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HARMLESS INTERPOLATION

Surprisingly, some highly overparameterized models

▶ generalize well, despite fitting the entire training data,
including noise [1]

▶ do not require early stopping for optimal performance

[1] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, “Deep double
descent: Where bigger models and more data hurt,” JSTAT, 2021.

Which models exhibit harmless interpolation, and which
require early stopping? Inductive bias is the key!

INDUCTIVE BIAS

The strength of an inductive bias determines how heavily an
estimator favors solutions with a certain structure.

symmetry

→ convolution filters

Structure

locality

sparsity → ℓ1 regularization

→ rotational invariance

Inductive bias

MAIN TAKEAWAYS
▶ weak inductive bias → harmless interpolation:

optimal performance at convergence, i.e.,
after interpolating noisy training data

▶ strong inductive bias → harmful interpolation:
early stopping is required

EMPIRICAL EVIDENCE

Wide CNNs on n = 200 synthetic images where varying
filter size controls inductive bias:
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Deep WRNs on n = 7680 satelite images where varying
#rotations for data augmentation controls inductive bias:
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Is this just double descent? No! The phenomenon persists
even as width increases.

INTERPOLATION MAY EVEN BE NECESSARY!
Training error of the optimally early-stopped model for
noisy and clean subsets of the training data:
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▶ strong inductive bias → only fits clean samples

▶ weak inductive bias → interpolates all samples

THEORETICAL EVIDENCE

Proof for high-dimensional Kernel Ridge Regression with a
convolutional kernel:
▶ features x1, . . . , xn

i.i.d.∼ U({−1, 1}d) with n ∈ Θ(dℓ), ℓ > 0

▶ observations yi = f ⋆(xi) + ϵi were the ground truth f ⋆ is a
“localized” polynomial of constant degree

▶ convolutional kernel K(x, x′) = 1
d

∑d
k=1 κ(⟨x(k,q), x

′
(k,q)⟩/q)

with filter size q ∈ Θ(dβ), β ∈ (0, 1)

Main Theorem: tight non-asymptotic matching upper and
lower bounds for the prediction error rate Θ(nα).
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