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Soon Al will be replacing some humans...

...long way to go until really trustworthy



Supervised learning for modern ML

What is still barely understood and prevents more trust?
[ (x,y)

X y
Training data ML model l (unobserved)
(xi, Y1) ~ Prrain Final
F Predictor f
* optimization algorithm R
fo |
v
loss 2(f (x),y)

Two important settings for which understanding is missing

High-dimensionality: Data dimension d is large
Overparameterization: large model classes F that can perfectly fit data

@ Reliability: how model acts when test data (x,y) * Prrqin




Plan for Part (O : high-dimensional regression

* Setting up: Regression in the modern data regime
* Recap: regression in the classical regime
* Regression in the modern data regime

* Overparameterized models and estimators

e Two examples where classical intuition fails



Recap: Regression with the square loss

« Data generation: covariates x ~ P, labels y = f*(x) + €
with x € R% and y € R, noise €

* Observe: training set D with n i.i.d. data points

Goal: Find fp that is close to f* in some model class F

* Vanilla estimator: minimizer of

fo = argminger ) (vi —f(x)’
i=1



Classical setting

* sample size n > d dimension

Conventional wisdom: best fit with large model — large variance

== Model

®  samples




Classical setting

* sample size n > d dimension

* Conventional wisdom: best fit with large model — large variance

=

regularize model complexity avoiding perfect fit — smaller variance




Modern setting

e sample size vs. dimension:
e.g ImageNet n ~ 10%,d > 10%, gene data n~ 10* to 10%,d > 10*

— high-dimensional regime n = d%, here: a € (0,2)

¢ Modern practice: use overparameterized models (can fit data perfectly)

and without regularization still seems to generalize at least as well
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Overparameterized models in a nutshell

$:RE>RP | ¢ (x)

" O FO—— " | f=wTo00)
==
o=

(o (x)

Xd

Unifying diagram for overparameterized models for high dimensional data d > n:
* Linear models are already overparameterized for p = d for ¢p(x) = x
e Kernels can fit nonlinear functions using p > d fixed nonlinear features ¢

*  Neural networks can fit nonlinear functions using p trained features ¢



Overparameterized models in a nutshell

$:RT=>RP | ¢, (x)
m O N f) = wT(x)
=1
X . ‘ e
d c 7/
¢p(x)

For overparameterized models F, many models achieve MSE = 0

— initialized at O, first order method often vyields

fp = argmingep [If1]s.t. y; = f(x;) for all i

for some norm (depends on F and algorithm)
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Evaluation of the estimators

What's the expected loss on a test sample or

2

estimation error| fy — F*
\fo — 17| )

dependent on the model class F, algorithm, n, d?

Study the average error (over data D)
using bias-variance decomposition:

2

A 2 . 12 A
Ep |Ifo = £*1|" = Eo ||fo — EofI|” +||Eofo — £*|

g
o -
variance bias

= Ex-p, (fD(X) - f*(X))Z



Plan for Part (O : high-dimensional regression

* Setting up: Regression in the modern data regime

* Two examples where classical intuition fails

* Example I: Linear models where p = d
Minimum-£,-norm interpolation when d = n
Intuition from classical setting d < n: larger n — smaller variance

e Example Il: Nonlinear models via kernels with p = oo
Kernel estimators for d* =n
Intuition for fixed d: you can learn nonlinear functions

Intuition from classical theory does not hold!




Linear least-squares regression for d > n

Given data matrix X = < > with rows x; ~ N(0,1;) and labels y = Xw™* + €
For d < n: MSE minimizer For d > n: min-£,-norm interpolator
W = argmin, pa|ly — Xwl|, W = argmin,,cpa [[Wl|, sty =Xw

Decreasing n fixed d = 40 dzn

»

100

MSE
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Linear least-squares regression for d > n

Goal now: Compare and build intuition for the two regimes

Decreasing n fixed d

> sz\

100

9\0‘1 2 3 4 5 6 7 8 9 J\ Jz
Y ~

9a) N decreases for fixed d ffﬁ ? 1 decreases for fixed d
¢ ) - MSE increases é — MSE decreases




Recap: Bias and variance for linear regression

For d < n: MSE minimizer For d > n: min-£,-norm interpolator

w = argminwlly — le|2 w= argmin,, ||W||2 sty =Xw

Solution for both can be written as

=X"X)TXTy=X"X)TXTXw*+ (XTX)TXTe

- J J

Y~ Y~
[yw* = Ep,w =:w,, fits noise
— determines bias — determines variance
~ w112 —~ w112 - 112
Average MSE: ED“WD -w || = ||EDW -w || + ED“WD - EDW||

- J
- -~

bias ||TLyw* — W*I|2 variance ED||Wn||2



Recap: Bias and variance for linear regression

For d < n: MSE minimizer For d > n: min-£,-norm interpolator

w = argminwlly —le|2 w = argmin,, ||W||2 sty =Xw

Solution for both can be written as

=X"X)TXTy=X"X)TXTXw*+ (XTX)TXTe

- ~ J ~ J
[yw* = Ep,w =:w,, fits noise
— determines bias — determines variance
* * H E H * * 2
[Iyw* =w”* = bias =0 : blas||HXw —-w || 0
MSE minimizer for noise fit : min-£,-norm interpolator of noise
w, = argmin,, ||e —Xw||2 : w, = argmin |[w||, st. € = Xw

|6
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Example I: Linear LS regression for d > n

Goal now: Compare and build intuition for the two regimes

Decreasing n fixed d

> sz\

100

T o
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fj’ ? n decreases for fixed d
é — MSE decreases




f/-\
Variance for d < n increases with d /n

d
Wy = argminy~ ) B

1
nile - n X
projection onto colspan (X)

Rn

I1
colspan(X)  *°



Variance for d < n increases with d /n

d

d
w, = argminyin |e| — n| X H ) E— Xwy, = llye

projection onto colspan (X)

Rn
d. . .
— increases (increasing d fixed n)

- colspan X larger

- projection Ilye closer to €

[Iye
colspan(X) > norm of Iy€ increases

For simplicity: orthogonal XTX = nl; such that ||Wn||2 = \/%||Xwn||2 = \/%“HXEHZ

. 2 L, d
variance Ep | Iwn|| increases with ~



Variance for d < n decreases with n

2
w = [yw* + w, with bias ||Tyw* — W*||2 = 0 and variance ED||Wn||2 =Ep @
x
=w
MSE minimizer
X € R™4 y € R}
- W € R® 5
Xw*

noisy observations
y=Xw*+¢€

(O Whole function space for w: R%
Space of MSE minimizers for small n

Space of MSE minimizers for large n
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Recap: Bias variance trade-off for d < n

How did we achieve the bias-variance tradeoff? — explicit regularization!

MSE minimizer
X € R™4 y e R
— W € R4 °

Xw*

noisy observations
y=Xw*+¢€

(O Whole function space for w: R%
Space of MSE minimizers
O Subspace Sg = {w: ||W||2 < B} c R

21



Recap: Bias variance trade-off for d < n

How did we achieve the bias-variance tradeoff! — explicit regularization!

MSE minimizer
X € R4,y € R
— W € R4

noisy observations
y=Xw*+¢€

O Whole function space for w: R%

() Space of MSE minimizers

O Subspace Sg = {w: ||W||2 < B} c R
(O Subspace Sz with B > B

22




Example I: Linear LS regression for d > n

Goal now: Compare and build intuition for the two regimes

Decreasing n fixed d

> d:‘“
I_IJ 5
w 2
2 &
9\ 0‘1 2 = 4 5 6 7 8 9 J\ JZ
~ =
fa @ 2
n decreases for fixed d A" n decreases for fixed d
— variance increases — MSE decreases
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Bias and variance ford > n

, 2. L al . .
Bias |[mxw* — w*||” increases with —fsince [yw™ projects on smaller space — closer to w*

d
2 —
Variance ED||wn||2 with  w,, = argmin,, ||W||2 st. " = n X d
* isa point in the intersection of n hyperplanes x;' w = ¢;
* the one that has minimum distance ||Wn||2 to origin
d . . ,
R4 ~ decreases (increasing n fixed d)

- intersection smaller

- minimum distance = ||Wn||2 larger

. od
|:> variance decreases with ~ !




Bias variance trade-off ford > n

2 2
w = IIyw” + w,, has bias ||HXW* — W*I| and variance ED||Wn||

/\ N

min-£,-norm interpolators:
X € R4,y € R -> w € R?

noisy observations
y=Xw*+¢€

O Whole function space R%
Effectively reached for small n

25



Bias variance trade-off ford > n

2 2
w = IIyw™ + w, has bias ||HXW* — W*|| and variance ED||Wn||

N

min-£,-norm interpolators:
X € R4,y € R - W € R4

noisy observatio
y=Xw*+e¢€

O Whole function space R4
() Effectively reached for small n

() Effectively reached for large n

. . d
:> Bias variance trade-off via -

ns
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High-dimensional (non)-asymptotic rates

for min-£,-norm and different covariances X4
* d = n: Hastie etal. 19

* d = nlog n: Bartlett et al. 20; Muthukumar et al. '20; Koehler et al. 21

for min-£1-norm for sparse ground truth 25 = I

* d = nlogn: Chinot et al. 20, WDY 21 (in preparation)

Related work on logistic regression: Deng et al. “19, Chinot et al. 21

For adversarial robustness: Javanmard et al. 20, DTAHY 21

*This list is by no means complete! >



Addendum: What to do in practice?

... just regularize!

1000

d/n
— ridge regression with optimal regularization parameter

— minimum €,-norm interpolator

28
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Plan for Part (O : high-dimensional regression

* Regression in the modern data regime

* Two examples where classical intuition fails

-

 Example I: Linear models where p = d (\"JS'? :r; gg@%

Minimum-£,-norm interpolation when d =n
Intuition in the modern regime: larger n — larger variance

¢ Example ll: Nonlinear models via kernels with p = oo
Kernel estimators for d* = n for large d
Intuition for fixed d: you can learn nonlinear functions

Intuition from classical theory does not hold!

29
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Recap: Kernel regression

 Data generation: x ~ P, y = f*(x) + e with x € R* and y € R
e Observe: niid. data points in training set D
«  Goal: Find f that is close to f* in kernel class F induced by

a kernel K(x,x") = (¢p(x), p(x")) with ¢p(x) € RP

$:RC > RP | 4, (x)

X1 Wil fx) = (w, p(x))
> il

Og Wq

Xq (%

¢p ()

30



Recap: Kernel regression

 Data generation: x ~ P, y = f*(x) + e with x € R* and y € R
e Observe: niid. data points in training set D

+  Goal: Find fp that is close to f* in kernel class F induced by
a kernel K(x,x") = (¢p(x), p(x")) with ¢p(x) € RP

Consider universal kernel estimators for p = oo. Implementations yield
* Avoiding perfect fitting: kernel rid%e regression
fo = argmingee » (v = f()” + 2111
i
*  Perfect fitting: minimum-Hilbert-norm interpolator

o = argmingcp ||f||F s.t. y; = f(x;) foralli

(the solution of gradient descent on square loss upon convergence)

31



Kernels and neural networks— previous work

* Practice: neural networks can learn highly nonlinear functions very well

But don’t know which interpolating solution it finds!

* Theory: kernel estimators can learn arbitrary nonlinear functions
solution of simple convex problem — analyzable (a lot of previous work)

where || - ||g-norm induces structure dependent on K (e.g. smoothness)

* Recent trend: infinite-width neural networks (NN) behave like certain kernels (N'TK)

— use kernel learning to understand why NN work well*

We show: Futile effort when considering vanilla fully-connected NN!

32
*e.g. [Belkin et al. “18, Liang & Rakhlin "20]



.. vanilla kernels fail in high dimensions

Vanilla fully connected-NTK behave “similarly” to Laplace kernels' - a good thing?
* on CIFAR10: FC-NTK : ~52%?, Laplace kernel: ~529%2

* Laplace kernel for fitting f*(x): true housing price, n = 371 (on basically noiseless data)

0035 1 -@-Ridge
V- Interpolation

0.030 -

0.025

e

0.020

Normalized risk

0.015

0.010 -

0 25 50 75 100

Number of used features d (ordered)
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"[Geifman et al. 20, Bietti et al. '20] ?[Lee at al. ‘20, Belkin et al. '18]
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Bias variance trade-off for kernels

Laplace kernel for f*(x) = 0.5 35, :1:%2i+1) -3 T (2;) for fixed n = 500

‘ @ Bias
100 g /- Variance
A /\-Risk

o
N
ol

Normalized risk
o
w
o

o
N
U1

VY VUV 9V VU=V V-V V-V V=

0.00 0 2‘5 5|0 7I5 160
Number of features

Goal now: Characterize the bias as a function of d vs. n!

34



Kernels learn low-degree polynomials

training points
AN

© y=sin () S o ‘
— 100 i ° ®
* n =100 iid. ~05 1 |— Ground truth
‘ ——d=2
~-d=4
* Laplace kernel L \ | [as

. / ol
Setting ° 0‘) i

x ~ U([-.5,.5]%)

(2:d)
k>
—
8
=
o
e
f(z,,0,,0)

-0.4 -0.2 0.0 0.2 0.4

L(1)

As dimension grows, the estimator degenerates to a low degree polynomial

35



Main result: Polynomial approx. barrier

= Theorem (DWY 21, ICML) - simplified, informal version

N\ . | o
Assume simplest setting x ~ N(0,I;), thenasd,n — ©,— ¢ > 0

17 - 7]

> inf ||f*—p|| almost surely
PEP<2q

where P, is the set of polynomials of degree at most 2a, any a > 0

* more generally can assume x ~ N(0,X,;) and replace d by tr(Zy)

[ xTy)
) )

» for rotationally invariant kernels k; (x,y) = h( - —, =

» different functions h such as RBF (Laplacian, Gaussian), inner product,
fully connected N'TK of any depth

e for different scalings T 36
D



Bias variance trade-off for kernel estimators

Same story as for linear models. .. |
kernel estimators:

yER" > fp €EF

noisy observations
fr(xt) +e

O Whole function space F
Effectively reachable for small n

. logn
Polynomials of degree 2 ——
olynomials of degree Tog
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Bias variance trade-off for kernel estimators

Same story as for linear models. .. |
kernel estimators:

yER" > fp €EF

noisy observations
fr(xt) +e

O Whole function space F

Effectively reachable for small n
. logn
Polynomials of degree 2@

Effectively reachable for large n

38



Why rotation invariance increases bias with d

 rotationally invariant kernels should satisfy k(x,y) = k(Ux, Uy)
with U orthonormal matrix (think of U permutation matrix)

*  kernel method f predicts similar values for similar samples, similarity defined by k(x, )

Example |: ground truth are human labelers, e.g. images
— good classifier f should find similar what we find similar, i.e. k(x, y) should reflect that

& roa

xi similar y Ux P different” = © Uy
H L B

not using spatial structure, pays attention to every pixel independently

39




Why rotation invariance is bad for large d

 rotationally invariant kernels should satisfy k(x,y) = k(Ux, Uy)
U: orthonormal matrix (e.g. permutation matrix)

* kernel method predicts similar values for similar samples, similarity defined by k(x, y)

T/
* further can often write k(x,y) ~ X520 9 (%) in high dimensions for some g;

Example Il: ground truth depends only on first variable
— good predictor should map any two x, y with x; = y; to same value, k(x, y) high

.
X X
However, assume x5.;, V5.4 random and large d — Ty ~ 173/1 small = k(x,y) small

generally: low-dimensional features dominated by irrelevant features

40



s there any hope for kernels in large d?

e For images: structured kernels actually work well in practice...!
* convolutional kernels can achieve ~90% on CIFAR10'
* can we analyze the asymptotic limits of such kernels?

» For functions depending on few variables:
* nonlinear feature selection before kernel

* or A(utomatic) R(elevance) D(etermination) kernels?

41



Supervised learning for modern ML

What is still barely understood and prevents more trust?
[ (x,y)

< ,
ML model (unobserved)

Training data
(xi, Y1) ~ Prrain Final
* function class F Predictor f
* optimization algorithm R
fo | |

loss £(f (x),y)

Two important settings for which understanding is missing
@ High-dimensionality: how small average loss can be when d large

@ Reliability: how model acts when test data (x, ¥) * Pirgin
42




VWhat is this traffic sign?

&

fly stOp

self-driving car "

jmlly- turn right

X

- 45 mph

Fails for small perturbations that don’t change the class

43



Which object is this?

| —

self-driving car

sl truck

Fails on unseen scenarios

44




Which disease does this patient have’

the Al doctor

=== bacterial pneumonia

v

bacterial pneumonia
b Dacterial pneumonia

A
| | ‘ ‘ with high confidence
COVID19 pneumonia x

Fails to be uncertain on novel classes

45



Reliability when (x, V) * Pirgin

Adversarially transformed Same Py, and classes Same Py, but new classes

& O

Goals:
* robust generalization: have low expected error on x ¢ detect novel class samples

e calibration: predictive uncertainty should be accurate
46




Plan for Part () : novel class detection

¢ Easy vs. hard novel class (OOD) detection

¢ OOD detection using ensembles
¢ Unknown OQOD setting

* |dea: regularized diversity with unlabeled data

47



Novel classes in the test set

; ‘ e o training points

(d) COVID-19 Pneumonia

supp;p : training distribution

SUppoop: Novel classes

m S (out-of-distribution / OOD)
|

* Given labeled training points from supp;p, test point x € SUPPtest = SUPPip Y SUPPoop

* Goal Flag if x € suppoop, predict if x € supp;p
(also known as anomaly detection, open set recognition, one-class classification)

48



Two types of test statistics

e o training points

supp;p : training distribution
SUppoop: Novel classes

A (out-of-distribution / OOD)

Can view it as classifying between OOD and ID without OOD labels
e view as density estimation problem — flag if probability of x too low

*  by-product of predictive uncertainty problem — flag if uncertainty too high

\ works better
with neural networks 49



Fasy vs. hard novel image classes

supp;p: CIFAR10 classes 1-5

easy OOD: different dataset hard OOD: unseen classes
*  Suppoop: SVHN classes 6-10 *  Ssuppoop : CIFAR10 classes 6-10
e ID far from OOD data e ID close to OOD data

BOHATE RAEYRe~

50




SOTA methods fail for novel classes

e True positive rate (TPR): percentage of truly novel classes marked as OOD

e True negative rate (TNR): percentage of seen classes marked as ID

1

0.8

S
©

0.6

2
o

0.4

y I. I
0

Different OOD methods Different OOD methods

TNR@TPR=95%

large drop for unseen (novel) class from the same dataset!

easy: different datasets (CIFART0 type) hard: unseen classes (CIFAR10 type)
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Novel class detection using ensembles

For a binary classification problem consider two models that

have good validation accuracy on old classes ® @  labeled training points

training distribution
¢ are different outside of training distribution T predicted dlass

— can mark samples with disagreement as novel models disagree

55""-*1 i e
\ ° mnd o
:-ti‘ Bie T ® ] -R— 7
0 e ':h e o . .‘
-H ‘_ { 'y L] t‘ [ ] ‘ 'y .I':
4 AL . . WS
L' o 1 } v/ ’ [ J b
o HH h % e i
[ ) f.t-" "HH o
= \ Ll | L

Hypoth. model 1 predictions Hypoth. model 2 predictions Ensemble predictl%;ns
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Vanilla ensembles are not diverse enough

SOTA neural network ensembles tend to agree where they can

Model 1: random init 1 Model 2: random init 2
\ N
\ &7 \\\ e,
() \\ ®
° .\ v 2 & N e e
[ J
[ ] PY \ o PS \\\
[} \ o \\\
. vanilla ensemble

e e |[abeled training points

Hard OOD requires disagreement on larger region
training distribution

— more diverse ensembles!

models disagree

53
D



Our setting: Unknown OOD

Often unlabeled test data can be available including OOD (PU-learning)

R’
8 e e labeled training points
3
B supp;p: training distribution
2, : novel cl
Cx. B R e Suppoop: novel classes
° S .
R.e % some unlabeled points from
°
» suppp U suppoop (test set)

In medical example
* test set: unlabeled X-rays collected during the week when new disease arrives

* even though predict using old model, valuable to detect new diseases by end of week

ivial?
s the problem now trivial: 54



Previous unknown OOD methods still fail

* True positive rate (TPR): percentage of truly novel classes marked as OOD

* True negative rate (TNR): percentage of seen classes marked as 1D

easy: different datasets (CIFART0 type) hard: unseen classes (CIFAR10 type)

| “
0.8 s IEE—— 0.8

0.6 +H | : 0.6
A 0.4

0.4

) | I | 1 . | Il
0 0

Unknown No Unknown
00D 00D 0o0oD

TNR@TPR=95%

® Vanilla Ensembles .
MacCmipwm Not obvious how to leverage unknown OOD!
= nnPU

55




|dea: regularized diversity with unlabeled data

o e labeled training points R 8
train distribution ® ”
8
novel class °
°
® unlabeled test points o / %% 33.
% ¢ artificially labeled points R o b
* R
label 2 as %
y label % as %
7 R
R
3

Model 1 Model 2
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|dea: regularized diversity with unlabeled data

o e labeled training points R 8
o b4
train distribution
% R
novel class °
labeled test point 2%
unlabeled test points
23 o & R R0
% ¢ artificially labeled points R o b
R
label 2 as %
y label % as
® » ®
% \ S / 4
® ° G
\ ? * \\ ° .8
* %o > L S Y
° \. > RN e o
] N
x [ J ® ) $
L ° \ o R ° \\\
®
Model 1 ¥\ Model 2 © * ;

. \

[ ]
.83 °
o8

with regularization
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Leaming ensembles that disagree

— Algorithm (TSY "20) — ensembles with regularized disagreement

1. Learn model that fit different artificial labels ¢ = 1 to K on unlabeled set
but are regularized to have high validation accuracy (e.g. fine-tuning + early stopping)

2. For new point x, average pairwise disagreement between classifiers ¢ = 1 to K

3. flagas OOD if disagreement > some threshold

1 1]
= Qurs

0.8 | 0.8

0.6 [ i — — 0.6

0.4 | | =

TNR@TPR=95%

0.2 |- | = |

o]
No Unknow

00D 00D 00D 00D 5 8




Learning ensembles that disagree

Algorithm (TSY "20) — ensembles with regularized disagreement

1. Learn model that fit different artificial labels ¢ = 1 to K on unlabeled set
but are|regularized to have high validation accuracy| (e.g. fine-tuning + early stopping)

2. For new point x,/average pairwise disagreement between classifiers ¢ = 1 to K

3. flagas OOD if disagreement > some threshold

Novel classes in chest X-ray + retinal datasets

different datasets Ou s different diseases

0.97  0.97 . 9 I I







