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Classical wisdom: Avoid fitting noise 

degree 𝑚 = 20 with ridge

Traditionally: want to avoid fitting noise perfectly for better (optimal) generalization. 

degree 𝑚 = 20
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Double descent on neural networks
Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise

Source: [NKBYBS ’20]

interpolation threshold:
training error = 0

After interpolation threshold, we have a second “descent” (double descent)

follow blue curve:
model at convergence

1

Trained #
of epochs
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Harmless interpolation on neural networks 
Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise

For large models, interpolation is not worse than regularization (harmless interpolation)

Source: [Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever ’20]

2

compare
blue (at convergence)
with red curve 
(best stopping time)

Trained #
of epochs

interpolation threshold:
training error = 0
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Story of this talk…

Our observation: One key mechanism is the “simplicity of the structure” of the interpolator

Further, the strength of the “simplicity/inductive bias” has counterintuitive effect on interpolators 

compared to classical wisdom on regularized estimators!

Question today: What are “mechanisms” so that interpolators %𝑓 with %𝑓 𝑥! = 𝑦! exhibit

(1)  second descent (2)   harmless interpolation (3)   good generalization, focusing on 1 2 3

We don’t: propose to use interpolators in practice → optimally regularized can’t be beat

2 3
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Examples for strong inductive biases

Kernel interpolators:
filter size for convolutional models

rotational invariance

Neural networks:Linear interpolators:

sparsity 𝑤 " ≪ 𝑑

• Strong inductive bias ≜ strong bias towards simple structure of “optimal” model ≜ less flexibility

• Examples for strong structural biases we discuss today:
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The role of the inductive bias for interpolators

error
no perfect
data fit

models
perfectly fit
noisy data

model size /
overparameterization

test error

training error

strength of
inductive bias

interpolation
threshold
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interpolation
can do well

increasing inductive bias (via regularization 𝜆) increasing inductive bias (via structure)

error

Classical wisdom: strong inductive bias to 
prevent interpolation

increases bias, decreases variance 

no perfect
data fit

Our theorems: strong inductive bias
while interpolating

decreases bias, increases variance!

models
perfectly fit
noisy data

model size / 
overparameterization

test error

training error

variance

statistical bias

test error

regularization
can do well

training error

strength of
inductive bias
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Examples for strong inductive biases

Kernel interpolators:
filter size for convolutional models

rotational invariance

Neural networks:Linear interpolators:

sparsity 𝑤 " ≪ 𝑑

Strong inductive bias ≜ strong bias towards simple structure of “optimal” model ≜ less flexibility

Examples for strong structural biases we discuss today:

Part I Part II: Latest and on-going work

Tight bounds for the risk Controlled experiments
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Linear regression setting (for this talk)

• Function space: linear models 𝑓 𝑥 = ⟨𝑤, 𝑥⟩ with 𝑥,𝑤 ∈ ℝ%

• Data model for 𝒏 samples: 𝑦! = ⟨𝑤⋆, 𝑥!⟩ + 𝜉! with 𝑥! ∼ 𝑁(0, 𝐼) and noise 𝜉! ∼ 𝑁(0, 𝜎')

with sparse 𝑤⋆ = (1,0, … , 0) with unknown location (for simplicity of presentation)

• Degree of overparameterization (high-dimensional regime): 𝑑 ≍ 𝑛(, 𝛽 > 1

• Linear estimators we compare: for 𝒑 ∈ [𝟏, 𝟐]

o Minimum-ℓ𝐩-norm interpolators: I𝑤 = argmin* 𝑤 + s. t. 𝑦 = 𝑋𝑤

o compared against classical regularized estimators: I𝑤, = argmin* 𝑦 − 𝑋𝑤
'
+ 𝜆| 𝑤 |+

+

• Performance measure: prediction error 𝔼-∼/ ",1 𝑥, I𝑤 − 𝑤⋆ ' = I𝑤 −𝑤⋆ '

(Similar bounds also hold for max-ℓ!-margin classification "𝑤 = 𝑎𝑟𝑔𝑚𝑖𝑛" 𝑤 ! 𝑠. 𝑡. 𝑦# 𝑥# , 𝑤 ≥ 1 ∀𝑖)

implicit bias of 1st order methods
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Varying inductive bias strength via 𝑝 ∈ [1,2]

p=1 p=2

Min-ℓ+-norm interpolation I𝑤 = argmin* 𝑤 + 𝑠. 𝑡. 𝑦 = 𝑋𝑤

Focus so far of the 
“benign overfitting”

literature

strong inductive bias
towards sparsity

no inductive bias
towards sparsity

Goal today: populate with high-dimensional tight non-asymptotic rates
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Weak inductive bias: 𝑝 = 2 (inconsistent)
Interpolators I𝑤 = argmin* 𝑤 ' s. t. 𝑦 = 𝑋𝑤 vs. Regularized estimator: I𝑤, = 𝑦 − 𝑋𝑤 '

' + 𝜆 𝑤 '
'

Linear model 𝑦! = ⟨𝑤⋆, 𝑥!⟩ + 𝜉! with i.i.d. 𝑥! ∼ 𝑁(0, I), some 𝜉! ∼ 𝑁 0, 𝜎'

M
SE

I𝑤
−
𝑤
⋆

''

Increasing 𝑑/𝑛 (≈ “overparameterization) is “implicitly regularizing” as variance decreases 
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Weak inductive bias: 𝑝 = 2 (inconsistent)
Interpolators I𝑤 = argmin* 𝑤 ' s. t. 𝑦 = 𝑋𝑤 vs. Regularized estimator: I𝑤, = 𝑦 − 𝑋𝑤 '

' + 𝜆 𝑤 '
'

Linear model 𝑦! = ⟨𝑤⋆, 𝑥!⟩ + 𝜉! with i.i.d. 𝑥! ∼ 𝑁(0, I), some 𝜉! ∼ 𝑁 0, 𝜎'

M
SE

I𝑤
−
𝑤
⋆

''

“second” descent harmless interpolation1 2
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As %2 increases (assume fixed 𝑛 and increase 𝑑 → 𝑑 + 1):

Variance decreases: if 𝑤⋆ = 0, 

given min-norm solution I𝑤% for 𝑑, for 𝑑 + 1 we know 

I𝑤%, 0 is also interpolating→ I𝑤%34 ' ≤ I𝑤% '

Bias increases because “harder to find signal” in 𝑑 + 1

M
SE

I𝑤
−
𝑤
⋆

''

Weak inductive bias: 𝑝 = 2 (second descent)
Interpolators I𝑤 = argmin* 𝑤 ' s. t. 𝑦 = 𝑋𝑤 for 𝑦! = ⟨𝑤⋆, 𝑥!⟩ + 𝜉! with 𝑤⋆ = 0 some 𝜉! ∼ 𝑁 0, 𝜎'

Hence I𝑤 = argmin* 𝑤 ' s. t. 𝜉 = 𝑋𝑤
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Weak inductive bias: 𝑝 = 2 (inconsistent)

For isotropic Gaussians, I𝑤 − 𝑤⋆ ' > 𝑐 > 0 for any 𝛽 > 1 (𝑑 ≍ 𝑛() even as 𝑛 → ∞ due to high bias!

M
SE

I𝑤
−
𝑤
⋆

''

Bayes error

*consistent only for very spiked covariance Σ [HMRT’19, MM’19, BLLT ’19, MVSS ‘20]       in practice Σ is fixed! 

Interpolators I𝑤 = argmin* 𝑤 ' s. t. 𝑦 = 𝑋𝑤 vs. Regularized estimator: I𝑤, = 𝑦 − 𝑋𝑤 '
' + 𝜆 𝑤 '

'

Linear model 𝑦! = ⟨𝑤⋆, 𝑥!⟩ + 𝜉! with i.i.d. 𝑥! ∼ 𝑁(0, I), some 𝜉! ∼ 𝑁 0, 𝜎'
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Weak inductive bias: 𝑝 = 2 (inconsistent)
M

SE
I𝑤
−
𝑤
⋆

''

second descent harmless interpolation good generalization 1 2 3

Interpolators I𝑤 = argmin* 𝑤 ' s. t. 𝑦 = 𝑋𝑤 vs. Regularized estimator: I𝑤, = 𝑦 − 𝑋𝑤 '
' + 𝜆 𝑤 '

'

Linear model 𝑦! = ⟨𝑤⋆, 𝑥!⟩ + 𝜉! with i.i.d. 𝑥! ∼ 𝑁(0, I), some 𝜉! ∼ 𝑁 0, 𝜎'

Bayes error

*consistent only for very spiked covariance Σ [HMRT’19, MM’19, BLLT ’19, MVSS ‘20]       in practice Σ is fixed! 
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Varying inductive bias strength via 𝑝 ∈ [1,2]

p=1 p=2

Min-ℓ+-norm interpolation I𝑤 = argmin* 𝑤 + 𝑠. 𝑡. 𝑦 = 𝑋𝑤

Focus so far of the 
“benign overfitting”

literature

strong inductive bias
towards sparsity

no inductive bias
towards sparsity

Our first
results 

variance

statistical bias

test error
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Benefits of strong inductive bias (recap)
Remember structural simplicity of ground truth: sparsity 𝑤⋆

" = 𝑠 ≪ 𝑑

Weak (no) inductive bias: encouraging small 𝑤 ' norm

Matching strong inductive bias : small 𝑤 "/ 𝑤 4 norm encouraging sparsity structure

Basis pursuit: argmin* 𝑤 4 𝑠. 𝑡. 𝑦 = 𝑋𝑤

Lasso: argmin5 𝑦 − 𝑋𝑤| '' + 𝜆 𝑤 |4

Noiseless
𝑦 = 𝑋𝑤⋆

Noisy
𝑦 = 𝑋𝑤⋆ + 𝜉

when observations are noisy

Perfect recovery
w.h.p. for 𝑛~𝑠 log 𝑑

Estimation error
minimax rate 𝑂 6 789 %

2
for optimal 𝜆
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Interpolators are forced to fit noise!

increasing inductive bias (via 𝜆)

variance

statistical
bias

test error

Lasso: argmin5 𝑦 − 𝑋𝑤| '' + 𝜆 𝑤 |4
• Classical theorems for ℓ4-penalized: 

o good rates by trading off via 𝜆
fitting noise (variance) vs 

fit of noiseless function (bias)

• But interpolators have to fit noise perfectly 

→ cannot attenuate noise-fitting using 𝜆

Open problem: How much does min-ℓ4-norm 
interpolation suffer from noise fitting?

training error
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Strong inductive bias: 𝑝 = 1 (consistent but slow)
Previous work for the i.i.d. noise case:

Ω 𝜎'/ log %
2 lower bounds [MVSS ‘19]            𝑂(𝜎') upper bounds  [KZSS ’21, CLG ‘20] 

(who studied adversarial, vanishing noise)

Theorem [WDY’ 21](simplified) – Tight bounds for min-ℓ4-norm interpolators

There exists a universal constant 𝑐 > 0, s.t. whenever 𝑑 ≍ 𝑛$ with 𝛽 > 1, 𝑛 ≥ 𝑐 w.h.p. 

(𝑤 −𝑤⋆ " =
𝜎"

log 𝑑/𝑛 + 𝑂
𝜎"

log#/" 𝑑/𝑛

The proof is based on localized uniform convergence and CGMT [KZSS ‘21] 
- who however don’t show tight bounds and hence consistency
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Strong inductive bias: 𝑝 = 1 (consistent but slow)

• This is a lower & upper bound for Gaussian 𝑋

• Experimentally, the bound is also tight beyond 

Gaussian 𝑋, but hard to show!

Note: The same bound holds for classification

*in [DRSY ‘22]

M
SE

I𝑤
−
𝑤
⋆

''

Theorem [WDY’ 21](simplified) – Tight bounds for min-ℓ4-norm interpolators

There exists a universal constant 𝑐 > 0, s.t. whenever 𝑑 ≍ 𝑛$ with 𝛽 > 1, 𝑛 ≥ 𝑐 w.h.p. 

(𝑤 −𝑤⋆ " =
𝜎"

log 𝑑/𝑛 + 𝑂
𝜎"

log#/" 𝑑/𝑛
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Strong inductive bias: 𝑝 = 1 (consistent but slow)

No! Variance too large! 
Interpolator Ω 4

:;< 2

vs. regularized 𝑂 6 :;< 2
2

Yes! Variance decreases, 

similar intuition as for 𝑝 = 2

Theorem [WDY’ 21](simplified) – Tight bounds for min-ℓ4-norm interpolators

There exists a universal constant 𝑐 > 0, s.t. whenever 𝑑 ≍ 𝑛$ with 𝛽 > 1, 𝑛 ≥ 𝑐 w.h.p. 

I𝑤 − 𝑤⋆ ' = =%

((?4):;< 2
+ 𝑂( =%

( (?4 :;< 2)&/%
) (plugging in 𝑑, 𝑛 relation)

second descent harmless interpolation good generalization 1 2 3

Consistent but 

still slow rate!
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So far: Interpolators still poor for 𝑝 = 1

p=1
rate Θ (

)*+ ,

p=2
rate Θ(1)

Min-ℓ+-norm interpolation I𝑤 = argmin* 𝑤 + 𝑠. 𝑡. 𝑦 = 𝑋𝑤

strong inductive bias
towards sparsity

no inductive bias
towards sparsity

Focus so far of the 
“benign overfitting”

literature

Our first
results 

variance

statistical bias

test error

… but now due to high variance!
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So far: Interpolators are poor for 𝑝 = 1, 2

Min-ℓ+-norm interpolation I𝑤 = argmin* 𝑤 + 𝑠. 𝑡. 𝑦 = 𝑋𝑤

p=1
rate Θ (

)*+ ,

p=2
rate Θ(1)

strong inductive bias
towards sparsity

no inductive bias
towards sparsity

Focus so far of the 
“benign overfitting”

literature

Our first
results 
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So far: Interpolators are poor for 𝑝 = 1, 2

rate (
,

be
tte

r

𝛽: 𝑑 ≍ 𝑛(

constant • Evaluate MSE I𝑤 − 𝑤⋆ '
∼ fΘ 𝑛@

with rate exponent 𝛼

• minimax optimal rate, e.g. for (best)

regularized estimator with 𝑝 = 1 (LASSO) 

I𝑤, −𝑤⋆ '
= fΘ 𝑛?4 → 𝛼 = −1

• Interpolators with 𝑝 = 1, 2:

I𝑤 − 𝑤⋆ '= fΘ 1 → 𝛼 = 0

ra
te

 e
xp

on
en

t  
α

How close can we get to 𝛼 = −1
with ℓ+-norm interpolators with 𝑝 ∈ 1,2 ?
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Medium inductive bias: Fast rates with 𝑝 ∈ 1,2
Theorem [DRSY’ 22]  (informal) – Upper & lower bounds for min-ℓ+-norm interpolators

For 𝑑 ≍ 𝑛% with 1 < 𝛽 ≤ &/"
&'(

, and min-ℓ&-norm interpolators with 1 < p < 2 and 𝑛 large enough, 

we obtain with high probability, error rates of order fΘ(𝑛?@) with α as in graph below

rate (
,

be
tte

r

• order-matching upper & lower bound

• for fixed 𝛽,  some 𝑝 > 1 close to 1 gets best rate

• for 𝛽 ≈ 2, rates close to fΘ 4
2

Note: technique applies to classification (see paper)
and allows extension to  𝛴 ≠ 𝐼 and s-sparse 𝑤⋆

degree of overparameterization 𝛽

ra
te

 e
xp

on
en

t α

constant
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Medium inductive bias: Fast rates with 𝑝 ∈ 1,2
Theorem [DRSY’ 22]  (informal) – Upper & lower bounds for min-ℓ+-norm interpolators

For 𝑑 ≍ 𝑛% with 1 < 𝛽 ≤ &/"
&'(

, and min-ℓ&-norm interpolators with 1 < p < 2 and 𝑛 large enough, 

we obtain with high probability, error rates of order m𝑂(𝑛?@) with α as in graph below

rate (
,

be
tte

r

degree of overparameterization 𝛽

ra
te

 e
xp

on
en

t α

constant

second descent

harmless interpolation

good generalization 

1

2

3
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Fast rates with 𝑝 ∈ 1,2 - caveat…  

Caveat:

• “Large enough” actually requires
4

:;< :;< % ≲ 𝑝 − 1 → very large d

• Only holds for Gaussians

• cannot obtain best 𝑝 for given 𝛽

Theorem [DRSY’ 22]  (informal) – Upper & lower bounds for min-ℓ+-norm interpolators

For 𝑑 ≍ 𝑛% with 1 < 𝛽 ≤ &/"
&'(

, and min-ℓ&-norm interpolators with 1 < p < 2 and 𝑛 large enough, 

we obtain with high probability, error rates of order m𝑂(𝑛?@) with α as in graph below

rate (
,

be
tte

r

degree of overparameterization 𝛽

ra
te

 e
xp

on
en

t α

constant
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Experimental results for 𝑝 ∈ [1,2] (synthetic)

Es
tim

at
ed

 e
rr

or

For 𝑝 = 1, variance and “sensitivity to noise” larger than for 𝑝 = 2

→ increasing 𝑑 vs. 𝑛 does not regularize enough even though it has relatively small bias. 

Trade-off between bias and variance for interpolators via strength of inductive bias!

M
SE

 
I𝑤
−
𝑤
⋆

''

for 𝑑 = 20000, 𝑛 = 400 for 𝑑 = 5000, 𝑛 = 100

MSE
MSE
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Experimental results for classification (real-world)

Real-world experiment:
Leukemia dataset with 𝑑 ∼ 7000, 𝑛 ∼ 70

Synthetic experiment:
Isotropic Gaussians with 𝑑 ∼ 5000, 𝑛 ∼ 100

Experimental results: hard-ℓA-margin SVM for σ: proportion of random label flips
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Full picture for 𝑝 ∈ [1, 2]

p=1
rate Θ 4

:;< 2

p=2
rate Θ(1)

I𝑤 = argmin* 𝑤 + 𝑠. 𝑡. 𝑦 = 𝑋𝑤

variance statistical
bias

test error

1<p<2
rate 𝑂 4

2-

second descent

harmless interpolation

good generalization 

1

2

3

• 𝑝 = 1 best for noiseless interpolation
but 𝑝 = 1 + 𝜖 best for noisy interpolation! 

• New bias-variance trade-off that 
shows for medium inductive bias:
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From linear to non-linear

Kernel interpolators:
filter size for convolutional models

rotational invariance

Neural networks:Linear interpolators:

sparsity I𝑤 " ≪ 𝑑

Bulk of talk Part II: not yet published

Tight bounds for the risk Controlled experiments

second descent harmless interpolation good generalization 1 2 3

Up next: How about non-linear models?
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Example IIa: Filter size of convolutional kernels
• Convolutional kernel with filter size 𝑞:

o consider patches 𝑥B
(C)

BD4

%
of size 𝑞 of vector 𝑥 ∈ 𝑅%

o and average of nonlinear function over these patches 𝒦 𝑥, 𝑧 = 4
%
∑!D4% 𝜅

-.
(0), E.

(0)

C

• 𝑥 ∼ 𝒰( −1,1 %) and 𝑦 = 𝑓⋆ 𝑥 + 𝜎𝜖 with Gaussian 𝜖 ∼ 𝑁(0,1) and 𝑓⋆ 𝑥 = 𝑥4𝑥'

• High-dimensional kernel learning: 𝑛 ∈ Θ 𝑑ℓ , 𝜎' ∈ Θ(𝑑?ℓ2) and 𝑞 ∈ Θ(𝑑G) with ℓ, ℓ=, 𝛾 ≥ 0

• Interpolator: min 𝑓 H 𝑠. 𝑡. ∀𝑖: 𝑓 𝑥! = 𝑦! vs. ridge regularized: min 𝑦 − 𝑓 𝑥42 '
' + 𝜆 𝑓 H

'

optimal model depends only on small patch → small filter size strongest inductive bias

some regular 𝜅 e.g. exponential
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Example IIa: Filter size of convolutional kernels

increasing inductive bias

Illustration of our tight bounds (order Θ) for 𝑛 ∈ Θ 𝑑ℓ , 𝜎' ∈ Θ(𝑑?ℓ2), 𝑞 ∈ Θ(𝑑G)

where smaller 𝛾 / smaller filter size → stronger inductive/structural bias 

𝛾 s.t. filter size 𝑞 ∈ Θ(𝑑G)

Harmless interpolation only for weak inductive bias!

𝛾 s.t. filter size 𝑞 ∈ Θ(𝑑G)
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Example III: Filter size for convolutional NNs

• Synthetic image dataset

allowing controlled experiments

where ground truth has small filter size

• simple NN with one convolutional layer

strongest inductive bias (smallest filter size) best for noiseless case, slightly weaker best for noisy
Harmless interpolation only for weak inductive bias!
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Example III: Rotational invariance for WideResNet

• Satellite images (EuroSAT) to be 
classified in terms of type of land usage

• strength of rotational invariance via 
“amount of” data augmentation

strongest inductive bias (largest #rotations) best for noiseless case, slightly weaker best for noisy
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interpolation
can do well

increasing inductive bias (via structure)

error no perfect
data fit

Our theorems: increasing inductive bias
while interpolating

decreases bias, increases variance!

models
perfectly fit
noisy data

model size /
overparameterization

test error

training error

variance

statistical bias

test error

training error

strength of
inductive bias

Take-aways…

Interpolator can generalize well when

• known (noiseless case):
there is strong inductive bias
towards simple structure
matching optimal model.

• new (noisy case):
there is some but not too much
inductive bias 
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Papers discussed in the talk 
• Wang*, Donhauser*, Yang “Tight bounds for minimum l1-norm 

interpolation of noisy data”, AISTATS ’22

• Stojanovic, Donhauser, Yang “Tight bounds for maximum ℓ1-margin 

classifiers”, on arxiv soon

• Donhauser, Ruggeri, Stojanovic, Yang “Fast rates for noisy interpolation 

require rethinking the effects of inductive bias”, ICML ’22

• Aerni*, Milanta*, Donhauser, Yang “Strong inductive biases provably 

prevent harmless interpolation”, on arxiv soon..

sml.inf.ethz.chSML group:


