Interpolation can hurt robust generalization
even when there I1s no noise

Alexandru Tifrea

joint work with Konstantin Donhauser, Michael Aerni, Reinhard Heckel, Fanny Yang




Role of regularization: Classical narrative

Classical regime (underparameterized)

* Regularization reduces variance = regularization leads to better generalization

Recent works (overparameterized)

* Variance of the interpolator found by GD vanishes = regularization is redundant

= always just interpolate! Not always ®
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Second descent of the risk

Empincally: double descent for DNNs (Nakkiran et al)

Theoretically: double descent for linear, random feature models (Hastie et al; Mei et al etc) or
kernel methods (e.g. Liang et al)

But all these works use the standard test risk for evaluation!

Empinically: regularization improves the adversarially robust test risk, even for overparameterized

models (Rice et al)

Theoretically: ? ? ?



"Robust overtitting”

Context: Adversarial training = Low robust risk, i.e. R.(8) = IEx,y”(rsnaX 20y, fo(x +9))
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Prior explanations for robust overfitting

1) Due to complexity of neural networks (Wu et al)

= robust overfitting does not occur for linear models

2)  Amplified by noise (Sanyal et al)

= robust overfitting does not occur for noiseless data

No! Robust overfitting still occurs!



Robust overfitting for linear models and no noise

6, = argming L.(0) + AR(6)
Risk(A — 0): Robust risk of interpolating GD solution Risk(Agpe): Robust risk of ridge estimator (4 > 0)

y-axis: Gap (i.e. positive gap = regularization helps robustness)
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Can we prove that robust overfitting occurs?

Yes! For linear regression and|classification Wth
noiseless data.




Data model for classification

High-dimensional data (d > n) ™= interpolation is possible

n ii.d. covariates x;~N(0, ;) N(0,1)
. » 1d

deterministic labels (like e.g. Salehi et al, Sur et al)
yi = sgn({6%,x;)) € {~1,+1}
= nolseless data




Max-margin interpolator

6, = argming Y™, L(yi{x;  ,0)) + A]|0]|5, with £ the logistic loss

Standard training (i.e. € = 0)

* unregularized predictor (i.e. A = 0) converges to max-
margin estimator -

0, = argming ||@||, such that y;(x;,0) > 1

* the limit of GD on standard training loss (Soudry et al)




Robust max-margin interpolator

6, = argming Y, max £(y;{x; + 9, 0))‘+ AIIOII%‘ with £ the logistic loss
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? w»-adversarial training (i.e. € > 0)
=] |l
* unregularized predictor (i.e. A = 0) converges to robust
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* the limit of GD on adversarial training loss




Main result for linear classification
0, = argming L(6) + All6]];
\_'_I
e-adv. loss
Theorem DTAHY'21 (informal) — better robustness with ridge regularization

For a sparse ground truth, we derive the limit of the robust risk as d,n = o and d/n - y:

Re(8) 25 Ry (e, y)

In particular, for some A, > 0:

Rope (€ )/)' < lim R, (e, )’)'

I I

regularized  interpolating

Proof: Uses the Convex Gaussian Minimax Theorem and Gaussian concentration.

scalar optimization problem — original optimization problem (i.e. minimize training loss)



Main result for linear classification
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Preventing interpolation = lower robust risk
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Regularize enough to prevent interpolation = lower robust risk

* negative robust margin ~ no interpolation = minimum robust risk

* What if we use other means to prevent interpolation?




An unorthodox way to prevent interpolation

Introduce a small amount of artificial label noise in the training data

— avoids the robust max-margin estimator!
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Remark: not advocating for label noise as a method to improve robustness
*  regulanzation still leads to smaller robust risk



Conclusion & Future work

Summary: We show that avoiding the GD interpolating solution can be beneficial in the
high-dimensional regime even for noiseless data and linear function classes.

* first formal proof of robust overfitting

Future work:

* extend proof to early stopping regularization for logistic regression

* extend our theoretical analysis to more complex model classes (e.g. random feature

regression, shallow NINs etc)

Thank you!
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