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Problem of validity of inference

Today: How we think about these problems
and detect the problematic scenarios

(precise methodology secondary)
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. A lower bound for hidden confounding

using randomized control trials

joint work with Piersilvio de Bartolomeis, Javier Abad Martinez, Konstantin Donhauser

work in progress
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1. Definition of “strong” hidden confounding
2. Approach: How to detect it using RCT?
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grey: observed variables,
white: latent variables

Potential outcome framework
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Potential outcome framework
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Marginal sensitivity model

Additional assumptions:
Transportability of CATE, i.e. Epos[Y (1) — Y(0) | X] = Epret[Y(1) = Y(0) | X]
Support inclusion supp(P") € supp(IP°°)
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Additional assumptions:

« Transportability of CATE, i.e. Epos[Y (1) — Y/(0) | X] = Epret[Y(1) — Y (0) | X]
«  Support inclusion supp(P"°t) € supp(P°%)
Definitions:
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Marginal sensitivity model

Additional assumptions:
« Transportability of CATE, i.e. Epos[Y (1) — Y/(0) | X] = Epret[Y(1) — Y (0) | X]
«  Support inclusion supp(P"°t) € supp(P°%)

Definitions: I'=1 2 unconfoundedness

/

. P9 satisfies MSM(T) if T~ < PEI=1X0) ,PT=1X) — 1 3lmost surely (tan-06)

= IP’OS(T=O|X,U)/ POS(T=01X) —

- true confounding strength I'* (P?®): The smallest T for which P satisfies MSM (T)
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Marginal sensitivity model

Additional assumptions:

Transportability of CATE, i.e. Epos[Y (1) — Y(0) | X] = Epret[Y(1) = Y(0) | X]
Support inclusion supp(P") € supp(IP°°)

Definitions: I'=1 2 unconfoundedness

/

[POS satisfies MSM(T) if T71 < PEI=1X0) ,PT=1X) — 1 3lmost surely (tan-06)

= IP’OS(T=OIX,U)/ POS(T=01X) —

true confounding strength I'* (P°®): The smallest T for which P°® satisfies MSM(T)

Scenarios we want to detect: when true confounding I'* of IP%° is too large
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1. Definition of “strong” hidden confounding
2. Approach: How to detect it using RCT?
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Our paradigm: finding a lower bound

1.

Our plug-and-play approach for desired significance a:

Test ¢, (I') of the null Hy(T'): IP°S satisfies MSM(T) & I'* <T
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1.

2.

Our plug-and-play approach for desired significance a:

Test ¢, (I') of the null Hy(T'): IP°S satisfies MSM(T) & I'* <T

Report [} 5 = inf {I: ¢,(I') = 0} and flag if [,z > Thresh

Test Hy(I') = test whether u € [ur, uft] with ATE u = Ep[Y (1) — Y(0)] and

ATE sensitivity bounds up = inf  Eg[Y(1)—Y(0)], uf = sup
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29



Our paradigm: finding a lower bound

Our plug-and-play approach for desired significance a:

1.

2.

Test ¢, (I') of the null Hy(T'): IP°S satisfies MSM(T) & I'* <T

Report [} 5 = inf {I: ¢,(I') = 0} and flag if [,z > Thresh

Test Hy(I') = test whether u € [ur, uft] with ATE u = Ep[Y (1) — Y(0)] and

ATE sensitivity bounds ur = inf  Eg[Y(1)-Y(0)], uyf = sup E[Y(1)—Y(0)]

PePr(P¥y 1) PePr(P%y 1)
> g

all full distributions that yield observed P%% r and satisfy MSM(T')
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Our paradigm: finding a lower bound

Our plug-and-play approach for desired significance a:

1. Test ¢, (I") of the null Hy(T): IP°S satisfies MSM(I') & I'* <T

2. Report Iz = inf {T: ¢,(I') = 0} and flag if [,z > Tihresh

« Test Hy(I') = test whether u € [ug, uf] with ATE u = Ep[Y (1) — Y(0)] and

ATE sensitivity bounds ur = inf  Eg[Y(1)-Y(0)], uyf = sup E[Y(1)—Y(0)]

PePr(PYy 1) PePr(P¥y 1)

Test using consistent
estimates [1, ﬁF’ﬁF _’\v—
in literature Hr=1

(experts in audience) IPW estimate
using obs. study
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Our paradigm: finding a lower bound

Our plug-and-play approach for desired significance a:

1.

Test ¢, (I') of the null Hy(T'): IP°S satisfies MSM(T) & I'* <T

0

2. Report Iz = inf {T: ¢,(I') = 0} and flag if [,z > Tihresh
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Our paradigm: finding a lower bound

Our plug-and-play approach for desired significance a:

1.

Test ¢, (I') of the null Hy(T'): IP°S satisfies MSM(T) & I'* <T

2. Report Iz = inf {T: ¢,(I') = 0} and flag if [,z > Tihresh
1 = = = = = = = = = = =
— 1
— 08 |+ probability of rejection over 20 runs
I !
~ 06 : on semi-synthetic data
2 04 :
S 02 : .
= |+ asymptotically (T3 >T*) < «
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Previous paradigms that could be used to “flag”

- without RCT and using sensitivity bounds

o quantification via critical value T';; that changes causal conclusions

e.g. vanderWeele-Ding-17, Jin-Ren-Candes-23 etc.
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Previous paradigms that could be used to “flag”

- without RCT and using sensitivity bounds

o quantification via critical value T';; that changes causal conclusions

e.g. vanderWeele-Ding-17, Jin-Ren-Candes-23 etc.

but: unclear relation to true I'*

o can test joint null hypothesis ATE(obs. study) > 0 and MSM(T') holds
e.g. Yadlowsky-Namkoong-Basu-Duchi-Tian-22, Jin-Ren-Candes-23

but: rejection only means either MSM(T') assumption wrong or ATE < 0

« with RCT:

o binary test for existence of confounding with Hy: T* > 1
e.g. Viele et al 14, Hussein-Oberst-Shih-Sontag 22
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Previous paradigms that can be used for detection

without RCT and using sensitivity bounds

O

— true statement

about I'* not possible! .
© our paradigm:
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& flag only if I'* large

with RCT:

° — flag even if I'* small




Evaluation on real-world data (WHI)

Randomized trial and observational study run by the NHLBI (1993-2005)
Treatment: hormone replacement therapy

Outcomes: coronary heart disease
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Evaluation on real-world data (WHI)

»  Randomized trial and observational study run by the NHLBI (1993-2005)

start of trial
»  Treatment: hormone replacement therapy 05 (@ ——
. [ ]
> QOutcomes: coronary heart disease rct P
» hidden confounder (revealed later): start of treatment duration of treatment
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Evaluation on real-world data (WHI)

v

Randomized trial and observational study run by the NHLBI (1993-2005)

start of trial
»  Treatment: hormone replacement therapy 05 ()
»  QOutcomes: coronary heart disease rct '._.
» hidden confounder (revealed later): start of treatment duration of treatment
Coronary heart disease Different paradigms for “flagging” confounding:
treated as trial started  before trial » Compute Iy that changes ATE sign and
f‘CT 1.017 1.164 compare let “expert” assess “likeliness”

LB 1.009 1.224 *  Ypm: tests for existence, e.g. check I}z > 1

(o 3 )
7,/1823 *  Ygens (0urs): check whether too large I g > T



Current and future work

Higher power using
kernelized test as opposed to averaging

non-"adversarial” sensitivity model
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Current and future work

Higher power using

- kernelized test as opposed to averaging
- non-"adversarial” sensitivity model
Extended applicability:

- multiple observational studies (no RCT)

« Automatic detection of hidden confounders from set of features

48



DINFK

Il. Semi-supervised novelty detection using

ensembles with regularized disagreement

joint work with Alexandru Tifrea, Eric Stavarache

published at UAI '22
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The novelty detection problem for classification
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The novelty detection problem for classification

Novelty detection method tells user that software doesn’t "know enough” to predict new point

Novelty
‘ [ detection
method
Unlabeled
Testinput

(d) COVID-19 Pneumonia

52
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The novelty detection problem for classification

Novelty detection method tells user that software doesn’t "know enough” to predict new point
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1. Definition: Points we can’t make inference on
2. Approach: How to detect those samples?
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What's “novel” to a trained model?

“novel” / 0.0.d. points: test points x € X the model cannot reliably predict.
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What's “novel” to a trained model?

“novel” / 0.0.d. points: test points x € X the model cannot reliably predict.

First: which points x € X can a model predict “reliably” in an unseen test set?

- i.d. generalization from finite samples (traditional learning theory) and
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What's “novel” to a trained model?

“novel” / 0.0.d. points: test points x € X the model cannot reliably predict.

First: which points x € X can a model predict “reliably” in an unseen test set?

- i.d. generalization from finite samples (traditional learning theory) and
- 0.0.d. generalization (extrapolatable from training distribution) -

depends on test shift & model complexity

58



lllustration:

Extrapolatable vs. novel samples
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lllustration: Extrapolatable vs. novel samples

Extrapolatable given training distribution + linear ground truth:

Points x € X where the set of all linear Bayes optimal classifiers agree on
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lllustration: Extrapolatable vs. novel samples

Extrapolatable given training distribution + linear ground truth:

Points x € X where the set of all linear Bayes optimal classifiers agree on
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lllustration: Extrapolatable vs. novel samples

Extrapolatable given training distribution + linear ground truth:

Points x € X where the set of all linear Bayes optimal classifiers agree on

] = == True classifier
intersecting all < ! % N
optimal classifiers A 2 Training support P
yields % -

! 2 ¢ Unlabeled test data

‘ 1

XS X H & Correctly extrapolatable
R i R

1
1

Not extrapolatable (OOD)

Goal now: how to output green area
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1. Definition: Points we can’t make inference on
2. Approach: How to detect those samples?
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Semi-supervised novelty detection using ensembles

OOD definition suggests following procedure: given K models
* with good validation accuracy on old classes

* but different predictions outside of training distribution
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Semi-supervised novelty detection using ensembles

OOD definition suggests following procedure: given K models
* with good validation accuracy on old classes
* but different predictions outside of training distribution

— flag all points where the models disagree as "novel”
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Semi-supervised novelty detection using ensembles

OOD definition suggests following procedure: given K models = Trained models

« with good validation accuracy on old classes Training support P
 but different predictions outside of training distribution ® e labeled training points
— flag all points where the models disagree as "novel”
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Semi-supervised novelty detection using ensembles

OOD definition suggests following procedure: given K models m—=  Trained models
Training support P

* with good validation accuracy on old classes
® ® |abeled training points

but different predictions outside of training distribution

— flag all points where the models disagree as "novel”
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Semi-supervised novelty detection using ensembles

OOD definition suggests following procedure: given K models m—=  Trained models
Training support P

* with good validation accuracy on old classes
® ® |abeled training points

* but different predictions outside of training distribution
— flag all points where the models disagree as “novel” models disagree
i
' i
: = disagreed on I P
: (. TN S
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Key for our improvement: Regularized disagreement

Key for “good performance”: Complexity of ensemble models being only as large as needed

~

not diverse enough

69



Key for our improvement: Regularized disagreement

Key for “good performance”: Complexity of ensemble models being only as large as needed

~

not diverse enough too diverse

70



Key for our improvement: Regularized disagreement

Key for “good performance”: Complexity of ensemble models being only as large as needed
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Key for our improvement: Regularized disagreement

Key for “good performance”: Complexity of ensemble models being only as large as needed
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Idea for right amount of disagreement: maximize disagreement s.t. validation error of all models small
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“regularization”
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Key for our improvement: Regularized disagreement

Key for “good performance”: Complexity of ensemble models being only as large as needed
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Key for our improvement: Regularized disagreement

Key for “good performance”: Complexity of ensemble models being only as large as needed
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The near OOD problem on images with DNN

CIFAR-10 Chest X-Ray & retinal datasets
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The near OOD problem on images with DNN

CIFAR-10 Chest X-Ray & retinal datasets
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_f L sml.inf.ethz.ch

"Hidden yet quantifiable: A lower bound for confounding strength using randomized trials” by

Piersilvio De Bartolomeis*, Javier Abad*, Konstantin Donhauser, FY, arxiv preprint

“Semi-supervised novelty detection using ensembles with regularized disagreement” by

Alexandru Tifrea, Eric Stavarache, and FY, (UAI), 2022
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Maximizing disagreement using unlabeled data
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Maximizing disagreement using unlabeled data

e o labeled training points
training distribution
novel classes

% unlabeled test points
from both old & new classes

label = as» Model 1
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Artificially label all unlabeled test data with one label
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Maximizing disagreement using unlabeled data
Model 1
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Maximizing disagreement using unlabeled data

label = as»

e e labeled training points 2
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label = as#
Artificially label all unlabeled test data with one label %

Fit different models on labeled & (differently) artificially labeled points

Model 1
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Maximizing disagreement using unlabeled data

label = as»
e o labeled training points
training distribution
° o

novel classes ° &

? o o
unlabeled test points ? i
from both old & new classes 7

label = as»

« Artificially label all unlabeled test data with one label
« Fit different models on labeled & (differently) artificially labeled points

... NNs can fit every point perfectly —» disagree on all test points

Model 1
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Regularizing disagreement using labeled data

label = as»
e o labeled training points
training distribution
° o

novel classes ° &

? o o
unlabeled test points ? i
from both old & new classes 7

label = as»

« Artificially label all unlabeled test data with one label
« Fit different models on labeled & (differently) artificially labeled points

... such that validation error is low (e.g. using early stopping)
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Current and future work

Non-adversarial confounding
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Discussion of the paradigm

« Propose two tests ¢(I') based on (C)ATE sensitivity analysis intervals

o obs: estimate mu with importance weighting rct, then ATE sensitivity
valid when ATE bounds are asymptotically normal

o rct: estimate mu on rct, then CATE sensitivity on obs -> average on rct

valid when CATE sensitivity bounds converge at a 1//n rate and n,.¢; < nyg
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