Towards more trust in overparameterized models for high-dimensional data

Fanny Yang, Statistical Machine Learning Group, D-INFK, ETH Zurich

ELLIS Doctoral Symposium, 28. September 2021

Soon AI will be replacing some humans...

...long way to go until really trustworthy 2

Supervised learning for modern ML

Two important settings for which understanding is missing

Reliability: how model acts when test data $(x, y) \neq P_{train}$

Plan for Part 🕧 : high-dimensional regression

- Setting up: Regression in the modern data regime
 - Recap: regression in the classical regime
 - Regression in the modern data regime
 - Overparameterized models and estimators
- Two examples where classical intuition fails

Recap: Regression with the square loss

- **Data generation**: covariates $x \sim P_x$, labels $y = f^*(x) + \epsilon$ with $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$, noise ϵ
- **Observe**: training set D with n i.i.d. data points
- **Goal**: Find \hat{f}_D that is close to f^* in some model class F
- Vanilla estimator: minimizer of Mean Square Error

$$\hat{f}_D = \operatorname{argmin}_{f \in F} \sum_{i=1}^n (y_i - f(x_i))^2$$

Classical setting

- sample size $n \gg d$ dimension
- Conventional wisdom: best fit with large model \rightarrow large variance

Classical setting

- sample size $n \gg d$ dimension
- Conventional wisdom: best fit with large model \rightarrow large variance

regularize model complexity avoiding perfect fit \rightarrow smaller variance

Modern setting

sample size vs. dimension: ٠ e.g. ImageNet $n \sim 10^6$, $d > 10^4$, gene data $n \sim 10^1$ to 10^4 , $d > 10^4$

 \rightarrow high-dimensional regime $n \asymp d^{\alpha}$, here: $\alpha \in (0,2)$

Modern practice: use overparameterized models (can fit data perfectly) ٠ **and** without regularization still seems to generalize at least as well

Overparameterized models in a nutshell

Unifying diagram for overparameterized models for high dimensional data $d \gg n$:

- Linear models are already overparameterized for p = d for $\phi(x) = x$
- Kernels can fit nonlinear functions using p>d fixed nonlinear features ϕ
- Neural networks can fit nonlinear functions using p <u>trained</u> features ϕ

Overparameterized models in a nutshell

For overparameterized models F, many models achieve MSE = 0

 \rightarrow initialized at 0, first order method often yields minimum-norm interpolator

$$\hat{f}_D = \operatorname{argmin}_{f \in F} ||f||$$
 s.t. $y_i = f(x_i)$ for all i

for some norm (depends on F and algorithm)

Evaluation of the estimators

What's the expected loss on a test sample or

estimation error
$$\left\| \hat{f}_D - f^* \right\|_{L^2(P_X)}^2 = E_{X \sim P_X} \left(\hat{f}_D(X) - f^*(X) \right)^2$$

dependent on the model class F, algorithm, n, d?

Study the average error (over data D)

using bias-variance decomposition:

Plan for Part 🕧 : high-dimensional regression

- Setting up: Regression in the modern data regime
- Two examples where classical intuition fails
 - Example I: Linear models where p = dMinimum- ℓ_2 -norm interpolation when $d \approx n$ Intuition from classical setting d < n: larger $n \rightarrow$ smaller variance
 - Example II: Nonlinear models via kernels with $p = \infty$ Kernel estimators for $d^{\alpha} \approx n$ Intuition for fixed d: you can learn nonlinear functions

Intuition from classical theory does not hold!

Linear least-squares regression for $d \gg n$ Given data matrix $X = \begin{pmatrix} -x_1 - \\ \vdots \\ -x_n - \end{pmatrix}$ with rows $x_i \sim N(0, I_d)$ and labels $y = Xw^* + \epsilon$

For d > n: min- ℓ_2 -norm interpolator

 $\widehat{\mathbf{w}} = \operatorname{argmin}_{w \in \mathbb{R}^d} ||y - Xw||_2$ $\widehat{\mathbf{w}} = \operatorname{argmin}_{w \in \mathbb{R}^d} ||w||_2$ s.t. y = Xw

For d < n: MSE minimizer

Linear least-squares regression for $d \gg n$

Goal now: Compare and build intuition for the two regimes

Recap: Bias and variance for linear regression

For d < n: MSE minimizer

 $\widehat{w} = \operatorname{argmin}_{w} ||y - Xw||_{2}$

For d > n: min- ℓ_2 -norm interpolator

$$\widehat{w} = \operatorname{argmin}_{w} ||w||_{2}$$
 s.t. $y = Xw$

Solution for both can be written as

$$\widehat{w} = (X^{\top}X)^{\dagger}X^{\top}y = (X^{\top}X)^{\dagger}X^{\top}Xw^{*} + (X^{\top}X)^{\dagger}X^{\top}\epsilon$$

$$\prod_{X}w^{*} = E_{D}\widehat{w}$$

$$\rightarrow \text{ determines bias}$$

$$=: w_{n} \text{ fits noise}$$

$$\rightarrow \text{ determines variance}$$
Average MSE: $E_{D}||\widehat{w}_{D} - w^{*}||^{2} = ||E_{D}\widehat{w} - w^{*}||^{2} + E_{D}||\widehat{w}_{D} - E_{D}\widehat{w}||^{2}$
st loss for $X \sim N(0, I)$

$$\lim_{W \to 0} ||\widehat{w}_{N} - w^{*}||^{2} = ||E_{D}\widehat{w} - w^{*}||^{2} \quad \text{variance } E_{D}||w_{n}||^{2}$$

Recap: Bias and variance for linear regression

For d < n: MSE minimizer

 $\widehat{w} = \operatorname{argmin}_{w} ||y - Xw||_{2}$

MSF

For d > n: min- ℓ_2 -norm interpolator

$$\widehat{w} = \operatorname{argmin}_{w} ||w||_{2}$$
 s.t. $y = Xw$

Solution for both can be written as

$$\widehat{w} = (X^{\top}X)^{\dagger}X^{\top}y = (X^{\top}X)^{\dagger}X^{\top}Xw^{*} + (X^{\top}X)^{\dagger}X^{\top}\epsilon$$

$$\Pi_{X}w^{*} = E_{D}\widehat{w} \qquad =: w_{n} \text{ fits noise}$$

$$\rightarrow \text{ determines bias} \qquad \Rightarrow \text{ determines variance}$$

$$\Pi_{X}w^{*} = w^{*} \rightarrow \text{ bias } = 0$$

$$\text{bias } ||\Pi_{X}w^{*} - w^{*}||^{2} \neq 0$$

$$\text{MSE minimizer for noise fit}$$

$$w_{n} = \operatorname{argmin}_{w} ||\epsilon - Xw||_{2}$$

$$\text{min-}\ell_{2}\text{-norm interpolator of noise}$$

$$w_{n} = \operatorname{argmin} ||w||_{2} \text{ s.t. } \epsilon = Xw$$

Example I: Linear LS regression for $d \gg n$

Goal now: Compare and build intuition for the two regimes

Variance for d < n increases with d/n

Variance for d < n increases with d/n

For simplicity: orthogonal $X^{\mathsf{T}}X = nI_d$ such that $||w_n||_2 = \frac{1}{\sqrt{n}} ||Xw_n||_2 = \frac{1}{\sqrt{n}} ||\Pi_X \epsilon||_2$

 \Rightarrow variance $E_D ||w_n||^2$ increases with $\frac{d}{n}$

Variance for d < n decreases with n

Recap: Bias variance trade-off for d < n

How did we achieve the bias-variance tradeoff? \rightarrow explicit regularization!

Recap: Bias variance trade-off for d < n

How did we achieve the bias-variance tradeoff? \rightarrow explicit regularization!

Example I: Linear LS regression for $d \gg n$

Goal now: Compare and build intuition for the two regimes

Bias and variance for d > n

Bias $||\Pi_X w^* - w^*||^2$ increases with $\frac{d}{n}$ since $\Pi_X w^*$ projects on smaller space \rightarrow closer to w^* Variance $E_D ||w_n||_2^2$ with $w_n = \operatorname{argmin}_w ||w||_2$ s.t. $n \in \mathbb{R}$ $n \times \mathbb{R}$

- is a point in the intersection of n hyperplanes $x_i^{\mathsf{T}} w = \epsilon_i$
- the one that has **minimum distance** $||w_n||_2$ to origin

 $rac{d}{n}$ decreases (increasing n fixed d)

- \rightarrow intersection smaller
- \rightarrow minimum distance = $||w_n||_2$ larger

variance decreases with $\frac{d}{n}$!

Bias variance trade-off for d > n

 $\widehat{w} = \Pi_X w^* + w_n$ has bias $||\Pi_X w^* - w^*||^2$ and variance $E_D ||w_n||^2$

Bias variance trade-off for d > n

 $\widehat{w} = \Pi_X w^* + w_n$ has bias $||\Pi_X w^* - w^*||^2$ and variance $E_D ||w_n||^2$

High-dimensional (non)-asymptotic rates

- for min- ℓ_2 -norm and different covariances Σ_d
 - $d \approx n$: Hastie et al. '19
 - $d \asymp n \log n$: Bartlett et al. '20; Muthukumar et al. '20; Koehler et al. '21
- for min- ℓ_1 -norm for sparse ground truth $\Sigma_d = I_d$
 - $d \approx n \log n$: Chinot et al. '20, WDY '21 (in preparation)
- Related work on logistic regression: Deng et al. '19, Chinot et al. '21
- For adversarial robustness: Javanmard et al. '20, DTAHY '21

Addendum: What to do in practice?

... just regularize!

- ridge regression with optimal regularization parameter

— minimum ℓ_2 -norm interpolator

Plan for Part (): high-dimensional regression

- Regression in the modern data regime
- Two examples where classical intuition fails
 - Example I: Linear models where p = dMinimum- ℓ_2 -norm interpolation when $d \approx n$ Intuition in the modern regime: larger $n \rightarrow$ larger variance

• Example II: Nonlinear models via kernels with $p = \infty$ Kernel estimators for $d^{\alpha} \approx n$ for large dIntuition for fixed d: you can learn nonlinear functions

Intuition from classical theory does not hold!

Recap: Kernel regression

- Data generation: $x \sim P_x$, $y = f^*(x) + \epsilon$ with $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$
- Observe: n i.i.d. data points in training set D
- Goal: Find \hat{f}_D that is close to f^* in kernel class F induced by a kernel $K(x, x') = \langle \phi(x), \phi(x') \rangle$ with $\phi(x) \in R^p$

Recap: Kernel regression

- Data generation: $x \sim P_x$, $y = f^*(x) + \epsilon$ with $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$
- Observe: n i.i.d. data points in training set D
- Goal: Find \hat{f}_D that is close to f^* in kernel class F induced by a kernel $K(x, x') = \langle \phi(x), \phi(x') \rangle$ with $\phi(x) \in R^p$

Consider universal kernel estimators for $p \rightarrow \infty$. Implementations yield

• Avoiding perfect fitting: kernel ridge regression

$$\hat{f}_D = \operatorname{argmin}_{f \in F} \sum_{i}^{n} (y_i - f(x_i))^2 + \lambda ||f||_F^2$$

• Perfect fitting: minimum-Hilbert-norm interpolator

$$\hat{f}_D = \operatorname{argmin}_{f \in F} ||f||_F$$
 s.t. $y_i = f(x_i)$ for all i

(the solution of gradient descent on square loss upon convergence)

Kernels and neural networks- previous work

- **Practice:** neural networks can learn highly nonlinear functions very well But don't know which interpolating solution it finds!
- **Theory:** kernel estimators can learn arbitrary nonlinear functions solution of simple convex problem \rightarrow analyzable (a lot of previous work) where $|| \cdot ||_{K}$ -norm induces structure dependent on K (e.g. smoothness)
- Recent trend: infinite-width neural networks (NN) behave like certain kernels (NTK)
 → use kernel learning to understand why NN work well*

We show: Futile effort when considering vanilla fully-connected NN!

... vanilla kernels fail in high dimensions

Vanilla fully connected-NTK behave "similarly" to Laplace kernels¹ - a good thing?

- on CIFAR10: FC-NTK : ~52%², Laplace kernel: ~52%²
- Laplace kernel for fitting $f^{\star}(x)$: true housing price, n = 371 (on basically noiseless data)

Bias variance trade-off for kernels

Laplace kernel for $f^{\star}(x) = 0.5 \sum_{i=1}^{4} x_{(2i+1)}^2 - \sum_{i=1}^{4} x_{(2i)}^2$ for fixed n = 500

Similar to linear as $\frac{d}{n}$ increases, but bias increase dominates variance decrease!

Goal now: Characterize the bias as a function of d vs. n!

Kernels learn low-degree polynomials

As dimension grows, the estimator degenerates to a low degree polynomial

Main result: Polynomial approx. barrier

Theorem (DWY '21, ICML) - simplified, informal version

Assume simplest setting $x \sim N(0, I_d)$, then as $d, n \to \infty, \frac{d^{\alpha}}{n} \to c > 0$

$$\left|\left|\hat{f} - f^{\star}\right|\right| \ge \inf_{p \in P_{\leq 2\alpha}} \left|\left|f^{\star} - p\right|\right|$$
 almost surely

where $P_{\leq 2\alpha}$ is the set of polynomials of degree at most 2α , any $\alpha > 0$

• more generally can assume $\mathbf{x} \sim N(0, \Sigma_d)$ and replace d by $\operatorname{tr}(\Sigma_d)$

• for rotationally invariant kernels
$$k_{\tau}(\mathbf{x}, \mathbf{y}) = h\left(\frac{||\mathbf{x}||^2}{\tau}, \frac{||\mathbf{y}||^2}{\tau}, \frac{\mathbf{x}^{\mathsf{T}}\mathbf{y}}{\tau}\right)$$

- different functions h such as RBF (Laplacian, Gaussian), inner product, fully connected NTK of any depth
- for different scalings au

*poly. barrier restricted to particular distr., scaling $\tau = d$: [Ghorbani et al. '19, '20]

36

Bias variance trade-off for kernel estimators

Bias variance trade-off for kernel estimators

Same story as for linear models...

Why rotation invariance increases bias with d

- rotationally invariant kernels should satisfy k(x, y) = k(Ux, Uy)with U orthonormal matrix (think of U permutation matrix)
- kernel method \hat{f} predicts similar values for similar samples, similarity defined by k(x,y)

Example I: ground truth are human labelers, e.g. images

 \rightarrow good classifier \hat{f} should find similar what we find similar, i.e. k(x, y) should reflect that

not using spatial structure, pays attention to every pixel independently

Why rotation invariance is bad for large d

- rotationally invariant kernels should satisfy k(x, y) = k(Ux, Uy)U: orthonormal matrix (e.g. permutation matrix)
- kernel method predicts similar values for similar samples, similarity defined by k(x, y)
- further can often write $k(x,y) \sim \sum_{j=0}^{\infty} g_j \left(\frac{x^{\top}y}{d}\right)^j$ in high dimensions for some g_j

Example II: ground truth depends only on first variable \rightarrow good predictor should map any two x, y with $x_1 = y_1$ to same value, k(x, y) high

However, assume $x_{2:d}, y_{2:d}$ random and large $d \rightarrow \frac{x^{\top}y}{d} \approx \frac{x_1y_1}{d}$ small $\rightarrow k(x, y)$ small

generally: low-dimensional features dominated by irrelevant features

Is there any hope for kernels in large d?

- For images: structured kernels actually work well in practice...?
 - convolutional kernels can achieve ~90% on CIFAR10¹
 - can we analyze the asymptotic limits of such kernels?
- For functions depending on few variables:
 - nonlinear feature selection before kernel
 - or A(utomatic) R(elevance) D(etermination) kernels²

Supervised learning for modern ML

Two important settings for which understanding is missing

Reliability: how model acts when test data $(x, y) \neq P_{train}$

What is this traffic sign?

Fails for small perturbations that don't change the class

Which object is this?

Which disease does this patient have?

Reliability when $(x, y) \nsim P_{train}$

- robust generalization: have low expected error on x
- detect novel class samples
- calibration: predictive uncertainty should be accurate

Plan for Part 2: novel class detection

- Easy vs. hard novel class (OOD) detection
- OOD detection using ensembles
- Unknown OOD setting
- Idea: regularized diversity with unlabeled data

Novel classes in the test set

- Given labeled training points from $supp_{ID}$, test point $x \in supp_{test} = supp_{ID} \cup supp_{OOD}$
- Goal: Flag if $x \in supp_{OOD}$, predict if $x \in supp_{ID}$ (also known as anomaly detection, open set recognition, one-class classification)

Two types of test statistics

Can view it as classifying between OOD and ID without OOD labels

- view as density estimation problem \rightarrow flag if probability of x too low
- by-product of predictive uncertainty problem \rightarrow flag if uncertainty too high

works better with neural networks

Easy vs. hard novel image classes

 $supp_{ID}$: CIFAR10 classes 1-5

easy OOD: different dataset

- *suppoop*: SVHN classes 6-10
- ID far from OOD data

hard OOD: unseen classes

- *suppoop* : CIFAR10 classes 6-10
- ID close to OOD data

SOTA methods fail for novel classes

- True positive rate (TPR): percentage of truly novel classes marked as OOD
- True negative rate (TNR): percentage of seen classes marked as ID

Novel class detection using ensembles

For a binary classification problem consider two models that

- have good validation accuracy on old classes
- are different outside of training distribution
- \rightarrow can mark samples with disagreement as novel

Vanilla ensembles are not diverse enough

SOTA neural network ensembles tend to agree where they can

Our setting: Unknown OOD

Often unlabeled test data can be available including OOD (PU-learning)

In medical example

- test set: unlabeled X-rays collected during the week when new disease arrives
- even though predict using old model, valuable to detect new diseases by end of week

Is the problem now trivial?

Previous unknown OOD methods still fail

- True positive rate (TPR): percentage of truly novel classes marked as OOD
- True negative rate (TNR): percentage of seen classes marked as ID

Not obvious how to leverage unknown OOD!

- Vanilla Ensembles
- Max. Clasif. Discrep.
- Mahalanobis (unknown OOD)
- nnPU

Idea: regularized diversity with unlabeled data

without regularization

Idea: regularized diversity with unlabeled data

57

Learning ensembles that disagree

Unknow

OOD

No

OOD

Unknow

OOD

No

OOD

Learning ensembles that disagree

Novel classes in chest X-ray + retinal datasets

59

