Interpolation can hurt robust generalization even when there is no noise

Alexandru Ţifrea

joint work with Konstantin Donhauser, Michael Aerni, Reinhard Heckel, Fanny Yang

Role of regularization: Classical narrative

Classical regime (underparameterized)

- Regularization reduces variance ⇒ regularization leads to better generalization
 Recent works (overparameterized)
- Variance of the interpolator found by GD vanishes \Rightarrow regularization is redundant

Second descent of the risk

Empirically: double descent for DNNs (Nakkiran et al)

Theoretically: double descent for linear, random feature models (Hastie et al; Mei et al etc) or kernel methods (e.g. Liang et al)

But all these works use the standard test risk for evaluation!

Empirically: regularization improves the <u>adversarially robust test risk</u>, even for overparameterized models (Rice et al)

Theoretically: ???

"Robust overfitting"

Context: Adversarial training \Rightarrow Low robust risk, i.e. $R_{\epsilon}(\theta) = \mathbb{E}_{x,y} \max_{\|\delta\|_p \leq \epsilon} \ell(y, f_{\theta}(x + \delta))$

low robust risk

Adversarial training w/ <u>early stopping</u> for <u>deep neural networks</u> on <u>image data</u>

Prior explanations for robust overfitting

I) Due to complexity of neural networks (Wu et al)

 \Rightarrow robust overfitting does not occur for linear models

2) Amplified by noise (Sanyal et al)

 \Rightarrow robust overfitting does not occur for noiseless data

No! Robust overfitting still occurs!

Robust overfitting for linear models and no noise

 $\hat{\theta}_{\lambda} = \operatorname{argmin}_{\theta} \mathcal{L}_{\epsilon}(\theta) + \lambda R(\theta)$

 $\operatorname{Risk}(\lambda \to 0)$: Robust risk of interpolating GD solution

Risk(λ_{opt}): Robust risk of ridge estimator ($\lambda > 0$)

y-axis: Gap (i.e. positive gap = regularization helps robustness)

2) Robust overfitting for noiseless data?

Can we prove that robust overfitting occurs? Yes! For linear regression and classification with noiseless data.

Data model for classification

High-dimensional data $(d > n) \implies$ interpolation is possible

- n i.i.d. covariates $x_i \sim \mathcal{N}(0, I_d)$
- deterministic labels (like e.g. Salehi et al, Sur et al)
 y_i = sgn(⟨θ^{*}, x_i⟩) ∈ {−1, +1}
 ⇒ noiseless data

Max-margin interpolator

 $\hat{\theta}_{\lambda} = \operatorname{argmin}_{\theta} \sum_{i=1}^{n} \ell(y_i \langle x_i , \theta \rangle) + \lambda \|\theta\|_2^2$, with ℓ the logistic loss

Standard training (i.e. $\epsilon = 0$)

• unregularized predictor (i.e. $\lambda \rightarrow 0$) converges to maxmargin estimator

 $\hat{\theta}_0 = \operatorname{argmin}_{\theta} \|\theta\|_2$ such that $y_i \langle x_i, \theta \rangle \ge 1$

• the limit of GD on *standard* training loss (Soudry et al)

Robust max-margin interpolator

 $\hat{\theta}_{\lambda} = \operatorname{argmin}_{\theta} \sum_{i=1}^{n} \max_{\|\delta\|_{\infty} \leq \epsilon} \ell(y_i \langle x_i + \delta, \theta \rangle) + \lambda \|\theta\|_2^2 \text{ with } \ell \text{ the logistic loss}$

ℓ_∞ -adversarial training (i.e. $\epsilon > 0$)

• unregularized predictor (i.e. $\lambda \to 0$) converges to **robust** max-margin estimator wrt ℓ_{∞} -perturbations

 $\hat{\theta}_0 = \operatorname{argmin}_{\theta} \|\theta\|_2$ such that $y_i \langle x_i, \theta \rangle - \epsilon \|\theta\|_1 \ge 1$

• the limit of GD on *adversarial* training loss

Main result for linear classification $\hat{\theta}_{\lambda} = \operatorname{argmin}_{\theta} \underbrace{\mathcal{L}_{\epsilon}(\theta)}_{\epsilon = \operatorname{ady} | \operatorname{oss}} + \lambda \|\theta\|_{2}$

Theorem DTAHY'21 (informal) – better robustness with ridge regularization

For a sparse ground truth, we derive the limit of the robust risk as $d, n \to \infty$ and $d/n \to \gamma$: $R_{\epsilon}(\hat{\theta}_{\lambda}) \xrightarrow{prob} \mathcal{R}_{\lambda}(\epsilon, \gamma)$ In particular, for some $\lambda_{opt} > 0$: $\begin{array}{c} \mathcal{R}_{\lambda_{opt}}(\epsilon, \gamma) < \lim_{\lambda \to 0} \mathcal{R}_{\lambda}(\epsilon, \gamma) \\ \underset{regularized}{\longrightarrow} & \text{interpolating} \end{array}$

Proof: Uses the *Convex Gaussian Minimax Theorem* and Gaussian concentration. scalar optimization problem \rightarrow original optimization problem (i.e. minimize training loss)

Main result for linear classification

Lines: asymptotic risks (theory)

Markers: risks for finite d, n (simulations)

Preventing interpolation \Rightarrow lower robust risk

(a) Benefit of ridge regularization

Regularize enough to prevent interpolation \Rightarrow lower robust risk

- negative robust margin \sim no interpolation \Rightarrow minimum robust risk
- What if we use other means to prevent interpolation?

Robust margin

An unorthodox way to prevent interpolation

Introduce a small amount of artificial label noise in the training data

 \rightarrow avoids the robust max-margin estimator!

Remark: not advocating for label noise as a method to improve robustness

• regularization still leads to smaller robust risk

Conclusion & Future work

<u>Summary</u>: We show that avoiding the GD interpolating solution can be beneficial in the high-dimensional regime even for noiseless data and linear function classes.

• first formal proof of robust overfitting

Future work:

- extend proof to early stopping regularization for logistic regression
- extend our theoretical analysis to more complex model classes (e.g. random feature regression, shallow NNs etc)

Thank you!

References

- Hastie et al, Surprises in high-dimensional ridgeless least squares interpolation, 2020.
- Liang et al, Just interpolate: Kernel ''ridgeless" regression can generalize, Ann. Statist. 2020.
- Mei et al, The generalization error of random features regression: Precise asymptotics and double descent curve, CPAM 2021.
- Nakkiran et al, Deep double descent: Where bigger models and more data hurt, ICLR 2020.
- Rice et al, Overfitting in adversarially robust deep learning, ICML 2020.
- Salehi et al, The impact of regularization on high-dimensional logistic regression, NeurIPS 2019.
- Sanyal et al, How benign is benign overfitting?, ICLR 2021.
- Soudry et al, The implicit bias of gradient descent on separable data, JMLR 2018.
- Sur et al, A modern maximum-likelihood theory for high-dimensional logistic regression, PNAS, 2019.
- Wu et al, Do Wider Neural Networks Really Help Adversarial Robustness?, arXiv, 2020.