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Soon AI will be replacing some humans…

…long way to go until really trustworthy



Supervised learning for modern ML
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Training data
𝑥! , 𝑦! ∼ 𝑃"#$%&

• sample size 𝑛
• dimension 𝑑

Final 
Predictor (𝑓

𝑥

(𝑓 𝑥

𝑦
(unobserved)

loss ℓ( (𝑓 𝑥 , 𝑦)

ML model

• function class 𝐹
• optimization algorithm

Test data 
𝑥, 𝑦

Two important settings for which understanding is missing

High-dimensionality: Data dimension 𝑑 is large
Overparameterization: large model classes 𝐹 that can perfectly fit data

Reliability: how model acts when test data 𝑥, 𝑦 ≁ 𝑃!"#$%2

1

What is still barely understood and prevents more trust?



Plan for Part     : high-dimensional regression

• Setting up: Regression in the modern data regime

• Recap: regression in the classical regime

• Regression in the modern data regime

• Overparameterized models and estimators

• Two examples where classical intuition fails
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1



Recap: Regression with the square loss
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• Data generation: covariates 𝑥 ∼ 𝑃., labels 𝑦 = 𝑓⋆ 𝑥 + 𝜖

with 𝑥 ∈ 𝑅0 and 𝑦 ∈ 𝑅, noise 𝜖

• Observe: training set 𝐷 with 𝑛 i.i.d. data points

• Goal: Find -𝑓1 that is close to 𝑓⋆ in some model class 𝐹

• Vanilla estimator: minimizer of Mean Square Error

-𝑓1 = argmin2∈4 5
567

8

𝑦5 − 𝑓 𝑥5
9



Classical setting
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• sample size 𝑛 ≫ 𝑑 dimension

• Conventional wisdom: best fit with large model → large variance

degree 𝑚 = 20



Classical setting
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• sample size 𝑛 ≫ 𝑑 dimension

• Conventional wisdom: best fit with large model → large variance

degree 𝑚 = 20degree 𝑚 = 10

regularize model complexity avoiding perfect fit → smaller variance



Modern setting
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• sample size vs. dimension: 
e.g. ImageNet 𝑛 ∼ 10&, 𝑑 > 10', gene data 𝑛~ 10( to 10', 𝑑 > 10'

→ high-dimensional regime 𝑛 ≍ 𝑑) , here: 𝛼 ∈ (0,2)

• Modern practice: use overparameterized models (can fit data perfectly) 

and without regularization still seems to generalize at least as well

Optimal regularization

No regularization

*[Nakkiran et al. ‘20]



Overparameterized models in a nutshell
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Unifying diagram for overparameterized models for high dimensional data 𝑑 ≫ 𝑛: 

• Linear models are already overparameterized for 𝑝 = 𝑑 for 𝜙 𝑥 = 𝑥

• Kernels can fit nonlinear functions using 𝑝 > 𝑑 fixed nonlinear features 𝜙

• Neural networks can fit nonlinear functions using 𝑝 trained features 𝜙

𝑔: 𝑅' → 𝑅𝜙:𝑅( → 𝑅' 𝜙)(𝑥)

𝜙'(𝑥)

⋮

𝑥)

𝑥(

⋮

𝑤)

𝑤(

𝑓 𝑥 = 𝑤*𝜙 𝑥



Overparameterized models in a nutshell
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𝑔: 𝑅' → 𝑅𝜙:𝑅( → 𝑅' 𝜙)(𝑥)

𝜙'(𝑥)

⋮

𝑥)

𝑥(

⋮

𝑤)

𝑤(

𝑓 𝑥 = 𝑤*𝜙 𝑥

For overparameterized models 𝐹, many models achieve 𝑀𝑆𝐸 = 0

→ initialized at 0, first order method often yields minimum-norm interpolator

-𝑓1 = argmin2∈4 𝑓 s. t. 𝑦5 = 𝑓 𝑥5 for all 𝑖

for some norm (depends on 𝐹 and algorithm)



Evaluation of the estimators
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variance bias

What’s the expected loss on a test sample or 

estimation error -𝑓1 − 𝑓⋆ B* C+

9
= 𝐸D∼C+ -𝑓1 𝑋 − 𝑓⋆ 𝑋

9

dependent on the model class 𝐹, algorithm, 𝑛, 𝑑? 

Study the average error (over data 𝐷)

using bias-variance decomposition:

EE -𝑓1 − 𝑓⋆
9
= 𝐸1 -𝑓1 − 𝐸1 -𝑓

9
+ 𝐸1 -𝑓1 − 𝑓⋆

9



• Setting up: Regression in the modern data regime

• Two examples where classical intuition fails

• Example I: Linear models where 𝑝 = 𝑑
Minimum-ℓ9-norm interpolation when 𝑑 ≍ 𝑛
Intuition from classical setting 𝑑 < 𝑛: larger 𝑛 → smaller variance

• Example II: Nonlinear models via kernels with 𝑝 = ∞
Kernel estimators for 𝑑F ≍ 𝑛
Intuition for fixed 𝑑: you can learn nonlinear functions

12
Intuition from classical theory does not hold!

Plan for Part     : high-dimensional regression1



Linear least-squares regression for 𝑑 ≫ 𝑛
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For 𝑑 > 𝑛: min-ℓ,-norm interpolator

=w = argmin-∈/! w , s.t. 𝑦 = 𝑋𝑤

For 𝑑 < 𝑛: MSE minimizer

=w = argmin-∈/! 𝑦 − 𝑋𝑤
,

Decreasing 𝑛 fixed 𝑑 = 40

Given data matrix 𝑋 =
− 𝑥( −

⋮
− 𝑥% −

with rows 𝑥$ ∼ 𝑁 0, 𝐼0 and labels 𝑦 = 𝑋𝑤⋆ + 𝜖

M
SE

𝑑/𝑛



Linear least-squares regression for 𝑑 ≫ 𝑛
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M
SE

𝑛 decreases for fixed 𝑑
→ MSE decreases

𝑛 decreases for fixed 𝑑
→ MSE increases

Goal now: Compare and build intuition for the two regimes

Decreasing 𝑛 fixed 𝑑



Recap: Bias and variance for linear regression

Solution for both can be written as 

=𝑤 = 𝑋2𝑋 3𝑋2𝑦 = 𝑋2𝑋 3𝑋2𝑋𝑤⋆ + 𝑋2𝑋 3𝑋2𝜖

15

For 𝑑 > 𝑛: min-ℓ,-norm interpolator

=𝑤 = argmin- 𝑤
,

s.t. 𝑦 = 𝑋𝑤

For 𝑑 < 𝑛: MSE minimizer

=𝑤 = argmin- 𝑦 − 𝑋𝑤
,

=:𝑤% fits noise 
→ determines variance

Π4𝑤⋆ = 𝐸5 =𝑤
→ determines bias

Average MSE: E6 =𝑤5 − 𝑤⋆ ,
= 𝐸5 =𝑤 − 𝑤⋆ ,

+ 𝐸5 =𝑤5 − 𝐸5 =𝑤
,

variance 𝐸5 𝑤%
,bias Π7𝑤⋆ − 𝑤⋆ ,

= Test loss for 𝑋 ∼ 𝑁(0, 𝐼)



Recap: Bias and variance for linear regression

Solution for both can be written as 

=𝑤 = 𝑋2𝑋 3𝑋2𝑦 = 𝑋2𝑋 3𝑋2𝑋𝑤⋆ + 𝑋2𝑋 3𝑋2𝜖
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Π4𝑤⋆ = 𝑤⋆ → bias = 0

MSE minimizer for noise fit
𝑤% = argmin- 𝜖 − 𝑋𝑤 ,

min-ℓ,-norm interpolator of noise
𝑤% = argmin | 𝑤 |, s.t. 𝜖 = 𝑋𝑤

For 𝑑 > 𝑛: min-ℓ,-norm interpolator

=𝑤 = argmin- 𝑤
,

s.t. 𝑦 = 𝑋𝑤

For 𝑑 < 𝑛: MSE minimizer

=𝑤 = argmin- 𝑦 − 𝑋𝑤
,

=:𝑤% fits noise 
→ determines variance

Π4𝑤⋆ = 𝐸5 =𝑤
→ determines bias

bias Π7𝑤⋆ − 𝑤⋆ ,
≠ 0



Example I: Linear LS regression for 𝑑 ≫ 𝑛
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M
SE

𝑛 decreases for fixed 𝑑
→ MSE decreases

𝑛 decreases for fixed 𝑑
→ variance increases

Goal now: Compare and build intuition for the two regimes

Decreasing 𝑛 fixed 𝑑



Variance for d < 𝑛 increases with 𝑑/𝑛
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𝑅%

𝑋
𝑤

𝜖

𝑑

𝑛𝑛
𝑑−𝑤% = argmin- 𝑋𝑤% = Π7𝜖

projection onto colspan (𝑋)

colspan(𝑋)

𝜖

𝑑 = 1

Π7𝜖



Variance for d < 𝑛 increases with 𝑑/𝑛
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𝑅%

𝑋
𝑤

𝜖

𝑑

𝑛𝑛
𝑑−𝑤% = argmin- 𝑋𝑤% = Π7𝜖

projection onto colspan (𝑋)

⋅

colspan(𝑋)

𝜖

Π7𝜖

0
%

increases (increasing 𝑑 fixed 𝑛)

→ colspan 𝑋 larger

→ projection Π7𝜖 closer to 𝜖

→ norm of Π7𝜖 increases 

For simplicity: orthogonal 𝑋2𝑋 = 𝑛𝐼0 such that  𝑤% ,
= (

%
𝑋𝑤%

,
= (

%
Π7𝜖 ,

variance 𝐸5 𝑤%
,

increases with 
0
%

𝑑 = 1
𝑑 = 2

Π7𝜖



Variance for 𝑑 < 𝑛 decreases with 𝑛
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noisy observations
𝑦 = 𝑋𝑤⋆ + 𝜖

𝑋𝑤⋆

Whole function space for 𝑤: 𝑅0

= 𝑤⋆

=𝑤 = Π7𝑤⋆ + 𝑤% with bias Π7𝑤⋆ − 𝑤⋆ , = 0 and variance 𝐸5 𝑤%
, = 𝐸5

8"9 #
#

%

Space of MSE minimizers for small 𝑛

𝑤⋆

Space of MSE minimizers for large 𝑛

MSE minimizer
𝑋 ∈ 𝑅%×0 , 𝑦 ∈ 𝑅%

→ =𝑤 ∈ 𝑅0



Recap: Bias variance trade-off for 𝑑 < 𝑛
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𝑤⋆

noisy observations
𝑦 = 𝑋𝑤⋆ + 𝜖

𝑋𝑤⋆

How did we achieve the bias-variance tradeoff? → explicit regularization!

MSE minimizer
𝑋 ∈ 𝑅%×0 , 𝑦 ∈ 𝑅%

→ =𝑤 ∈ 𝑅0

Whole function space for 𝑤: 𝑅0

Subspace S; = {𝑤: 𝑤 , ≤ 𝐵} ⊂ 𝑅0
Space of MSE minimizers

bias

variance

𝑤"⋆



Recap: Bias variance trade-off for 𝑑 < 𝑛
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𝑤⋆

noisy observations
𝑦 = 𝑋𝑤⋆ + 𝜖

𝑋𝑤⋆

How did we achieve the bias-variance tradeoff? → explicit regularization!

Whole function space for 𝑤: 𝑅0

Subspace S; = {𝑤: 𝑤 , ≤ 𝐵} ⊂ 𝑅0
Subspace 𝑆 <= with c𝐵 > 𝐵

Space of MSE minimizers

bias

variance 𝑤"⋆

MSE minimizer
𝑋 ∈ 𝑅%×0 , 𝑦 ∈ 𝑅%

→ =𝑤 ∈ 𝑅0



Example I: Linear LS regression for 𝑑 ≫ 𝑛
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M
SE

𝑛 decreases for fixed 𝑑
→ MSE decreases

𝑛 decreases for fixed 𝑑
→ variance increases

Goal now: Compare and build intuition for the two regimes

Decreasing 𝑛 fixed 𝑑



Bias and variance for 𝑑 > 𝑛
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𝑤# 0

𝑤$

0
%

decreases (increasing 𝑛 fixed 𝑑) 

→ intersection smaller

→ minimum distance = 𝑤% ,
larger

Bias Π$𝑤⋆ − 𝑤⋆ & increases with 
0
%

since Π7𝑤⋆ projects on smaller space → closer to 𝑤⋆

Variance 𝐸5 𝑤% ,
,

with 

• is a point in the intersection of 𝑛 hyperplanes 𝑥$2𝑤 = 𝜖$

• the one that has minimum distance 𝑤% ,
to origin

𝑋
𝑤

𝜖

𝑑

𝑛𝑛 𝑑=𝑤% = argmin- 𝑤
,

s.t.

variance decreases with 
0
%

!

𝑅0



Bias variance trade-off for 𝑑 > 𝑛
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𝑤⋆ min-ℓ,-norm interpolators:
X ∈ 𝑅%×0 , 𝑦 ∈ 𝑅% → =𝑤 ∈ 𝑅0

noisy observations
𝑦 = 𝑋𝑤⋆ + 𝜖

𝑋𝑤⋆

=𝑤 = Π7𝑤⋆ + 𝑤% has bias Π7𝑤⋆ − 𝑤⋆ ,
and variance 𝐸5 𝑤%

,

Π7𝑤⋆
bias

variance
Effectively reached for small 𝑛
Whole function space 𝑅0



Bias variance trade-off for 𝑑 > 𝑛
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𝑤⋆ min-ℓ,-norm interpolators:
X ∈ 𝑅%×0 , 𝑦 ∈ 𝑅% → =𝑤 ∈ 𝑅0

noisy observations
𝑦 = 𝑋𝑤⋆ + 𝜖

𝑋𝑤⋆

=𝑤 = Π7𝑤⋆ + 𝑤% has bias Π7𝑤⋆ − 𝑤⋆ ,
and variance 𝐸5 𝑤%

,

Π7𝑤⋆
bias

variance

Effectively reached for small 𝑛
Effectively reached for large 𝑛

Whole function space 𝑅0

Bias variance trade-off via 
0
%
!



High-dimensional (non)-asymptotic rates 

• for min-ℓ$-norm and different covariances Σ%

• 𝑑 ≍ 𝑛: Hastie et al. ‘19

• 𝑑 ≍ 𝑛 log 𝑛: Bartlett et al. ‘20; Muthukumar et al. ’20; Koehler et al. ‘21

• for min-ℓ#-norm for sparse ground truth Σ% = 𝐼%

• 𝑑 ≍ 𝑛 log 𝑛: Chinot et al. ‘20, WDY ‘21 (in preparation)

• Related work on logistic regression: Deng et al. ‘19, Chinot et al. ‘21 

• For adversarial robustness:  Javanmard et al. ‘20, DTAHY ‘21

27*This list is by no means complete!



Addendum: What to do in practice?

… just regularize!

28

M
SE

𝑑/𝑛

ridge regression with optimal regularization parameter

minimum ℓ,-norm interpolator



• Regression in the modern data regime

• Two examples where classical intuition fails

• Example I: Linear models where 𝑝 = 𝑑
Minimum-ℓ9-norm interpolation when 𝑑 ≍ 𝑛
Intuition in the modern regime: larger 𝑛 → larger variance

• Example II: Nonlinear models via kernels with 𝑝 = ∞
Kernel estimators for 𝑑F ≍ 𝑛 for large 𝑑
Intuition for fixed 𝑑: you can learn nonlinear functions

29
Intuition from classical theory does not hold!

Plan for Part     : high-dimensional regression1



Recap: Kernel regression
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• Data generation: 𝑥 ∼ 𝑃> , 𝑦 = 𝑓⋆ 𝑥 + 𝜖 with 𝑥 ∈ 𝑅0 and 𝑦 ∈ 𝑅

• Observe: 𝑛 i.i.d. data points in training set 𝐷

• Goal: Find g𝑓5 that is close to 𝑓⋆ in kernel class 𝐹 induced by 

a kernel 𝐾 𝑥, 𝑥′ = ⟨𝜙 𝑥 , 𝜙 𝑥′ ⟩ with 𝜙 𝑥 ∈ 𝑅?

𝑔: 𝑅' → 𝑅𝜙:𝑅( → 𝑅' 𝜙)(𝑥)

𝜙'(𝑥)

⋮

𝑥)

𝑥(

⋮

𝑤)

𝑤(

𝑓 𝑥 = ⟨𝑤, 𝜙 𝑥 ⟩



Recap: Kernel regression
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• Data generation: 𝑥 ∼ 𝑃> , 𝑦 = 𝑓⋆ 𝑥 + 𝜖 with 𝑥 ∈ 𝑅0 and 𝑦 ∈ 𝑅

• Observe: 𝑛 i.i.d. data points in training set 𝐷

• Goal: Find g𝑓5 that is close to 𝑓⋆ in kernel class 𝐹 induced by 

a kernel 𝐾 𝑥, 𝑥′ = ⟨𝜙 𝑥 , 𝜙 𝑥′ ⟩ with 𝜙 𝑥 ∈ 𝑅?

Consider universal kernel estimators for 𝑝 → ∞. Implementations yield 

• Avoiding perfect fitting: kernel ridge regression

g𝑓5 = argmin@∈A m
$

%

𝑦$ − 𝑓 𝑥$
,
+ 𝜆 𝑓

A
,

• Perfect fitting: minimum-Hilbert-norm interpolator

g𝑓5 = argmin@∈A 𝑓
A
s. t. 𝑦$ = 𝑓 𝑥$ for all 𝑖

(the solution of gradient descent on square loss upon convergence)



Kernels and neural networks– previous work

• Practice: neural networks can learn highly nonlinear functions very well

But don’t know which interpolating solution it finds! 

• Theory: kernel estimators can learn arbitrary nonlinear functions

solution of simple convex problem → analyzable (a lot of previous work) 

where || ⋅ ||B-norm induces structure dependent on 𝐾 (e.g. smoothness)

• Recent trend:  infinite-width neural networks (NN) behave like certain kernels (NTK)  

→ use kernel learning to understand why NN work well*

32

We show: Futile effort when considering vanilla fully-connected NN!

*e.g. [Belkin et al. ‘18, Liang & Rakhlin ’20]



... vanilla kernels fail in high dimensions

Vanilla fully connected-NTK behave “similarly” to Laplace kernels1 - a good thing?  

• on CIFAR10: FC-NTK : ~52%2, Laplace kernel: ~52%2

• Laplace kernel for fitting 𝑓⋆ 𝑥 : true housing price,  𝑛 = 371 (on basically noiseless data)

33

Number of used features 𝑑 (ordered)

N
or

m
al

iz
ed

 r
isk

1[Geifman et al. ’20, Bietti et al. ’20] 2[Lee at al. ‘20, Belkin et al. ’18]



Bias variance trade-off for kernels

34

Laplace kernel for 𝑓⋆ 𝑥 = for fixed 𝑛 = 500

Similar to linear as 0
%

increases, but bias increase dominates variance decrease!

Goal now: Characterize the bias as a function of 𝑑 vs. 𝑛! 



Kernels learn low-degree polynomials 

35

As dimension grows, the estimator degenerates to a low degree polynomial

Setting

• 𝑥 ∼ 𝑈( −.5, .5 ()

• 𝑦 = sin (𝑥))

• 𝑛 = 100 i.i.d.

• Laplace kernel

training points 



Main result: Polynomial approx. barrier

36

Assume simplest setting 𝑥 ∼ 𝑁 0, 𝐼0 , then as 𝑑, 𝑛 → ∞, 0
'

%
→ 𝑐 > 0

g𝑓 − 𝑓⋆ ≥ inf
?∈C(#'

𝑓⋆ − 𝑝 almost surely 

where 𝑃D,) is the set of polynomials of degree at most 2𝛼, any 𝛼 > 0

Theorem (DWY ‘21, ICML) - simplified, informal version

• more generally can assume x ∼ 𝑁(0, Σ0) and replace 𝑑 by tr(Σ0)

• for rotationally invariant kernels 𝑘E x, y = ℎ >
#

E
, F

#

E
, >

)F
E

• different functions ℎ such as RBF (Laplacian, Gaussian), inner product, 
fully connected NTK of any depth

• for different scalings 𝜏
∗poly. barrier restricted to 
particular distr., scaling 𝜏 = 𝑑:
[Ghorbani et al. ’19, ‘20]



Bias variance trade-off for kernel estimators

37

𝑓⋆

kernel estimators:
𝑦 ∈ 𝑅% → g𝑓5 ∈ 𝐹

noisy observations
𝑓⋆(𝑥(%) + 𝜖

𝑓⋆ 𝑥(%

𝐸5 g𝑓5

bias

variance

Effectively reachable for small 𝑛
Polynomials of degree 2 KLM %

KLM 0

Whole function space 𝐹

Same story as for linear models…



Bias variance trade-off for kernel estimators

38

𝑓⋆

kernel estimators:
𝑦 ∈ 𝑅% → g𝑓5 ∈ 𝐹

noisy observations
𝑓⋆(𝑥(%) + 𝜖

𝑓⋆ 𝑥(%

𝐸5 g𝑓5
bias

variance

Effectively reachable for small 𝑛
Polynomials of degree 2 KLM %

KLM 0

Effectively reachable for large 𝑛

Whole function space 𝐹

Same story as for linear models…



Why rotation invariance increases bias with 𝑑
• rotationally invariant kernels should satisfy 𝑘 𝑥, 𝑦 = 𝑘(𝑈𝑥, 𝑈𝑦)

with 𝑈 orthonormal matrix (think of 𝑈 permutation matrix)

• kernel method g𝑓 predicts similar values for similar samples, similarity defined by 𝑘 𝑥, 𝑦

Example 1: ground truth are human labelers, e.g. images
→ good classifier g𝑓 should find similar what we find similar, i.e. 𝑘 𝑥, 𝑦 should reflect that

39

similar𝑥 𝑦 different𝑈𝑥 𝑈𝑦

not using spatial structure, pays attention to every pixel independently



Why rotation invariance is bad for large 𝑑
• rotationally invariant kernels should satisfy 𝑘 𝑥, 𝑦 = 𝑘(𝑈𝑥, 𝑈𝑦)

𝑈: orthonormal matrix (e.g. permutation matrix)

• kernel method predicts similar values for similar samples, similarity defined by 𝑘 𝑥, 𝑦

• further can often write 𝑘 𝑥, 𝑦 ∼ ∑NOPQ 𝑔N
>)F
0

N
in high dimensions for some 𝑔N

Example II: ground truth depends only on first variable
→ good predictor should map any two 𝑥, 𝑦 with 𝑥( = 𝑦( to same value, 𝑘 𝑥, 𝑦 high

However, assume 𝑥,:0 , 𝑦,:0 random and large 𝑑 → >)F
0
≈ >*F*

0
small → 𝑘(𝑥, 𝑦) small 

40

generally: low-dimensional features dominated by irrelevant features



Is there any hope for kernels in large 𝑑?

• For images: structured kernels actually work well in practice...?

• convolutional kernels can achieve ~90% on CIFAR101

• can we analyze the asymptotic limits of such kernels?

• For functions depending on few variables: 

• nonlinear feature selection before kernel

• or A(utomatic) R(elevance) D(etermination) kernels2

411e.g. [Shankar et al. ’20], 2e.g. [MacKay ‘94] 



Supervised learning for modern ML

42

Training data
𝑥! , 𝑦! ∼ 𝑃"#$%&

• sample size 𝑛
• dimension 𝑑

Final 
Predictor (𝑓

𝑥

(𝑓 𝑥

𝑦
(unobserved)

loss ℓ( (𝑓 𝑥 , 𝑦)

ML model

• function class 𝐹
• optimization algorithm

Test data 
𝑥, 𝑦

Two important settings for which understanding is missing

High-dimensionality: how small average loss can be when 𝑑 large 

Reliability: how model acts when test data 𝑥, 𝑦 ≁ 𝑃!"#$%2

1

What is still barely understood and prevents more trust?



What is this traffic sign?
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stop

turn right

*[Eykholt et al. ‘17, Sitawarin et al. ’18]

Fails for small perturbations that don’t change the class

self-driving car

45 mph



Which object is this?
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truck

sky

*based on a reported Tesla accident in 2016

self-driving car

Fails on unseen scenarios



Which disease does this patient have?
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bacterial pneumonia

bacterial pneumonia
with high confidence

COVID19 pneumonia

bacterial pneumonia

*[Cao et al. ‘20]

Fails to be uncertain on novel classes

the AI doctor



Reliability when 𝑥, 𝑦 ≁ 𝑃!"#$%
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Same 𝑃F|> and classes
𝑥 ∼ 𝑃"+,",. ≠ 𝑃"#$%&,.

Same 𝑃F|> but new classes 
𝑦 ∉ supp(𝑃"#$%&,/)

Goals:

• robust generalization: have low expected error on 𝑥

• calibration: predictive uncertainty should be accurate

• detect novel class samples 

Adversarially transformed
T 𝑥 with 𝑥 ∼ 𝑃"#$%&,.



• Easy vs. hard novel class (OOD) detection

• OOD detection using ensembles

• Unknown OOD setting

• Idea: regularized diversity with unlabeled data

47

Plan for Part     : novel class detection2



Novel classes in the test set
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• Given labeled training points from 𝑠𝑢𝑝𝑝T5 , test point 𝑥 ∈ 𝑠𝑢𝑝𝑝!UV! = suppT5 ∪ suppWW5

• Goal: Flag if 𝑥 ∈ 𝑠𝑢𝑝𝑝WW5 , predict if 𝑥 ∈ 𝑠𝑢𝑝𝑝T5
(also known as anomaly detection, open set recognition, one-class classification) 

suppT5 : training distribution

suppWW5 : novel classes

(out-of-distribution / OOD)

training points



Two types of test statistics

Can view it as classifying between OOD and ID without OOD labels

• view as density estimation problem → flag if probability of 𝑥 too low 

• by-product of predictive uncertainty problem → flag if uncertainty too high

49
works better 
with neural networks

suppT5 : training distribution

suppWW5 : novel classes

(out-of-distribution / OOD)

training points



Easy vs. hard novel image classes
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hard OOD: unseen classes 

• 𝑠𝑢𝑝𝑝WW5 : CIFAR10 classes 6-10 

• ID close to OOD data

𝑠𝑢𝑝𝑝T5 : CIFAR10 classes 1-5

easy OOD: different dataset 

• 𝑠𝑢𝑝𝑝WW5 : SVHN classes 6-10

• ID far from OOD data



SOTA methods fail for novel classes
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• True positive rate (TPR): percentage of truly novel classes marked as OOD

• True negative rate (TNR): percentage of seen classes marked as ID

T
N

R@
T

PR
=9

5%

Different OOD methods Different OOD methods

large drop for unseen (novel) class from the same dataset!

vanilla 
ensembles

easy: different datasets (CIFAR10 type) hard: unseen classes (CIFAR10 type)



Novel class detection using ensembles
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For a binary classification problem consider two models that

• have good validation accuracy on old classes

• are different outside of training distribution

→ can mark samples with disagreement as novel

Hypoth. model 1 predictions Hypoth. model 2 predictions Ensemble predictions

training distribution

predicted class

labeled training points

models disagree



Vanilla ensembles are not diverse enough
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Model 1: random init 1 Model 2: random init 2

vanilla ensemble 

SOTA neural network ensembles tend to agree where they can

labeled training points

training distribution

models disagree

Hard OOD requires disagreement on larger region 

→ more diverse ensembles!



Our setting: Unknown OOD
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Often unlabeled test data can be available including OOD (PU-learning)

Is the problem now trivial? 

In medical example 

• test set: unlabeled X-rays collected during the week when new disease arrives

• even though predict using old model, valuable to detect new diseases by end of week

some unlabeled points from 
𝑠𝑢𝑝𝑝01 ∪ 𝑠𝑢𝑝𝑝221 (test set)

labeled training points

𝑠𝑢𝑝𝑝01: training distribution

𝑠𝑢𝑝𝑝221: novel classes



Previous unknown OOD methods still fail
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easy: different datasets (CIFAR10 type) hard: unseen classes (CIFAR10 type)

T
N

R@
T

PR
=9

5%

Not obvious how to leverage unknown OOD! 

*[Kiryo et al. ’17, Yu et al. ‘19, based on Lee ‘18]

• True positive rate (TPR): percentage of truly novel classes marked as OOD

• True negative rate (TNR): percentage of seen classes marked as ID



Idea: regularized diversity with unlabeled data
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without regularization

labeled training points

artificially labeled points

novel class

train distribution

unlabeled test points

Model 1 Model 2

label    as 
label    as



Idea: regularized diversity with unlabeled data

57
with regularization

labeled training points

artificially labeled points

novel class

train distribution

unlabeled test points

Model 1 Model 2

label    as 
label    as

without regularization



Learning ensembles that disagree

1. Learn model that fit different artificial labels c = 1 to K on unlabeled set
but are regularized to have high validation accuracy (e.g. fine-tuning + early stopping)

2. For new point 𝑥, average pairwise disagreement between classifiers c = 1 to K

3. flag as OOD if disagreement > some threshold
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Algorithm (TSY ’20) – ensembles with regularized disagreement

T
N

R@
T

PR
=9

5%

Ours



Learning ensembles that disagree

1. Learn model that fit different artificial labels c = 1 to K on unlabeled set
but are regularized to have high validation accuracy (e.g. fine-tuning + early stopping)

2. For new point 𝑥, average pairwise disagreement between classifiers c = 1 to K

3. flag as OOD if disagreement > some threshold
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Algorithm (TSY ’20) – ensembles with regularized disagreement

Novel classes in chest X-ray + retinal datasets

A
U

RO
C

A
U

RO
C

Oursdifferent datasets different diseases




