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Interpretable predictions for science Comparison with related work
One goal of machine learning for science: Post-hoc explanations Inherently interpretable
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Example I: CLAP on toy datasets
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Recovers ground-truth concepts + 99% class. accuracy!

Example II: CLAP on the Chest—Xray dataset
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At similar accuracy 90%, CLAP achieves better disentanglement
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& indicates global and local feature importance

Theoretical guarantees (informal)
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Under above data-generating and further regularity and
heterogeneity assumptions, in the infinite data limit:
* CLAP identifies Z, up to permutation and scaling

» CLAP learns the optimal classifier that uses Z,

Work in progress

» Using GANSs for sharper reconstructions
» Aggregate data across multiple sources

* Incorporating dependence between style features and Y




