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Today: How we think about these problems

and detect the problematic scenarios

(precise methodology secondary)



I. A lower bound for hidden confounding 

using randomized control trials

joint work with Piersilvio de Bartolomeis, Javier Abad Martinez, Konstantin Donhauser

work in progress
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1. Definition of “strong” hidden confounding
2. Approach: How to detect it using RCT?
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Potential outcome framework
grey: observed variables,
white: latent variables

Observed samples (𝑋! , 𝑌! , 𝑇!) i.i.d. from the following distribution with 𝑌 = 𝑌 1 𝑇 + 𝑌(0)(1 − 𝑇) (SUTVA)
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Marginal sensitivity model

Additional assumptions:

• Transportability of CATE, i.e. 𝔼ℙ'( 𝑌(1) − 𝑌(0) ∣ 𝑋 = 𝔼ℙ)*+ 𝑌(1) − 𝑌(0) ∣ 𝑋

• Support inclusion 𝑠𝑢𝑝𝑝 ℙ'() ⊆ 𝑠𝑢𝑝𝑝(ℙ*+)

Definitions: 

• ℙ*+ satisfies MSM(Γ) if Γ,- ≤ ℙ'((/0-∣2,4)
ℙ'((/06∣2,4) /

ℙ'((/0-∣2)
ℙ'((/06∣2) ≤ Γ almost surely (Tan-06)

• true confounding strength Γ⋆ (ℙ*+): The smallest Γ for which ℙ*+ satisfies 𝑀𝑆𝑀(Γ)
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Scenarios we want to detect: when true confounding Γ⋆ of ℙ*+ is too large

Γ = 1 ≜ unconfoundedness
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1. Definition of “strong” hidden confounding
2. Approach: How to detect it using RCT?
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Our paradigm: finding a lower bound

1. Test 𝜙8 Γ  of the null 𝐻6 Γ : ℙ*+ satisfies 𝑀𝑆𝑀 Γ ⟺ Γ⋆ ≤ Γ

2. Report 9Γ9: = inf {Γ: 𝜙8 Γ = 0} and flag if 9Γ9: > Γ;<=>?<

Our plug-and-play approach for desired significance 𝛼:
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Our paradigm: finding a lower bound
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Previous paradigms that could be used to “flag”
• without RCT and using sensitivity bounds 

o quantification via critical value 9Γ() that changes causal conclusions 
e.g. vanderWeele-Ding-17, Jin-Ren-Candes-23 etc.

but: can be arbitrarily far from Γ⋆

o can test joint null hypothesis ATE(obs. study) > 0 and MSM(Γ) holds  
e.g. Yadlowsky-Namkoong-Basu-Duchi-Tian-22, Jin-Ren-Candes-23

but: rejection only means either MSM(Γ) assumption wrong or ATE ≤ 0  

• with RCT: 

o binary test for existence of confounding with H6: Γ⋆ > 1 
e.g. Viele et al ‘14, Hussein-Oberst-Shih-Sontag ‘22
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Previous paradigms that can be used for detection
• without RCT and using sensitivity bounds 

o quantification via critical gamma value 9Γ() that changes causal conclusions 
e.g. vanderWeele-Ding-17, Jin-Ren-Candes-23 etc.

but: can be arbitrarily far from Γ⋆

o can test joint null hypothesis ATE(obs. study) > 0 and MSM(Γ) holds  
e.g. Yadlowsky-Namkoong-Basu-Duchi-Tian-22, Jin-Ren-Candes-23

but: rejection only means either MSM(Γ) assumption wrong or ATE ≤ 0  

• with RCT: 

o binary test for existence of confounding with H6: Γ⋆ > 1 
e.g. Viele et al ‘14, Hussein-Oberst-Shih-Sontag ‘22

→ true statement 

about Γ⋆ not possible!

→ flag even if Γ⋆ small

our paradigm:

statement about Γ⋆

& flag only if Γ⋆ large
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Evaluation on real-world data (WHI)
‣ Randomized trial and observational study run by the NHLBI (1993-2005)

‣ Treatment: hormone replacement therapy 

‣ Outcomes: coronary heart disease

‣ hidden confounder (revealed later): start of treatment
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Evaluation on real-world data (WHI)

rct
os

duration of treatment

start of trial

Different paradigms for “flagging” confounding:

• Compute =Γ<= that changes ATE sign and 

compare let “expert” assess “likeliness”

• 𝜓>!?: tests for existence, e.g. check =Γ67 > 1

• 𝜓#@?# (ours): check whether too large =Γ67 > =Γ<=

‣ Randomized trial and observational study run by the NHLBI (1993-2005)

‣ Treatment: hormone replacement therapy 

‣ Outcomes: coronary heart disease

‣ hidden confounder (revealed later): start of treatment
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Evaluation on real-world data (WHI)

treated    as trial started     before trial 

Different paradigms for “flagging” confounding:

• Compute =Γ<= that changes ATE sign and 

compare let “expert” assess “likeliness”

• 𝜓>!?: tests for existence, e.g. check =Γ67 > 1

• 𝜓#@?# (ours): check whether too large =Γ67 > =Γ<=

‣ Randomized trial and observational study run by the NHLBI (1993-2005)

‣ Treatment: hormone replacement therapy 

‣ Outcomes: coronary heart disease

‣ hidden confounder (revealed later): start of treatment
rct
os

duration of treatment

start of trial
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Current and future work

Higher power using

• kernelized test as opposed to averaging

• non-”adversarial” sensitivity model

Extended applicability:

• multiple observational studies (no RCT)

• Automatic detection of hidden confounders from set of features
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• kernelized test as opposed to averaging

• non-”adversarial” sensitivity model

Extended applicability:

• multiple observational studies (no RCT)

• Automatic detection of hidden confounders from set of features



II. Semi-supervised novelty detection using 

ensembles with regularized disagreement

joint work with Alexandru Tifrea, Eric Stavarache

published at UAI ‘22
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The novelty detection problem for classification
Novelty detection method tells user that software doesn’t ”know enough” to predict new point

Unseen/novel

Novelty 
detection 
method

Unlabeled
Test input

Seen/old
classifier

need human expert!
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1. Definition: Points we can’t make inference on
2. Approach: How to detect those samples?
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What’s “novel” to a trained model?
“novel” / o.o.d. points: test points 𝑥 ∈ 𝑋 the model cannot reliably predict.

First: which points 𝑥 ∈ 𝑋 can a model predict “reliably” in an unseen test set?

• i.d. generalization from finite samples (traditional learning theory) and

• o.o.d. generalization (extrapolatable from training distribution) - 

depends on test shift & model complexity
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Illustration: Extrapolatable vs. novel samples

Unlabeled test data

True classifier

Training support P

Extrapolatable given training distribution + linear ground truth:

Points 𝑥 ∈ 𝑋	where the set of all linear Bayes optimal classifiers agree on
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Illustration: Extrapolatable vs. novel samples

Unlabeled test data

Not extrapolatable (OOD)

True classifier

Training support P

Correctly extrapolatable

Extrapolatable given training distribution + linear ground truth:

Points 𝑥 ∈ 𝑋	where the set of all linear Bayes optimal classifiers agree on

intersecting all 
optimal classifiers 

yields
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Illustration: Extrapolatable vs. novel samples

Unlabeled test data

Not extrapolatable (OOD)

True classifier

Training support P

Correctly extrapolatable

Goal now: how to output green area

Extrapolatable given training distribution + linear ground truth:

Points 𝑥 ∈ 𝑋	where the set of all linear Bayes optimal classifiers agree on

intersecting all 
optimal classifiers 

yields
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1. Definition: Points we can’t make inference on
2. Approach: How to detect those samples?
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Semi-supervised novelty detection using ensembles
OOD definition suggests following procedure: given 𝐾 models

• with good validation accuracy on old classes

• but different predictions outside of training distribution

→ flag all points where the models disagree as “novel”
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Semi-supervised novelty detection using ensembles
OOD definition suggests following procedure: given 𝐾 models

• with good validation accuracy on old classes

• but different predictions outside of training distribution

→ flag all points where the models disagree as “novel”

predicted 
as blue

Classifier II

predicted as blue

predicted as red

Classifier I

predicted 
as red

labeled training points
models disagree

Training support P
Trained models

disagreed on
agreed on as blue

agreed as red



69

Key for our improvement: Regularized disagreement 
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Key for “good performance”: Complexity of ensemble models being only as large as needed
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Key for our improvement: Regularized disagreement 

too diversenot diverse enough right amount of 
diversity

Idea for right amount of disagreement: maximize disagreement s.t. validation error of all models small

“regularization”

using unlabeled test data using labeled training data

Key for “good performance”: Complexity of ensemble models being only as large as needed
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The near OOD problem on images with DNN
Chest X-Ray & retinal datasetsCIFAR-10

Unseen/novel

Seen/old
Novelty 

detection 
method Unseen/novel

Seen/old
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The near OOD problem on images with DNN
Chest X-Ray & retinal datasetsCIFAR-10

Ensembles 
with regularized
disagreement

Unseen/novel

Seen/old
Novelty 

detection 
method Unseen/novel

Seen/old
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• “Hidden yet quantifiable: A lower bound for confounding strength using randomized trials” by  

Piersilvio De Bartolomeis*, Javier Abad*, Konstantin Donhauser, FY, arxiv preprint

• “Semi-supervised novelty detection using ensembles with regularized disagreement” by 

Alexandru Țifrea, Eric Stavarache, and FY, (UAI), 2022

sml.inf.ethz.ch
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Maximizing disagreement using unlabeled data

labeled training points

training distribution

novel classes

unlabeled test points
from both old & new classes

• Artificially label all unlabeled test data with one label

• Fit different models on labeled & (differently) artificially labeled points

… NNs can fit every point perfectly → disagree on all test points
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Maximizing disagreement using unlabeled data

labeled training points

training distribution

novel classes

unlabeled test points
from both old & new classes

• Artificially label all unlabeled test data with one label
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Regularizing disagreement using labeled data
Model 1

Model 2

label    as 

label    as

labeled training points

training distribution

novel classes

unlabeled test points
from both old & new classes

• Artificially label all unlabeled test data with one label

• Fit different models on labeled & (differently) artificially labeled points

… such that validation error is low (e.g. using early stopping)
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Current and future work

Non-adversarial confounding
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Discussion of the paradigm 

• Propose two tests 𝜙(Γ) based on (C)ATE sensitivity analysis intervals

o obs: estimate mu with importance weighting rct, then ATE sensitivity
valid when ATE bounds are asymptotically normal

o rct: estimate mu on rct, then CATE sensitivity on obs -> average on rct

valid when CATE sensitivity bounds converge at a 1/ 𝑛 rate and 𝑛'() ≪ 𝑛*+


