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Regularization is good in low dimensions

- Traditionally: want to avoid fitting noise perfectly for better (optimal) generalization.

- Forexample, here is the typical example used in my Intro to ML lecture
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Provocation: Interpolation seems fine for deep learning

Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise
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* The more parameters/width, the smaller the test error
» Forlarge models, reqgularization does not decrease test error

Source: [Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever '20]



But interpolation hurts worst-group accuracy

Training: First-order method on reweighted loss according to group size
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For large models, reqgularization boosts worst-group accuracy!

Source: [Sagawa, Koh, Hashimoto, Liang 20']




This talk: formalizable intuition when interpolation
may be a good idea (and when it might not)

Neural networks are hard ...



Interpolators we discuss today arge models & large

«  Function space: High-dimensional linear models f(x) = w'x with x, w € R and d >» n samples

« Data model: Regression: Classification:
forsamples (x;,y;) i = (v, x;) + & with x; ~ N(0,1) y; = sgn{w, x;)é; with x; ~ N(0,1)
and noise & ~ N(0,02) and noise & = —1 w.p. 6%

random label flips or logistic noise

- Interpolators: min-£,-norm interpolator max-€p-margin interpolator (hard-£, SVM)

forp € [1,2] W = argmin,, |[w||_ s.t.y = Xw w = argmin,, ||w]||_s.t. yi{x;,w) = 1Vi
gmin,, P 14

T T

these interpolators arise at convergence of first order methods on the square and logistic loss*

“implicit bias of GD e.g. [Telgarsky '13, Soudry et al. '18, Telgarsky, Ji '19], classification vs. regression e.g. [Muthukumar et al. '21] 6



Overview of today on a high-level

- Prospects: How well can we do interpolation in the noisy case
o previous work: high-dimensionality acts as "implicit reqularizer” reducing variance at the cost of bias
o our results: “moderate” inductive bias — fast rates for estimation error even for noisy interpolation

« Perils: Interpolation might be problematic for robustness
o previous work: surprising empirical observations in adversarial robustness setting

o our results: proof for some of these peculiar phenomena even in the linear and noiseless setting



Previous: Some established intuition
for min-#,-norm interpolation



'mplicit regularization: Variance decreases asd/n 1
Increasing d/n is often said be "implicitly regularizing” because variance decreases (with C;_l—n)
=n
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Simple intuition: Assume fixed nand w* = 0 such that min-norm solution W = argmin,,, ||W||2 s.t.Xw=¢€

— The min-norm solution Wy for d, yields interpolating solution (Wg, 0) ford +1 - ||vT/d+1I|2 < ||v’|7d||2



Bias increases asd/n T = "bad" trade-oft

«  On the other hand, bias has to increase with d/n as you have less information about your data.

« Back-of-the-envelope: in the noiseless case, W is projection of w* onto the n-dim span of rows(X)

— |f all directions are equally likely (isotropic £ = I), on average it captures gof wr o |lw—w*]| ~1-
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argument is e.g. in [Hastie et al. "18]; *for spiked covariances, prediction error can be consistent, see e.g. [Bartlett et al. 19’]



Consistency or rates of prediction error?

- Obviously in high dimensions should assume structure to have any hope even for noiseless!

— For the rest of the first half assume sparsity [lw*|| = s « d. Well-known literature:

0

Basis pursuit (noiseless): argmin,,, ||W||1 s.t. y =Xw

-

— right inductive bias encouraging sparsity

[ asso (noisy): argminy, ||y — Xw||5 + /'1||W||1

| | | N - log d
— right bias using explicit regularization O (S (;lg )

Open questions: « are consistent or fast rates possible for basis pursuit on noisy data for sparse w*?

-« isthe strongest inductive bias,. i.e. #;-norm, the best choice for noisy interpolation?

So far: only non-vanishing prediction error bounds for isotropic, i.i.d. noise setting for min-€1-norm*

*[Wojtaszczyk '10, Chinot et al. ‘21, Koehler et al. '21]




Our results: Consistency and fast rates
for min-£,-norm/max-£,-margin interpolation

forp € [1,2)



Consistency for noisy basis pursuit

For a sparse ground truth ||W*||0 =

Theorem [WDY' 21] - Tight bounds for min-#;-norm interpolators
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(experimentally bound also tight beyond Gaussian X)

For classification, the directional estimation error
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Make no mistake: this is a slow rate! Lasso: O (S (;lg )



~ast rates with modest inductive bias for regression

Theorem [DRSY' 22] - Tight bounds for min-£,-norm interpolators

p/2

For a 1-sparse ground truth d = nf and isotropic Gaussians, for d large enough, 1 <p <2and1<f < oy

we obtain with probability at least 1 — d=¢ prediction error rates 0(n~%) with a as in graph below
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—ast rates with modest inductive bias for classitication

Theorem [DRSY' 22] - Upper bounds for max-£,-margin interpolators
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For a 1-sparse ground truth d =< nf and X =1, for d large enough and 1 < g8

we obtain rates 0(n=%) w/ probability at least 1 — d~¢ for classification with a as m graph
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Experimental results: hard-€,-margin SVM for @ proportion of label flips
(real leukemia dataset for d ~ 7000,n ~ 70)

B
Theoretical bounds
(isotropic Gaussians for d ~ 5000,n ~ 100)
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Nntuition: a "new” bias-variance tradeoff

What's wrong with min-#4-interpolation? Variance and sensitivity to noise is too large

— increasing d/n does not regularize enough even though it has relatively small bias.

t min — ¢, — norm (basis pursuit)
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New trade-off between bias and variance as a function of the strength of inductive bias!




Beyond linear models: Does this intuition transfer”

- Take-away intuition: in the presence of moderate noise, interpolation can do well
T we use a moderate amount of inductive bias (if ground truth has “simple” structure)
« Backtoimages and neural networks: does this intuition transfer in any way”?

Question: what is a corresponding "strong” inductive bias? Filter size”? depth” width?

Preliminary experiment with CNTK on binarized MNIST using depth:
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! @ e e d . . o . .
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ept
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Overview of today on a high-level

- Prospects: How well can we do interpolation in the noisy case
o previous work: high-dimensionality acts as "implicit reqularizer” reducing variance at the cost of bias
o our results: “moderate” inductive bias — fast rates for estimation error even for noisy interpolation

« Perils: Interpolation might be problematic for robustness
o previous work: surprising empirical observations in adversarial robustness setting

o our results: proof for some of these peculiar phenomena even in the linear and noiseless setting



same label/value

Adversarial robustness primer forthe ground truth

|

« usually consider consistent perturbations, that is for all x" € T(x, €), we have f*(x") = f* (x)

same bird

same person
despite blur

despite mask

«  Goalisto achieve lower robust (test) error Ey,, rr%a(lx £(y, f(x")) than standard training
e

« Adversarial training (AT) minimizes empirical robust risk —Zl 1 ,rer%a(lx L(y, f(x")), usually is better

« Interpolating AT: Usually using first-order method on empirical robust risk until convergence

Next: some empirical phenomena that arise with interpolation and adversarial robustness



Interpolating AT yields worse robust risk - than regularized

Regularized adversarial training ‘Robust overfitting” persists
(early stopping) yields lower robust risk for large models!
== Test robust == Test standard
Robust —e— Best checkpoint =4 Final model
0.8 - o
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- Robust error at y
O .6 1 convergence g
O . R 5 050 A
vy 2
% ch Robust error w/ v
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O )2 - 0
o ~
0.42 -
0.0 - T T T T
: T T : ' 5 10 15 20
g 2 e = 20 Width factor
Epochs

Source: [Rice, Wong, Kolter 20']
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Interpolating AT yields worse robust risk - than standard

. in the small sample regime for perceptible attacks. Some image examples from [CHY 22]:

Mask attacks on CIFAR-10 llumination attacks on Waterbirds

Mask
60 —+ standard training 301 + standard training
5 adversarial training S ‘ adversarial training
g \\\\\\\\\\*\\\ 52 \L\\\‘~‘
S 40 — S — R
=101
0 500 1000

5000 10000 15000 20000
number of samples

number of samples

What's happening with robust error when we interpolate?




Many possible reasons for weirdness
when training neural networks

_theoretical results for linear models



Adversarial robustness for linear models

- We consider noiseless observations in classification y = sgn({w*, x)) or regression y = (w*, x)

o Dilferent consistent perturbations: sen{w™, x') = sgn{w™, x) or (w*, x'y = (W*, x) with x’ = x +
o g g

depending on x distribution

« Interpolating adversarial training (AT): (S)GD on 11;2?4 Jnax Liy,wT(x + 6)) requires § Lw* or just |16]]. < e
(e) P

« (Ridge)-regularized adversarial training: minimum of %Z?zl 5rgsa()é)L(y,wT(x +6)) + /1||W||§
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Adversarial evaluation benefits from regularization

standard error: IEx,yf(y,wa), standard training

Theorem [DTAHY' 22] (informal) - Adversarial accuracy benefits from regularization

Consistent perturbations (§ L w*) for regression (6 L w*), x ~ N(0,1) : Asymptotically as %—> Y, the

min-€3-norm interpolator has higher robust error than the regularized estimator but the same standard error
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Adversarial training (AT) benefits from regularization

Theorem [DTAHY' 22] (informal) - Proof for robust overfitting

Consistent €-perturbations (6§ L w*) for classification w/ sparse ground truth, x ~ N(0,1):

Asymptotically asf—l—> Y. interpolating AT yields higher robust error than regularized AT,

— Std., A= 0 Robust, A — 0

-- Std., A=1 Robust, A = 1 — Standard risk Robust risk - Normalized robust margin
|
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5 o
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3 4 5 6 g 8 10-1 10! 10° 10° 102 103 10 10
d/n 1/X Iteration
more regularization more regularization
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Adversarial training worse than standard training

Robust error gap: Robust error (adversarial training) - Robust error (standard training)

Theorem [CHY' 22] (informal) - Non-asymptotic lower bounds for robust error gap

Consistent but directed attacks (§ Il w*), Gaussian mixture: almost surely, interpolating adversarial training

yields higher robust error than the interpolating standard training. More specifically we prove:

304 experimenta V.

&0 *- lower bound /‘ &0

5 o s
B 10+ +
3 3 P 7 ~— experimental

o . [

= 01 : , O i & ' s Iowe‘r bound

0 2_ = 0 20 40
adversarial budget ¢, d/n
| da
Almost surely, robust error gap Lower bound on the gap increases with ~ until
monotonically increases with attack budget adversarial training = random guessing
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Take-aways

- interpolation can generalize almost as well as regularized estimators with right amount of inductive bias

oroof for min-£,-norm interpolation for p € [1,2] where p = 1 is strong, p = 2
- forrobust evaluation, reqularized estimators could generalize better than interpolating estimators

even in the noiseless and consistent case
o for standard training (proof for regression)
o for adversarial training (proof for classification)
- for perceptible, directed attacks, even weirder things can happen for interpolating estimators:

o adversarial training may be worse than standard training for small samples
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