
Amartya Sanyal, Yaxi Hu, Fanny Yang

How unfair is private learning ?

1



Amartya Yaxi Fanny

2



Privacy and Fairness

3



Privacy and Fairness
Privacy and Fairness are both desirable properties in machine learning applications.

3



Privacy and Fairness
Privacy and Fairness are both desirable properties in machine learning applications.

Prior Work has mostly looked at the intersection:

3



Privacy and Fairness
Privacy and Fairness are both desirable properties in machine learning applications.

Prior Work has mostly looked at the intersection:
Privacy and Accuracy: Kasiviswanathan et al. 2008, Feldman and Xiao 2014, Alon et. al., 2022.

3



Privacy and Fairness
Privacy and Fairness are both desirable properties in machine learning applications.

Prior Work has mostly looked at the intersection:
Privacy and Accuracy: Kasiviswanathan et al. 2008, Feldman and Xiao 2014, Alon et. al., 2022.
Fairness and Accuracy: Sagawa et. al. 2019, Du et al. 2021, Goel et. al. 2021.

3



Privacy and Fairness
Privacy and Fairness are both desirable properties in machine learning applications.

Prior Work has mostly looked at the intersection:
Privacy and Accuracy: Kasiviswanathan et al. 2008, Feldman and Xiao 2014, Alon et. al., 2022.
Fairness and Accuracy: Sagawa et. al. 2019, Du et al. 2021, Goel et. al. 2021.

THIS WORK: The interaction of Privacy and Fairness of nearly accurate algorithms.
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40% 40% 4% 4% 4% 4% 4%

Genre

Proportion 

Error 5% 5% 65% 75% 80% 80% 50%

Majority Error  = 5% Minority Error  = 70%

Total Error = 18%

(Un) Fairness (Accuracy Discrepancy)

ML Problem: Is the movie safe to watch for kids ? 

Accuracy Discrepancy = 70 - 18 = 52%
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