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Classical wisdom: Avoid fitting noise 

degree 𝑚 = 20 with ridgedegree 𝑚 = 20
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Classical wisdom: Avoid fitting noise 

degree 𝑚 = 20 with ridge

Traditionally: want to avoid fitting noise perfectly for better (optimal) generalization. 
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Double descent on neural networks
Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise

Source: [NKBYBS ’20]

interpolation threshold:
training error = 0

After interpolation threshold, we have a second “descent” – overparameterization helps

follow blue curve:
model at convergence

1

Trained #
of epochs
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Harmless interpolation on neural networks 
Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise

For large models, interpolation is not worse than regularization (harmless interpolation)2

compare
blue (at convergence)
with red curve 
(best stopping time)

interpolation threshold:
training error = 0

Source: [NKBYBS ’20]

Trained #
of epochs
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Interpolators with certain structural/inductive bias

Question today: What kind of interpolators %𝑓 with %𝑓 𝑥! = 𝑦! exhibit all of

(1 overparameterization helps interpolators          harmless interpolation         good generalization1 2 3

well understood in linear case (see Misha’s talk, Ohad’s) Focus in this talk

opt. algorithm
minimizing loss

certain interpolator
(e.g. min norm)

has implicit
bias towards

has structural/
inductive bias
towards

e.g. sparsity,
invariances, 
filter sizes

Good generalization for high-dim. diverse covariates (e.g. isotropic) only possible when 

interpolator “has clue” where to search (i.e. via structural bias aligned with optimal parameters)
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Story of this talk…

Our take-away: One key mechanism to achieve                  is the degree of the

“simplicity of the structure” of the interpolator that matches with optimal parameters, 

i.e. the strength of the “simplicity/inductive bias”

Question today: What kind of interpolators %𝑓 with %𝑓 𝑥! = 𝑦! exhibit all of

(1 overparameterization helps interpolators          harmless interpolation         good generalization1 2 3

Focus in this talk

2 3

well understood in linear case (see Misha’s talk, Ohad’s)
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The role of the inductive bias for interpolators

error
no perfect
data fit

models
perfectly fit
noisy data

model size /
overparameterization

test error

training error

strength of
inductive bias

interpolation
threshold
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interpolation
can do well

increasing inductive bias (via regularization 𝜆) increasing inductive bias (via structure)

error

Classical wisdom: strong inductive bias to 
prevent interpolation

increases bias, decreases variance 

no perfect
data fit

Our theorems: strong inductive bias
while interpolating

decreases bias, increases variance!

models
perfectly fit
noisy data

model size / 
overparameterization

test error

training error

variance

statistical bias

test error

regularization
can do well

training error

strength of
inductive bias

strength of
inductive bias
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Examples for strong inductive biases

Kernel interpolators:
filter size for convolutional models

rotational invariance

Neural networks:Linear interpolators:

sparsity 𝑤
"
≪ 𝑑

Strong inductive bias ≜ strong bias towards simple structure of “optimal” model ≜ less flexibility

Examples for strong structural biases we discuss today:

Part I Part II: Latest and on-going work

Tight bounds for the risk Controlled experiments



11

Linear regression setting (for this talk)

• Function space: linear models 𝑓 𝑥 = ⟨𝑤, 𝑥⟩ with 𝑥, 𝑤 ∈ ℝ#

• Data model for 𝒏 samples: 𝑦! = ⟨𝑤⋆, 𝑥!⟩ + 𝜉! with 𝒙𝒊 ∼ 𝑵(𝟎, 𝑰) and noise 𝜉! ∼ 𝑁(0, 𝜎&)

simple structure: sparse 𝒘⋆ = (𝟏, 𝟎, … , 𝟎) with unknown location (for simplicity of presentation)

• Degree of overparameterization (high-dimensional regime): 𝑑 ≍ 𝑛', 𝛽 > 1

• Linear estimators we compare: for 𝒑 ∈ [𝟏, 𝟐]

o Minimum-ℓ𝐩-norm interpolators: L𝑤 = argmin) 𝑤
*
s. t. 𝑦 = 𝑋𝑤

o compared against classical regularized estimators: L𝑤+ = argmin) 𝑦 − 𝑋𝑤 & + 𝜆| 𝑤 |*
*

• Performance measure: prediction error 𝔼,∼. ",0 𝑥, L𝑤 − 𝑤⋆ & = L𝑤 − 𝑤⋆ &

(Similar bounds also hold for max-ℓ!-margin classification "𝑤 = 𝑎𝑟𝑔𝑚𝑖𝑛" 𝑤 ! 𝑠. 𝑡. 𝑦# 𝑥# , 𝑤 ≥ 1 ∀𝑖)

implicit bias of 1st order methods
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Varying inductive bias strength via 𝑝 ∈ [1,2]

p=1 p=2

Min-ℓ*-norm interpolation L𝑤 = argmin) 𝑤
*
𝑠. 𝑡. 𝑦 = 𝑋𝑤

Focus so far of the 
“benign overfitting”

literature

strong inductive bias
towards sparsity

no inductive bias
towards sparsity

Goal today: populate for 𝑝 ≤ 2with high-dimensional tight non-asymptotic rates
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Weak inductive bias: 𝑝 = 2 (prior work)
Interpolators L𝑤 = argmin) 𝑤

&
s. t. 𝑦 = 𝑋𝑤 vs. Regularized estimator: L𝑤+ = 𝑦 − 𝑋𝑤

&
&
+ 𝜆 𝑤

&
&

Linear model 𝑦! = ⟨𝑤⋆, 𝑥!⟩ + 𝜉! with i.i.d. 𝑥! ∼ 𝑁(0, I), some 𝜉! ∼ 𝑁 0, 𝜎&

M
SE

L𝑤
−
𝑤
⋆

&&

“second” descent harmless interpolation1 2

can analyze 

closed-form-solution!
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Weak inductive bias: 𝑝 = 2 (prior work)
M

SE
L𝑤
−
𝑤
⋆

&&

*consistent only for very spiked covariance Σ [HMRT’19, MM’19, BLLT ’19, MVSS ‘20] in practice Σ is fixed! 

Interpolators L𝑤 = argmin) 𝑤
&
s. t. 𝑦 = 𝑋𝑤 vs. Regularized estimator: L𝑤+ = 𝑦 − 𝑋𝑤

&
&
+ 𝜆 𝑤

&
&

Linear model 𝑦! = ⟨𝑤⋆, 𝑥!⟩ + 𝜉! with i.i.d. 𝑥! ∼ 𝑁(0, I), some 𝜉! ∼ 𝑁 0, 𝜎&

Increasing overparameterization via #
1

decreases variance (“implicitly regularizing”)

Variance
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Weak inductive bias: 𝑝 = 2 (prior work)

For isotropic Gaussians, L𝑤 − 𝑤⋆ &
> 𝑐 > 0 for any 𝛽 > 1 (𝑑 ≍ 𝑛') even as 𝑛 → ∞ due to high bias!

M
SE

L𝑤
−
𝑤
⋆

&&

Bayes error

*consistent only for very spiked covariance Σ [HMRT’19, MM’19, BLLT ’19, MVSS ‘20] in practice Σ is fixed! 

Interpolators L𝑤 = argmin) 𝑤
&
s. t. 𝑦 = 𝑋𝑤 vs. Regularized estimator: L𝑤+ = 𝑦 − 𝑋𝑤

&
&
+ 𝜆 𝑤

&
&

Linear model 𝑦! = ⟨𝑤⋆, 𝑥!⟩ + 𝜉! with i.i.d. 𝑥! ∼ 𝑁(0, I), some 𝜉! ∼ 𝑁 0, 𝜎&
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Weak inductive bias: 𝑝 = 2 (prior work)
M

SE
L𝑤
−
𝑤
⋆

&&

second descent harmless interpolation good generalization 1 2 3

Interpolators L𝑤 = argmin) 𝑤
&
s. t. 𝑦 = 𝑋𝑤 vs. Regularized estimator: L𝑤+ = 𝑦 − 𝑋𝑤

&
&
+ 𝜆 𝑤

&
&

Linear model 𝑦! = ⟨𝑤⋆, 𝑥!⟩ + 𝜉! with i.i.d. 𝑥! ∼ 𝑁(0, I), some 𝜉! ∼ 𝑁 0, 𝜎&

Bayes error

*consistent only for very spiked covariance Σ [HMRT’19, MM’19, BLLT ’19, MVSS ‘20]       in practice Σ is fixed! 
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Varying inductive bias strength via 𝑝 ∈ [1,2]

p=1 p=2

Min-ℓ*-norm interpolation L𝑤 = argmin) 𝑤
*
𝑠. 𝑡. 𝑦 = 𝑋𝑤

Focus so far of the 
“benign overfitting”

literature

strong inductive bias
towards sparsity

no inductive bias
towards sparsity

Our first
results 

variance

statistical bias

test error

has closed-form 
solution

no closed-form solution!
→ technique “automatically”
yields classification results
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Benefits of strong inductive bias 𝑝 = 1 (classical)
For structural simplicity of ground truth: sparsity 𝑤⋆

"
= 𝑠 ≪ 𝑑

Corresponding weak (no) inductive bias: encouraging small 𝑤
&

norm

Matching strong inductive bias : small 𝑤 "/ 𝑤 2 norm encouraging sparsity structure

Basis pursuit: argmin) 𝑤
2
𝑠. 𝑡. 𝑦 = 𝑋𝑤

Lasso: argmin3 𝑦 − 𝑋𝑤| && + 𝜆 𝑤 |2

Noiseless
𝑦 = 𝑋𝑤⋆

Noisy
𝑦 = 𝑋𝑤⋆ + 𝜉

when observations are noisy

Perfect recovery
w.h.p. for 𝑛~𝑠 log 𝑑

Estimation error
minimax rate 𝑂 4 567 #

1
for optimal 𝜆

Open problem: How much does min-ℓ2-norm interpolation suffer when forced to fit noise?
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Strong inductive bias: 𝑝 = 1 (consistent but slow)
Previous non-asymptotic bounds for the i.i.d. noise case:

Ω 𝜎&/ log #
1

lower bounds [MVSS ‘19]            𝑂(𝜎&) upper bounds  [KZSS ’21, CLG ‘20] 

(who studied adversarial, vanishing noise)

Theorem [WDY’ 21](simplified) – Tight bounds for min-ℓ2-norm interpolators

There exists a universal constant 𝑐 > 0, s.t. whenever 𝑑 ≍ 𝑛$ with 𝛽 > 1, 𝑛 ≥ 𝑐 w.h.p. 

(𝑤 − 𝑤⋆ & =
𝜎&

log 𝑑/𝑛 + 𝑂
𝜎&

log'/& 𝑑/𝑛

The proof is based on localized uniform convergence and CGMT [KZSS ‘21] 
- who however don’t show tight bounds and hence don’t prove consistency
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Strong inductive bias: 𝑝 = 1 (consistent but slow)

• This is a lower & upper bound for Gaussian 𝑋

• Experimentally, the bound is also tight beyond 

Gaussian 𝑋, but hard to show!

Note: The same bound holds for classification

*in [DRSY ‘22]

M
SE

L𝑤
−
𝑤
⋆

&&

Theorem [WDY’ 21](simplified) – Tight bounds for min-ℓ2-norm interpolators

There exists a universal constant 𝑐 > 0, s.t. whenever 𝑑 ≍ 𝑛$ with 𝛽 > 1, 𝑛 ≥ 𝑐 w.h.p. 

(𝑤 − 𝑤⋆ & =
𝜎&

log 𝑑/𝑛
+ 𝑂

𝜎&

log'/& 𝑑/𝑛
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Strong inductive bias: 𝑝 = 1 (consistent but slow)

No! Variance too large! 
Interpolator Ω 2

89: 1

vs. regularized 𝑂 4 89: 1
1

Yes! Variance decreases, 

similar intuition as for 𝑝 = 2

Theorem [WDY’ 21](simplified) – Tight bounds for min-ℓ2-norm interpolators

There exists a universal constant 𝑐 > 0, s.t. whenever 𝑑 ≍ 𝑛$ with 𝛽 > 1, 𝑛 ≥ 𝑐 w.h.p. 

L𝑤 − 𝑤⋆ &
= ;!

('=2)89: 1
+ 𝑂( ;!

( '=2 89: 1)"/!
) (plugging in 𝑑, 𝑛 relation)

second descent harmless interpolation good generalization 1 2 3

Consistent but 

still slow rate!
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So far: Interpolators are poor for 𝑝 = 1, 2

p=1
rate Θ )

*+, -

p=2
rate Θ(1)

Min-ℓ*-norm interpolation L𝑤 = argmin) 𝑤
*
𝑠. 𝑡. 𝑦 = 𝑋𝑤

strong inductive bias
towards sparsity

no inductive bias
towards sparsity

Focus so far of the 
“benign overfitting”

literature

Our first
results 

variance

statistical bias

test error

→ no harmless interpolation! → but harmless interpolation!
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Higher noise sensitivity for 𝑝 = 1 (synthetic)

Es
tim

at
ed

 e
rr

or

For 𝑝 = 1, variance and “sensitivity to noise” larger than for 𝑝 = 2

→ increasing 𝑑 vs. 𝑛 does not regularize enough even though it has relatively small bias. 

Trade-off between bias and variance for interpolators via strength of inductive bias!

M
SE

 
L𝑤
−
𝑤
⋆

&&

for 𝑑 = 20000, 𝑛 = 400 for 𝑑 = 5000, 𝑛 = 100

MSE
MSE
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So far: Interpolators are poor for 𝑝 = 1, 2

Min-ℓ*-norm interpolation L𝑤 = argmin) 𝑤
*
𝑠. 𝑡. 𝑦 = 𝑋𝑤

p=1
rate Θ )

*+, -

p=2
rate Θ(1)

strong inductive bias
towards sparsity

no inductive bias
towards sparsity

Our first
results:

→ no harmless interpolation!

Focus so far of the 
“benign overfitting”

literature

→ but harmless interpolation!

Which rates?
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So far: Interpolators are poor for 𝑝 = 1, 2

rate )-

be
tte

r

𝛽: 𝑑 ≍ 𝑛'

constant • Evaluate MSE L𝑤 − 𝑤⋆ &
∼ iΘ 𝑛?

with rate exponent 𝛼

• minimax optimal rate, e.g. for (best)

regularized estimator with 𝑝 = 1 (LASSO) 

L𝑤+ − 𝑤⋆ &
= iΘ 𝑛=2 → 𝛼 = −1

• Interpolators with 𝑝 = 1, 2:

L𝑤 − 𝑤⋆ &
= iΘ 1 → 𝛼 = 0

ra
te

 e
xp

on
en

t  
α

How close can we get to 𝛼 = −1
with ℓ*-norm interpolators with 𝑝 ∈ 1,2 ?
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Medium inductive bias: Fast rates with 𝑝 ∈ 1,2
Theorem [DRSY’ 22]  (informal) – Upper & lower bounds for min-ℓ*-norm interpolators

For 𝑑 ≍ 𝑛$ with 1 < 𝛽 ≤ !/&
!.)

, and min-ℓ!-norm interpolators with 1 < p < 2 and 𝑛 large enough, 

we obtain with high probability, error rates of order !Θ(𝑛=?) with α as in graph below

rate )-

be
tte

r

• order-matching upper & lower bounds

• for fixed 𝛽,  some 𝑝 > 1 close to 1 gets best rate

• for 𝛽 ≈ 2, rates close to !Θ 2
1

Note: technique applies to classification (see paper)
and allows extension to 𝛴 ≠ 𝐼 and s-sparse 𝑤⋆

degree of overparameterization 𝛽

ra
te

 e
xp

on
en

t α

constant
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Medium inductive bias: Fast rates with 𝑝 ∈ 1,2
Theorem [DRSY’ 22]  (informal) – Upper & lower bounds for min-ℓ*-norm interpolators

For 𝑑 ≍ 𝑛$ with 1 < 𝛽 ≤ !/&
!.)

, and min-ℓ!-norm interpolators with 1 < p < 2 and 𝑛 large enough, 

we obtain with high probability, error rates of order 1𝑂(𝑛=?) with α as in graph below

rate )-

be
tte

r

degree of overparameterization 𝛽

ra
te

 e
xp

on
en

t α

constant

second descent

harmless interpolation

good generalization 

1

2

3
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Fast rates with 𝑝 ∈ 1,2 - caveat…  

Caveat:

• “Large enough” actually requires

2
89: 89: #

≲ 𝑝 − 1 → very large d

• Only holds for Gaussians

• cannot obtain best 𝑝 for given 𝛽

Theorem [DRSY’ 22]  (informal) – Upper & lower bounds for min-ℓ*-norm interpolators

For 𝑑 ≍ 𝑛$ with 1 < 𝛽 ≤ !/&
!.)

, and min-ℓ!-norm interpolators with 1 < p < 2 and 𝑛 large enough, 

we obtain with high probability, error rates of order 1𝑂(𝑛=?) with α as in graph below

rate )-

be
tte

r

degree of overparameterization 𝛽

ra
te

 e
xp

on
en

t α

constant
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Experimental results for classification (real-world)

Real-world experiment:
Leukemia dataset with 𝑑 ∼ 7000, 𝑛 ∼ 70

Synthetic experiment:
Isotropic Gaussians with 𝑑 ∼ 5000, 𝑛 ∼ 100

Experimental results: hard-ℓ@-margin SVM for σ: proportion of random label flips

Strong ind. bias best to interpolate noiseless data, medium ind. bias best to interpolate noisy data!
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Conclusions for full picture 𝑝 ∈ [1, 2]

p=1
rate Θ 2

89: 1

p=2
rate Θ(1)

>𝑤 = argmin) 𝑤
*
𝑠. 𝑡. 𝑦 = 𝑋𝑤

variance statistical
bias

test error

1<p<2
rate 𝑂 2

1$

second descent

harmless interpolation

good generalization 

1

2

3

• 𝑝 = 1 (strongest bias)  best for noiseless interpolation
𝑝 = 1 + 𝜖 (medium bias) best for noisy interpolation! 

• Concrete non-asymptotic rates that show for
medium-strength inductive bias:

A

B



31

Analogous phenomenon for non-linear models?

Kernel interpolators:
filter size for convolutional models

rotational invariance

Neural networks:Linear interpolators:

sparsity >𝑤 " ≪ 𝑑

Bulk of talk Part II: not yet published

Tight bounds for the risk Controlled experiments

second descent harmless interpolation good generalization 1 2 3
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Nonlinear structure: Filter size of convolutional kernels

• Convolutional kernel with filter size 𝑞:

o consider patches 𝑥A
(B)

AC2

#
of size 𝑞 of vector 𝑥 ∈ 𝑅#

o and average of nonlinear function over these patches 𝒦 𝑥, 𝑧 = 2
#
∑!C2# 𝜅

,%
('), D%

(')

B

• 𝑥 ∼ 𝒰( −1,1 #) and 𝑦 = 𝑓⋆ 𝑥 + 𝜎𝜖 with Gaussian 𝜖 ∼ 𝑁(0,1) and consider 𝑓⋆ 𝑥 = 𝑥2…𝑥E⋆

• High-dimensional kernel learning: 𝑛 ∈ Θ 𝑑ℓ , 𝜎& ∈ Θ(𝑑=ℓ*) and 𝑞 ∈ Θ(𝑑G) with ℓ, ℓ; , 𝛾 ≥ 0

• Interpolator: min 𝑓
H
𝑠. 𝑡. ∀𝑖: 𝑓 𝑥! = 𝑦! vs. ridge regularized: min 𝑦 − 𝑓 𝑥21 &

&
+ 𝜆 𝑓

H
&

optimal model depends only on small patch → small filter size strongest inductive bias

some regular 𝜅 e.g. exponential
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Nonlinear structure: Filter size of convolutional kernels

𝛾 s.t. filter size 𝑞 ∈ Θ(𝑑G)

Theorem [AMDY’ 22]  (informal) – Upper & lower bounds for high-dim kernel learning

For 𝑛 ∈ Θ 𝑑ℓ , 𝜎& ∈ Θ(𝑑.ℓ!), 𝑞 ∈ Θ(𝑑0), 𝜆 ∈ Θ(𝑑ℓ+) or 𝜆 → 0 w.h.p., we obtain tight bounds 

𝑉𝑎𝑟 D𝑓1 ∈ Θ(𝑛
,ℓ*,ℓ+

ℓ . .
ℓ234 5,).5 ) and 𝐵𝑖𝑎𝑠& D𝑓1 ∈ Θ(𝑛.& 𝑛.

!
ℓ(ℓ+8)80 9⋆.) )) with 𝛿 = ℓ.ℓ+.)

0
− ℓ.ℓ+.)

0

yielding prediction error rates of order 1𝑂(𝑛=?) with α as in graph below for fixed ℓ, ℓ1 , ℓ;

Prior work: [LRZ ’19] showed multiple descent as a function of overparameterization

𝛾 s.t. filter size 𝑞 ∈ Θ(𝑑G)

interpolator

optimally regularized

variance

bias

Harmless
interoplation
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Fitting noise is necessary for weak inductive bias
• 𝜆⋆ ℓ, ℓ; , 𝛾 minimizes population risk for 𝑛 ∈ Θ 𝑑ℓ , 𝜎& ∈ Θ(𝑑=ℓ*), 𝑞 ∈ Θ(𝑑G)

• 𝛾⋆: filter size exponent at which bias = variance (medium inductive bias)

interpolator

optimally regularized

𝜸⋆

𝛾 s.t. filter size 𝑞 ∈ Θ(𝑑0)

Theorem [AMDY’ 22]  (informal) – Training error for optimally regularized model

It holds for 𝜆⋆ ℓ, ℓ; , 𝛾 that 𝐸<
)
-
∑#=)- D𝑓1⋆ 𝑥# − 𝑦#

&
→ 𝜏0𝜎& with 𝜏0 = 1 if 𝛾 < 𝛾⋆ and 𝜏0 < 1 if 𝛾 ≥ 𝛾⋆

on CNN
& synthetic
image data

→ any noise fitting harmful for strong inductive bias vs. some noise fitting optimal for weak inductive bias

noisy subset
of train. set

strong ind. bias weak ind. bias

5 13 22 31

filter size

0%

100%

su
b
se

t
tr

ai
n

er
ro

r

(o
p
t.

ea
rl
y

st
op

p
in

g)
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Nonlinear structure: Filter size of convolutional NN

• Synthetic image dataset

allowing controlled experiments

where ground truth has small filter size

• simple NN with one convolutional layer

strongest inductive bias (smallest filter size) best for noiseless case, slightly weaker best for noisy    

harmless interpolation only for weak inductive bias!

Harmless
interpolation

interpolator optimally 
regularized

A

B

5 13 22 31

filter size

0%
6%

10%

45%

te
st

er
ro

r

interpolating:
opt. early-stopped:

0% noise
0% noise

20% noise
20% noise
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Nonlinear structure: Rotational invariance for WideResNet
• Satellite images (EuroSAT) to be 

classified in terms of type of land usage

• strength of rotational invariance via 
“amount of” data augmentation

strongest inductive bias (largest # rotations) best for noiseless case, slightly weaker best for noisy

harmless interpolation only for weak inductive bias!

Harmless
interpolation

A

B

interpolating:
opt. early-stopped:

0% noise
0% noise

20% noise
20% noise

1412

# rotations

0%

3%

8%

12%

17%

te
st

er
ro

r
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interpolation
can do well

increasing inductive bias (via structure)

error no perfect
data fit

Our theorems: increasing inductive bias
while interpolating

decreases bias, increases variance!

models
perfectly fit
noisy data

model size /
overparameterization

test error

training error

variance

statistical bias

test error

training error

strength of
inductive bias

Take-aways…

Interpolator can generalize well when

• known (noiseless case):
there is strong inductive bias
towards simple structure
matching optimal model.

• new (noisy case):
there is some but not too much
inductive bias 
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Open questions 

For linear

• Technical: Going beyond Gaussians – seems surprisingly difficult

For non-linear:

• Technical: going beyond toy covariate distributions (or toy kernels)

• Proof for neural networks?

• Experimental: What are other natural structural biases & datasets for NN 

one could test our hypothesis on?
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Papers discussed in the talk 
• Wang*, Donhauser*, Yang “Tight bounds for minimum l1-norm 

interpolation of noisy data”, AISTATS ’22

• Stojanovic, Donhauser, Yang “Tight bounds for maximum ℓ1-margin 

classifiers”, arxiv preprint

• Donhauser, Ruggeri, Stojanovic, Yang “Fast rates for noisy interpolation 

require rethinking the effects of inductive bias”, ICML ’22

• Aerni*, Milanta*, Donhauser, Yang “Strong inductive biases provably 

prevent harmless interpolation”, hopefully ICLR ’23…

sml.inf.ethz.chSML group:



40

Clean theorem statement for min-ℓ!


