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Regularization is good in low dimensions

• Traditionally: want to avoid fitting noise perfectly for better (optimal) generalization. 

• For example, here is the typical example used in my Intro to ML lecture

degree 𝑚 = 20degree 𝑚 = 10
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Provocation: Interpolation seems fine for deep learning
Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise

• The more parameters/width, the smaller the test error
• For large models, regularization does not decrease test error

Source: [Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever ’20]
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But interpolation hurts worst-group accuracy

minority-group 
test error

average
test error

ℓ! regularizationNo regularization

Source: [Sagawa, Koh, Hashimoto, Liang 20’]

Training: First-order method on reweighted loss according to group size

Number of features Number of features

For large models, regularization boosts worst-group accuracy!



This talk: formalizable intuition when interpolation
may be a good idea (and when it might not)

Neural networks are hard …
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Interpolators we discuss today
• Function space: High-dimensional linear models 𝑓 𝑥 = 𝑤"𝑥 with 𝑥,𝑤 ∈ 𝑅# and  𝑑 ≫ 𝑛 samples

• Data model:

for samples 𝑥$, 𝑦$

• Interpolators:

for 𝑝 ∈ [1,2]

Regression:

𝑦$ = ⟨𝑤⋆, 𝑥$⟩ + 𝜉$ with 𝑥$ ∼ 𝑁(0, 𝐼)

and noise 𝜉$ ∼ 𝑁(0, 𝜎!)

min-ℓ&-norm interpolator

>𝑤 = argmin' 𝑤 & 𝑠. 𝑡. 𝑦 = 𝑋𝑤

Classification:

𝑦$ = sgn⟨𝑤⋆, 𝑥$⟩𝜉$ with 𝑥$ ∼ 𝑁(0, 𝐼)

and noise 𝜉$ = −1 w.p. 𝜎%
random label flips or logistic noise

max-ℓ&-margin interpolator (hard-ℓ& SVM)

>𝑤 = argmin' 𝑤 & 𝑠. 𝑡. 𝑦$ 𝑥$, 𝑤 ≥ 1 ∀𝑖

these interpolators arise at convergence of first order methods on the square and logistic loss*

*implicit bias of GD e.g. [Telgarsky ‘13, Soudry et al. ‘18, Telgarsky, Ji ‘19], classification vs. regression e.g. [Muthukumar et al. ‘21]

large models ≜ large #(
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Overview of today on a high-level
• Prospects: How well can we do interpolation in the noisy case

o previous work: high-dimensionality acts as ”implicit regularizer” reducing variance at the cost of bias

o our results: “moderate” inductive bias → fast rates for estimation error even for noisy interpolation

• Perils: Interpolation might be problematic for robustness

o previous work: surprising empirical observations in adversarial robustness setting

o our results: proof for some of these peculiar phenomena even in the linear and noiseless setting



Previous: Some established intuition
for min-ℓ!-norm interpolation
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Implicit regularization: Variance decreases as 𝑑/𝑛 ↑
Increasing 𝑑/𝑛 is often said be “implicitly regularizing” because variance decreases (with (

#)()

Simple intuition: Assume fixed 𝑛 and 𝑤⋆ = 0 such that min-norm solution >𝑤 = argmin' 𝑤 ! 𝑠. 𝑡. 𝑋𝑤 = 𝜖

→ The min-norm solution >𝑤# for 𝑑, yields interpolating solution (>𝑤#, 0) for 𝑑 + 1 → >𝑤#*+ ! ≤ >𝑤# !

regularization
≈

interpolation

pure noise fitting

M
SE

 
>𝑤
−
𝑤
⋆

!!
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Bias increases as 𝑑/𝑛 ↑ ⇒ “bad” trade-off
• On the other hand, bias has to increase with 𝑑/𝑛 as you have less information about your data.

• Back-of-the-envelope: in the noiseless case, >𝑤 is projection of 𝑤⋆ onto the 𝑛-dim span of rows(𝑋)

→ If all directions are equally likely (isotropic Σ = 𝐼), on average it captures (# of 𝑤⋆ → >𝑤 −𝑤⋆
! ≈ 1 − (

#

argument is e.g. in [Hastie et al. ‘18]; *for spiked covariances, prediction error can be consistent, see e.g. [Bartlett et al. 19’] 

→ as #( grows: Variance ↓, Bias ↑

→ MSE ≈ 1 − (
# +

(
#)( gives you a “deadlock”

i.e. does not decrease with 𝑛

M
SE

 
>𝑤
−
𝑤
⋆

!!
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Consistency or rates of prediction error?

• Obviously in high dimensions should assume structure to have any hope even for noiseless!

→ For the rest of the first half assume sparsity 𝑤⋆
, = 𝑠 ≪ 𝑑. Well-known literature: 

Open questions: • are consistent or fast rates possible for basis pursuit on noisy data for sparse 𝑤⋆?

• is the strongest inductive bias,. i.e. ℓ+-norm, the best choice for noisy interpolation?

Basis pursuit (noiseless): argmin' 𝑤 + 𝑠. 𝑡. 𝑦 = 𝑋𝑤

→ right inductive bias encouraging sparsity

Lasso (noisy): argmin- 𝑦 − 𝑋𝑤| !! + 𝜆 𝑤 |+

→ right bias using explicit regularization O . /01 #
(

So far: only non-vanishing prediction error bounds for isotropic, i.i.d. noise setting for min-ℓ+-norm* 

*[Wojtaszczyk ‘10, Chinot et al. ‘21, Koehler et al. ‘21]



Our results: Consistency and fast rates
for min-ℓ"-norm/max-ℓ"-margin interpolation

for 𝑝 ∈ [1,2)
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Consistency for noisy basis pursuit
Theorem [WDY’ 21] – Tight bounds for min-ℓ+-norm interpolators

For a sparse ground truth 𝑤⋆
" ≤

#

$%& !
"

, isotropic Gaussians, if 𝑛 log 𝑛 ≲ 𝑑 ≲ 𝑒#

*𝑤 −𝑤⋆ ' =
𝜎'

log 𝑑/𝑛 + 𝑂
𝜎'

log(/' 𝑑/𝑛
,

that is, as 𝑛 → ∞, the error vanishes (asymptotic consistency).

• This is a lower + upper bound for Gaussian 𝑋

(experimentally bound also tight beyond Gaussian 𝑋)

• For classification, the directional estimation error

2'
2' !

− '⋆

'⋆ ! !

!

= O 3 4
/01 #/(

when 𝑤⋆ is 1-sparse* 

• Make no mistake: this is a slow rate! Lasso: O . /01 #
(

*in [DRSY ‘22]

M
SE

 
>𝑤
−
𝑤
⋆

!!
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Fast rates with modest inductive bias for regression

• c
Theorem [DRSY’ 22] – Tight bounds for min-ℓ&-norm interpolators

For a 1-sparse ground truth 𝑑 ≍ 𝑛* and isotropic Gaussians, for 𝑑 large enough, 1 < 𝑝 < 2 and 1 < 𝛽 ≤ +/'
+,-

, 

we obtain with probability at least 1 − 𝑑,. prediction error rates \𝑂(𝑛)6) with 𝛼 as in graph below

rate #
$

be
tte

r • for 𝛽 ≈ 2, we get rates close to +(!

• for fixed 𝛽,  some 𝑝 > 1 close to 1 gets best rate

• Caveat: Large enough actually requires
+

/01 /01 # ≲ 𝑝 − 1 → very large 𝑑
𝛽

ra
te
𝛼

constant
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Fast rates with modest inductive bias for classification

(real leukemia dataset for 𝑑 ∼ 7000, 𝑛 ∼ 70)

𝛽

ra
te
𝛼

Theorem [DRSY’ 22] – Upper bounds for max-ℓ&-margin interpolators

For a 1-sparse ground truth 𝑑 ≍ 𝑛* and Σ = I, for 𝑑 large enough and 1 < 𝛽 ≤ +/'
+,-

, 
we obtain rates (𝑂(𝑛%&) w/ probability at least 1 − 𝑑,. for classification with 𝛼 as in graph

(isotropic Gaussians for 𝑑 ∼ 5000, 𝑛 ∼ 100)
Theoretical bounds Experimental results: hard-ℓ&-margin SVM for 𝜎: proportion of label flips
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Intuition: a “new” bias-variance tradeoff

Es
tim

at
io

n 
er

ro
r

What’s wrong with min-ℓ+-interpolation? Variance and sensitivity to noise is too large

→ increasing 𝑑/𝑛 does not regularize enough even though it has relatively small bias. 

New trade-off between bias and variance as a function of the strength of inductive bias!

strong 
inductive bias 

little 
inductive bias 

M
SE

 
>𝑤
−
𝑤
⋆

!!

for 𝑑 = 20000, 𝑛 = 400
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Beyond linear models: Does this intuition transfer?
• Take-away intuition: in the presence of moderate noise, interpolation can do well 

if we use a moderate amount of  inductive bias (if ground truth has “simple” structure)

• Back to images and neural networks: does this intuition transfer in any way?
Question: what is a corresponding “strong” inductive bias? Filter size? depth? width?

For noisy (orange/grey) data,

best interpolating estimator has

”medium” inductive bias (depth)

…maybe? … still need much more evidence!

Preliminary experiment with CNTK on binarized MNIST using depth:
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Overview of today on a high-level
• Prospects: How well can we do interpolation in the noisy case

o previous work: high-dimensionality acts as ”implicit regularizer” reducing variance at the cost of bias

o our results: “moderate” inductive bias → fast rates for estimation error even for noisy interpolation

• Perils: Interpolation might be problematic for robustness

o previous work: surprising empirical observations in adversarial robustness setting

o our results: proof for some of these peculiar phenomena even in the linear and noiseless setting
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Adversarial robustness primer
• usually consider consistent perturbations, that is for all 𝑥7 ∈ 𝑇 𝑥, 𝜖 , we have 𝑓⋆(𝑥′) = 𝑓⋆ (𝑥)

• Goal is to achieve lower robust (test) error  𝔼8,: max
8'∈< 8,=

ℓ 𝑦, 𝑓(𝑥′) than standard training

• Adversarial training (AT) minimizes empirical robust risk  +
>
∑$?+( max

8'∈< 8,=
𝐿 𝑦, 𝑓(𝑥′) , usually is better

• Interpolating AT: Usually using first-order method on empirical robust risk until convergence

same person
despite mask

same bird
despite blur

Next: some empirical phenomena that arise with interpolation and adversarial robustness

same label/value 
for the ground truth

𝑥 𝑥7 𝑥 𝑥7
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Interpolating AT yields worse robust risk – than regularized

Robust 
overfitting

Robust error at 
convergence

Robust error w/ 
early stopping

Source: [Rice, Wong, Kolter 20’]

Regularized adversarial training
(early stopping) yields lower robust risk

“Robust overfitting” persists 
for large models!

Ro
bu

st
 e

rro
r
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Interpolating AT yields worse robust risk – than standard

… in the small sample regime for perceptible attacks. Some image examples from [CHY ‘22]:

Mask attacks on CIFAR-10 Illumination attacks on Waterbirds

What’s happening with robust error when we interpolate?

Mask



Many possible reasons for weirdness
when training neural networks

Previous work: noise different impact? non-convex optimization? robust estimator complicated?

We find: Lots of weirdness even when noiseless & convex & simple (linear) robust ground truth

…theoretical results for linear models 
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Adversarial robustness for linear models

• We consider noiseless observations in classification 𝑦 = sgn( 𝑤⋆, 𝑥 ) or regression 𝑦 = 𝑤⋆, 𝑥

• Different consistent perturbations: sgn 𝑤⋆, 𝑥7 = sgn 𝑤⋆, 𝑥 or 𝑤⋆, 𝑥7 = 𝑤⋆, 𝑥 with 𝑥7 = 𝑥 + 𝛿

• Interpolating adversarial training (AT): (S)GD on +
>
∑$?+( max

@∈A(=)
𝐿 𝑦,𝑤"(𝑥 + 𝛿)

• (Ridge)-regularized adversarial training: minimum of +>∑$?+
( max

@∈A(=)
𝐿 𝑦,𝑤"(𝑥 + 𝛿) + 𝜆 𝑤 !

!

depending on 𝑥 distribution
requires 𝛿 ⊥ 𝑤⋆ or just 𝛿 ( ≤ 𝜖
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Adversarial evaluation benefits from regularization

Theorem [DTAHY’ 22] (informal) – Adversarial accuracy benefits from regularization

Consistent perturbations (𝛿 ⊥ 𝑤⋆) for regression (𝛿 ⊥ 𝑤⋆), 𝑥 ∼ 𝑁(0, 𝐼) : Asymptotically as #( → 𝛾, the 

min-ℓ!-norm interpolator has higher robust error than the regularized estimator but the same standard error

Robust error: 𝔼8,: max@∈A(=)
ℓ 𝑦,𝑤"(𝑥 + 𝛿) , standard error: 𝔼8,:ℓ 𝑦,𝑤"𝑥 , standard training

noiselessnoisy
Mean square errors
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Adversarial training (AT) benefits from regularization
Theorem [DTAHY’ 22] (informal) – Proof for robust overfitting

Consistent ℓD-perturbations (𝛿 ⊥ 𝑤⋆) for classification w/ sparse ground truth, 𝑥 ∼ 𝑁(0, 𝐼): 

Asymptotically as #
(
→ 𝛾, interpolating AT yields higher robust error than regularized AT.

more regularization more regularization
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Adversarial training worse than standard training

Theorem [CHY’ 22] (informal) – Non-asymptotic lower bounds for robust error gap

Consistent but directed attacks (𝛿 ∥ 𝑤⋆), Gaussian mixture: almost surely, interpolating adversarial training 

yields higher robust error than the interpolating standard training. More specifically we prove:

Robust error gap: Robust error (adversarial training) – Robust error (standard training)

Almost surely, robust error gap 
monotonically increases with attack budget

Lower bound on the gap increases with #( until 
adversarial training ≈ random guessing
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Take-aways

• interpolation can generalize almost as well as regularized estimators with right amount of inductive bias 

proof for min-ℓ&-norm interpolation for 𝑝 ∈ 1,2 where 𝑝 = 1 is strong, 𝑝 = 2

• for robust evaluation, regularized estimators could generalize better than interpolating estimators

even in the noiseless and consistent case 

o for standard training (proof for regression)

o for adversarial training (proof for classification)

• for perceptible, directed attacks, even weirder things can happen for interpolating estimators:

o adversarial training may be worse than standard training for small samples
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