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Reliability crisis in modern supervised learning
Modern ML works well … sometimes maybe not so much…

Sources: [Recht et al. ’19], [Shao et al. ’22] 

Top1 test accuracy on ImageNet

But how can we know when a new method fails to perform well?

Top1-accuracy on new ImageNet Robust accuracy on ImageNet-1k 

Original test accuracy Standard test accuracy
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One role of theory: failure case characterization

Theory: Prove in (simplified) setting

• Fancy method worse than vanilla method

• Failure worse under key properties 

Empirical ”wisdom:

Fancy method better than vanilla method 

Two examples 

in this talk:

Empirical failure hypothesis:

• Fancy method worse than vanilla method

• Failure worse under key properties

• Failure I: Uncertainty sampling worse than Uniform sampling

• Failure II: Adversarial training worse than Standard training



Failure I: When uncertainty sampling is
worse than uniform sampling

joint work with Alexandru Tifrea, Jacob Clarysse
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Active learning via uncertainty sampling

Simple and hence often used: Uncertainty based active learning (U-AL)

Given uncertainty score, large unlabeled dataset 𝐷!, labeled seedset 𝐷ℓ of size 𝑛#$$%
At iteration 𝑡: • Query label 𝑦& for sample in 𝐷! with highest uncertainty score for model 𝜃&'(

• Remove sample from 𝐷!, add labeled sample to 𝐷ℓ, train 𝜃& on 𝐷ℓ

Goal: Find model 𝜃 with low test error Err(𝜃)= 𝔼),+ℓ 𝑦, 𝑓,(𝑥′) using fixed labeling budget 𝑛ℓ

uncertainty based
active learning (U-AL)

uniform sampling / 
passive learning (PL) 

𝜃⋆
.𝜃./

𝜃⋆ .𝜃0'1/

better than
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Failure of uncertainty sampling

Our work: Different reason why U-AL fails, even with “optimal” uncertainty & noiseless data

Theoretically grounded explanations 

• “cold start” & bad uncertainty estimates

e.g. [Huang et al. ’14], [Sener et al. ‘18]

• large noise / high Bayes error

[Mussmann et al. ’18]
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Empirically often reported to fail! 

e.g. ResNet18 on CIFAR-100
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Theoretical results → new failure hypothesis

• .𝜃: linear SVM solution on labeled dataset

• Uncertainty score: distance to decision boundary of current (or optimal) model

𝑛ℓ labeled samples from 𝑑-dimensional covariates

• 𝑥234567 ~ truncated Gaussian mixture

𝑥585'234567~ isotropic Normal 𝑁(0, 𝐼)

−𝜇 𝜇

𝜎

𝜃∗
𝑥585'234567

𝑥234567

noiseless!

Theorem [TCY ’22] (informal):

For 𝑛ℓ ≪ 𝑑, large enough unlabeled dataset

Err(5𝛉U-AL) – Err(5𝛉PL) > 0 w.h.p.

Further, the error gap increases for smaller

9ℓ
% (query budget)    

:
; (class separation).

1

2
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Theoretical results → new failure hypothesis

Empirical hypothesis: For test accuracy

U-AL may be worse than PL even for 

noiseless data and oracle uncertainty if

• budget is small

• a lot of unlabeled data near

optimal decision boundary

1

2

Theorem [TCY ’22] (informal):

For 𝑛ℓ ≪ 𝑑, large enough unlabeled dataset

Err(5𝛉U-AL) – Err(5𝛉PL) > 0 w.h.p.

Further, the error gap increases for smaller

9ℓ
% (query budget)    

:
; (class separation).

1

2
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Key property     : class separation
More class separation in theory

−𝜇 𝜇

𝜃∗

𝑥234567

More class separation on empirical dataset:

−𝜇 𝜇

𝜎
𝜃∗ 𝑥585'234567

𝑥234567

Removing % samples closest to decision
boundary 𝜃⋆ trained on whole dataset

𝜎

Larger mean separation 𝜇
in signal direction 

2

𝜃∗

𝜃∗
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Empirical validation:     Failure of small label budget

Theory

Happens in a small-sample regime that is still relevant (test accuracy ~ 80%)

Empirical confirmation

Gap between U-AL and PL increases with smaller

#ℓ
$

(label budget)1

Binary classification dataset: Riccardo [OpenML]

[PL] uniform sampling
[U-AL] uncer. sampling

[PL]  on original dataset
[U-AL] on original dataset

1

Query budget 𝑛ℓ with d =1k

Query budget 𝑛ℓ with d =4k
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Empirical validation:     Failure for small separation

TheoryEmpirical confirmation

Happens in a small-sample regime that is still relevant (test accuracy ~ 80%)

Binary classification dataset: Riccardo [OpenML]

Gap between U-AL and PL increases with smaller

#ℓ
$

(label budget)            %
&

(class separation).1 2

[PL] uniform sampling
[U-AL] uncer. sampling

[PL]  on original dataset
[U-AL] on original dataset
[PL] on set w/ larger class sep.
[U-AL] on set w/ larger class sep.

2



Failure II: When adversarial training hurts
robust generalization

joint work with Jacob Clarysse, Julia Hörrmann
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Adversarial robustness and adversarial training
Goal: Low robust error RobErr(𝜃) = 𝔼),+ max

)'∈= ),>
ℓ 𝑦, 𝑓(𝑥?; 𝜃) w/ 𝑇 𝑥, 𝜖 : set of ϵ-perturbed versions of 𝑥

standard 
training (ST)

adversarial
training (AT)

Adversarial training (AT)

At iteration 𝑡: o for each 𝑥3 in mini-batch, find adversarial example 𝑥@? = argmax)∈=()(,>) ℓ 𝑦@, 𝑓(𝑥; 𝜃
&)

o SGD step on loss w.r.t. 𝜃& at adversarial points 𝑥@?

better than
𝜃CDE⋆

.𝜃F=
.𝜃1=

𝜃CDE⋆
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But: Known caveat of adversarial training (AT)

Our work: AT may have worse adv. robust accuracy even w/o inherent tradeoff in well-specified setting

Adversarial training hurts std. accuracy

Figure source: [Tsipras et al. ‘19]

Theoretically grounded explanations:

• optimal classifiers not robust (inherent tradeoff), 

e.g. [Tsipras et al. ’19, Zhang et al. ’19…] 

• robust model more complex [Nakkiran et al. ‘19]

• wrong inductive bias [Raghunathan et al. ‘20]

PGD on CIFAR-10
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Theoretical results → new failure hypothesis

−𝑟 𝑟

𝜃)*+∗
𝑥585'234567

𝑥234567

• Perturbation set: 𝑇 𝑥; 𝜖 = {𝑥 + 𝛿𝜃⋆ with 𝛿 ≤ 𝜖}

• .𝜃: GD until convergence on (robust) logistic loss

𝑛 samples from 𝑑-dimensional covariates

• 𝑥234567 = 𝑟 ⋅ 𝑦 𝜃⋆ for 𝑦 ~ 𝑈( −1,+1 )

𝑥585'234567~ isotropic Normal 𝑁(0, 𝐼)

𝑥𝑥′

3

rob error (ST) – rob. error (AT)

Theorem [CHY ’22] (informal):

For 𝑛 < 𝑑, almost surely

RobErr(5𝛉AT) – RobErr(5𝛉ST) > 0

Further, the error gap increases for

smaller 9
%

(sample size)    

if attack always reduces signal

1

2

noiseless!
consistent!



16

Theoretical results → new failure hypothesis

3

rob error (ST) – rob. error (AT)

Theorem [CHY ’22] (informal):

For 𝑛 < 𝑑, almost surely

RobErr(5𝛉AT) – RobErr(5𝛉ST) > 0

Further, the error gap increases for

smaller 9
%

(sample size)    

if attack always reduces signal

1

2

Empirical hypothesis: For robust accuracy

AT may be worse than ST

• budget is small

• attacks directed to object, such as

masks, illumination, motion blur

1

2
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Empirical validation: Failure for small sample directed attacks

Happens in a small-sample regime that is 
still relevant (standard accuracy ~ 80%)

TheoryAT worse for mask attack on CIFAR-10

small 9% (sample size)    

if attack always reduces signal

1

2

… and illumination attacks on Waterbirds AT worse than ST for

d/n
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Common proof intuition for both failure cases
What do AT and (oracle) U-AL have in common? 

⇒ Models trained on points closer to good dec. boundary ( .𝜃GHD#$)

.𝜃GHD#$

.𝜃IJ9@HHJ
𝜃⋆

uniform or
original sample

closer to boundary (U-AL 
or adversarial example)

𝑥234567

𝑥585'234567

uniform or
original sample

closer to boundary (U-AL 
or adversarial example)
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Summary: Theory-guided failure case hypotheses

Empirical take-away for practitioner

Well-established practical methods 

should be used with care, in particular  

• in the small sample size regime 

• when another key property holds

Theory

For logistic regression,

Fancy method worse than vanilla method 

• in the small-sample regime

when another key property holds

Empirical ”wisdom:

Fancy method better than vanilla method

1

2

1

2
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References, also to more failure cases in modern ML
Papers discussed in this talk

• Clarysse, Hörmann, Yang “Why adversarial training can hurt 

robust accuracy”, arxiv preprint ‘22
• Tifrea, Clarysse, Yang “Uncertainty vs. uniform sampling: When 

being passive is better than being active”, arxiv preprint ‘22

Further “failures” identified in our group:

• Bartolomeis, Clarysse, Yang, Sanyal “Certified defenses hurt 

generalization”, this workshop
• Sanyal*, Hu*, Yang “How unfair is private learning?”, UAI 2022

• Aerni*, Milanta*, Donhauser, Yang “Strong inductive biases 

provably prevent harmless interpolation”, on OpenReview

sml.inf.ethz.chSML group:


