(x) + \sigma \epsilon$ with Gaussian $\epsilon \sim N(0,1)$ and $f^*(x) = x_1 x_2$

'optimal model depends only on small patch \rightarrow small filter size strongest inductive bias'

- High-dimensional kernel learning: $n \in \Theta(d^{\ell}), \sigma^2 \in \Theta(d^{-\ell_{\sigma}})$ and $q \in \Theta(d^{\gamma})$ with $\ell, \ell_{\sigma}, \gamma \ge 0$
- Interpolator: min $||f||_{H} s.t. \forall i: f(x_i) = y_i$ vs. ridge regularized: min $||y f(x_1^n)||_2^2 + \lambda ||f||_H^2$

some regular κ e.g. exponential

Example IIa: Filter size of convolutional kernels

Illustration of our tight bounds (order Θ) for $n \in \Theta(d^{\ell}), \sigma^2 \in \Theta(d^{-\ell_{\sigma}}), q \in \Theta(d^{\gamma})$

where smaller γ / smaller filter size \rightarrow stronger inductive/structural bias

Example III: Filter size for convolutional NNs

 Synthetic image dataset allowing controlled experiments where ground truth has small filter size

• simple NN with one convolutional layer

strongest inductive bias (smallest filter size) best for noiseless case, slightly weaker best for noisy Harmless interpolation only for weak inductive bias!

Example III: Rotational invariance for WideResNet

• Satellite images (EuroSAT) to be classified in terms of type of land usage

strength of rotational invariance via
 "amount of" data augmentation

strongest inductive bias (largest #rotations) best for noiseless case, slightly weaker best for noisy

Papers discussed in the talk

 \mathcal{M} SML group: sml.inf.ethz.ch

- Wang*, Donhauser*, Yang "Tight bounds for minimum l1-norm interpolation of noisy data", AISTATS '22
- Stojanovic, Donhauser, Yang "Tight bounds for maximum *l1-margin* classifiers", on arxiv soon
- Donhauser, Ruggeri, Stojanovic, Yang "Fast rates for noisy interpolation require rethinking the effects of inductive bias", ICML '22
- Aerni*, Milanta*, Donhauser, Yang "Strong inductive biases provably prevent harmless interpolation", on arxiv soon..