

DINFK

Surprising Failures of Standard Practices in ML

When the Sample Size is Small

December 3rd 2022, ICBINB NeurIPS Workshop

Fanny Yang, joint work with J. Clarysse, A. Tifrea

Statistical Machine Learning group, CS department, ETH Zurich

Reliability crisis in modern supervised learning

But how can we know **when** a new method fails to perform well?

One role of theory: failure case characterization

- Two examples
- Failure I: Uncertainty sampling worse than Uniform sampling

- in this talk:
- Failure II: Adversarial training worse than Standard training

Failure I: When uncertainty sampling is worse than uniform sampling

joint work with Alexandru Tifrea, Jacob Clarysse

Active learning via uncertainty sampling 😊

Goal: Find model θ with low test error $\operatorname{Err}(\theta) = \mathbb{E}_{x,y} \ell(y, f_{\theta}(x'))$ using fixed labeling budget n_{ℓ}

Simple and hence often used: Uncertainty based active learning (U-AL)

Given uncertainty score, large unlabeled dataset D_u , labeled seedset D_ℓ of size n_{seed}

- At iteration t: Query label y^t for sample in D_u with highest uncertainty score for model θ^{t-1}
 - Remove sample from D_u , add labeled sample to D_ℓ , train θ^t on D_ℓ

Failure of uncertainty sampling

Theoretically grounded explanations

- "cold start" & bad uncertainty estimates
 - e.g. [Huang et al. '14], [Sener et al. '18]
- large noise / high Bayes error

[Mussmann et al. '18]

Our work: Different reason why U-AL fails, even with "optimal" uncertainty & noiseless data

 n_ℓ labeled samples from d-dimensional covariates

• $x_{signal} \sim truncated Gaussian mixture$ $x_{non-signal} \sim isotropic Normal N(0, I)$

- $\hat{\theta}$: linear SVM solution on labeled dataset
- Uncertainty score: distance to decision boundary of current (or optimal) model

Theorem [TCY '22] (informal):
For $n_\ell \ll d$, large enough unlabeled dataset
$Err(\widehat{\theta}_{U-AL}) - Err(\widehat{\theta}_{PL}) > 0 w.h.p.$
Further, the error gap increases for smaller
$\frac{1}{d} (query budget)$
$\frac{2}{\sigma} \frac{\mu}{\sigma}$ (class separation).

Empirical hypothesis: For test accuracy

U-AL may be worse than PL even for

noiseless data and oracle uncertainty if

budget is small

a lot of unlabeled data near

optimal decision boundary

Key property 2: class separation

Empirical validation: 1 Failure of small label budget

Happens in a small-sample regime that is still relevant (test accuracy ~ 80%)

Binary classification dataset: Riccardo [OpenML]

Empirical validation: 2 Failure for small separation

Happens in a small-sample regime that is still relevant (test accuracy ~ 80%)

Binary classification dataset: Riccardo [OpenML]

Failure II: When adversarial training hurts robust generalization

joint work with Jacob Clarysse, Julia Hörrmann

Adversarial robustness and adversarial training 😂

Goal: Low robust error RobErr(θ) = $\mathbb{E}_{x,y} \max_{x' \in T(x,\epsilon)} \ell(y, f(x'; \theta))$ w/ $T(x, \epsilon)$: set of ϵ -perturbed versions of x

Adversarial training (AT)

At iteration t: • for each x_i in mini-batch, find adversarial example $x'_i = \operatorname{argmax}_{x \in T(x_i, \epsilon)} \ell(y_i, f(x; \theta^t))$ • SGD step on loss w.r.t. θ^t at adversarial points x'_i

But: Known caveat of adversarial training (AT)

Theoretically grounded explanations:

optimal classifiers not robust (inherent tradeoff),

e.g. [Tsipras et al. '19, Zhang et al. '19...]

- robust model more complex [Nakkiran et al. '19]
- wrong inductive bias [Raghunathan et al. '20]

Our work: AT may have worse adv. robust accuracy even w/o inherent tradeoff in well-specified setting

n samples from d-dimensional covariates

• $x_{\text{signal}} = r \cdot y \, \theta^*$ for $y \sim U(\{-1, +1\})$

 $x_{\text{non-signal}} \sim \text{isotropic Normal } N(0, I)$

- Perturbation set: $T(x; \epsilon) = \{x + \delta \theta^* \text{ with } |\delta| \le \epsilon\}$
- $\hat{\theta}$: GD until convergence on (robust) logistic loss

Theorem [CHY '22] (informal): For n < d, almost surely $RobErr(\hat{\theta}_{AT}) - RobErr(\hat{\theta}_{ST}) > 0$ Further, the error gap increases for 1 smaller $\frac{n}{d}$ (sample size) 2 if attack always reduces signal

Empirical hypothesis: For robust accuracy

AT may be worse than ST

1)budget is small

2 attacks directed to object, such as

masks, illumination, motion blur

Empirical validation: Failure for small sample directed attacks

Common proof intuition for both failure cases

Summary: Theory-guided failure case hypotheses

References, also to more failure cases in modern ML

M SML group: sml.inf.ethz.ch

Papers discussed in this talk

- Clarysse, Hörmann, Yang "Why adversarial training can hurt robust accuracy", arxiv preprint '22
- Tifrea, Clarysse, Yang "Uncertainty vs. uniform sampling: When
 being passive is better than being active", arxiv preprint '22

Further "failures" identified in our group:

- Bartolomeis, Clarysse, Yang, Sanyal "Certified defenses hurt generalization", this workshop
- Sanyal*, Hu*, Yang "**How unfair is private learning?",** UAI 2022
- Aerni*, Milanta*, Donhauser, Yang "Strong inductive biases
 provably prevent harmless interpolation", on OpenReview