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Classical wisdom: Avoid fitting noise
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Classical wisdom: Avoid fitting noise

= Model
= = True function
% Samples

>~ o0
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_p . degree m = 20 with ridge
%
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Traditionally: want to avoid fitting noise perfectly for better (optimal) generalization.



Double descent on neural networks

Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise

interpolation threshold: Trained #
training error = 0 of epochs
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@ After interpolation threshold, we have a second “"descent” - overparameterization helps

Source: [NKBYBS '20]



Harmless interpolation on neural networks

Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise

Trained #
of epochs
B ] 1
0.71 ____ Optimal Early
Stopping
. 0.6 10
=
i 0.5 compare
- 100 blue (at convergence)
é 0.4 with red curve
(best stopping time)
0.3] 1000
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@ For large models, interpolation is not worse than regularization (harmless interpolation)

Source: [NKBYBS '20]



Interpolators with certain structural/inductive bias

Question today: What kind of interpolators f with f(x;) = y; exhibit all of

@ overparameterization helps interpolators @ harmless interpolation @good generalization

& A w )
e ) g
well understood in linear case (see Misha's talk, Ohad'’s) Focus in this talk
has implicit has structural/ e.g. sparsity,
opt. algorithm bias towards certain interpolator  inductive bias invariances,
minimizing loss ~ (e.g. min norm) towards > filter sizes

Good generalization for high-dim. diverse covariates (e.g. isotropic) only possible when

interpolator “has clue” where to search (i.e. via structural bias aligned with optimal parameters)




Story of this talk...

Question today: What kind of interpolators f with f(x;) = y; exhibit all of

@ overparameterization helps interpolators @ harmless interpolation @good generalization

- N J
Y v

well understood in linear case (see Misha's talk, Ohad’s) Focus in this talk

Our take-away: One key mechanism to achieve @@ is the degree of the

“simplicity of the structure” of the interpolator that matches with optimal parameters,

i.e. the strength of the “simplicity/inductive bias”




The role of the inductive bias for interpolators

error
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training error

Our theorems: strong inductive bias
while interpolating
decreases bias, increases variance!

Classical wisdom: strong inductive bias to
prevent interpolation
increases bias, decreases variance

<«— testerror —» 4

interpolation
can do well

v

<+—— Vvariance ——»

statistical bias \
/ NA

<«— training error—»

regularization
can do well

v

increasing inductive bias (via structure)

increasing inductive bias (via regularization 1)
4—



Examples for strong inductive biases

Strong inductive bias £ strong bias towards simple structure of “optimal” model £ less flexibility

Examples for strong structural biases we discuss today:

Part |

Linear interpolators:

sparsity ||W||0 <d

Tight bounds for the risk



Linear regression setting (for this talk)

+  Function space: linear models f(x) = (w, x) with x, w € R%
- Data model for n samples: y; = (v, x;) + & with x; ~ N(0,I) and noise §; ~ N(0,02)
(for simplicity of presentation)
« Degree of overparameterization (high-dimensional regime): d = nf, g > 1
+ Linear estimators we compare: forp € [1, 2]

o Minimum-£,-norm interpolators: W = argmin,, ||W||p s.t.y = Xw

) . . . _ . 2
o compared against classical regularized estimators: W, = argmin,, ||y — Xw||” + A||w||}

.. —~ —~ 2
Performance measure: prediction error E,_y ;) ((x, W —w*))* = ||w — W*||

(Similar bounds also hold for max-£,-margin classification W = argmin,, ||W||p s.t. yi{x;,w) = 1Vi) 11



Varying inductive bias strength via p € [1,2]

Min-£,-norm interpolation W = argmin,, ||W||p s.t.y = Xw

a

Focus so far of the
«— benign overfitting”

literature

no inductive bias
towards sparsity

strong inductive bias
towards sparsity p=1 p=2

Goal today: populate for p < 2 with high-dimensional tight non-asymptotic rates




an analyze |
c\osed form- _golution®

Weak inductive bias: p = 2 (prior work)

Interpolators W = argmin,, ||W|| s.t.y = Xw vs. Regularized estimator: w; = ||y XW|| + A|IWI|
Linear model y; = (w*, x;) + & with i.i.d. x; ~ N(0,1), some &; ~ N(0,02)

— Interpolating
--- Regularized

MSE ||@ — w*||;

5 s
y =d/n

@ “second” descent 7



Weak inductive bias: p = 2 (prior work)
Interpolators W = argmin,, ||W||2 s.t.y = Xw vs. Regularized estimator: w; = ||y — XW||2 + A||Wl|z

— MSE
Bias
Variance

Linear model y; = (w*, x;) + & with i.i.d. x; ~ N(0,1), some &; ~ N(0,02)

— Interpolating
--- Regularized

Variance

2
y =d/n

MSE ||@ — w*||;

; |
: L . d : T .
Increasing overparameterization via — decreases variance (“implicitly regularizing”)

*consistent only for very spiked covariance £ [HMRT'19, MM'19, BLLT "19, MVSS '20] % in practice X is fixed!



Weak inductive bias: p = 2 (prior work)

Interpolators W = argmin,, ||W||2 s.t.y = Xw vs. Regularized estimator: w; = ||y — XW||2 + A|IWI|§
Linear model y; = (w*, x;) + & with i.i.d. x; ~ N(0,1), some &; ~ N(0,02)

—MSE
—— Interpolating Bias
NN ---Regularized Variance
_4<_
2
I
=
L
wn
=

Bayes error

For isotropic Gaussians, ||Ww — W*||2 > ¢ > 0forany 8 > 1(d = nf)even asn — o due to high bias!

*consistent only for very spiked covariance £ [HMRT'19, MM'19, BLLT "19, MVSS '20] % in practice X is fixed!



Weak inductive bias: p = 2 (prior work)
Interpolators W = argmin,, ||W||2 s.t.y = Xw vs. Regularized estimator: w; = ||y — XW||2 + A|IWI|2

— MSE
Bias
Variance

Linear model y; = (w*, x;) + & with i.i.d. x; ~ N(0,1), some &; ~ N(0,02)

— Interpolating
---Regularized

Bayes error

4
\
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2
y =d/n

/
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1 2 y=3d/n 4
@ second descent / @ harmless interpolation 4 @good generalizationx

*consistent only for very spiked covariance £ [HMRT'19, MM'19, BLLT "19, MVSS '20] % in practice X is fixed!

MSE ||@ — w*||;




Varying inductive bias strength via p € [1,2]

Min-£,-norm interpolation W = argmin,, ||w||p s.t.y = Xw

a

test error =——> ©

U TrSt Focus so far of the
results T . oy tthe
- variance — bemgn overfitting
literature

statistical bias

strong inductive bias no inductive b?as

towards sparsity p=1 p=2 towards sparsity

\ Y, \
Y

no closed-form solution! has closed-form

M n M n
- technlqu.e' aufroma‘ucally solution
yields classification results




Benetfits of strong inductive bias p = 1 (classical)

Corresponding weak (no) inductive bias: encouraging small ||W||2 norm

Matching strong inductive bias : small ||W||O/||W||1 norm encouraging sparsity structure

Noiseless Basi . _ _y Perfect recovery
y = Xw asis pursuit: argmin,, [|lwl| s.t. y = Xw w.h.p. for n~s log d
‘ when observations are noisy
Estimation error
Noisy ) . (s log d)
. : _ minimax rate O
= Xw* + & Lasso: argminy, ||y — Xw|[3 + |Iw|,

for optimal A

Open problem: How much does min-#;-norm interpolation suffer when forced to fit noise?




Strong inductive bias: p = 1 (consistent but slow)

Previous non-asymptotic bounds for the i.i.d. noise case:

Q (02/10g (%)) lower bounds [MVSS "19] 4 0(c?) upper bounds [KZSS 21, CLG '20]

(who studied adversarial, vanishing noise)

Theorem [WDY' 21](simplified) - Tight bounds for min-#;-norm interpolators

There exists a universal constant ¢ > 0, s.t. wheneverd =nf with > 1,n > cw.h.p.

2 2
log (d/n) log3/2 (d/n)

The proof is based on localized uniform convergence and CGMT [KZSS "21]
- who however don’t show tight bounds and hence don't prove consistency



Strong inductive bias: p = 1 (consistent but slow)

Theorem [WDY' 21](simplified) - Tight bounds for min-#;-norm interpolators

There exists a universal constant ¢ > 0, s.t. wheneverd = nf with g > 1,n>cw.h.p.

2
o= =

o2 o2
log (d/n) 0 <log3’/2 (d/n))

*in [DRSY 22]

Lo
Normal
‘\ Log Normal
r \: Rademacher
\
\&
NG |
S,
~ 3 s
~ \.\ ! [ ]
~_ i J\ g &
15 2.0 25 3.0 35 40
log(d/n)

* Thisis alower & upper bound for Gaussian X

* Experimentally, the bound is also tight beyond

Gaussian X, but hard to show!

Note: The same bound holds for classification

20



Strong inductive bias: p = 1 (consistent but slow)

Theorem [WDY' 21](simplified) - Tight bounds for min-£1-norm interpolators

There exists a universal constant ¢ > 0, s.t. wheneverd =nf with g > 1,n>cw.h.p.

2 2

W —w|* = —2 i

~ (B-Dlogn + 0(((3_1) BE n)3/2) (plugging in d,n relation)

@ second descent / @ harmless interpolation ! @good generalization j

Yes! Variance decreases, No! Variance too large! Consistent but

1
similar intuition as forp = 2 Interpolator (log n) still slow rate!
slogn)
n

vs. regularized 0(

21



So far: Interpolators are poorforp =1, 2

Min-£,-norm interpolation W = argmin,, ||W||p s.t.y = Xw

a

Our first o +—— testerror — > Focus so far of the
results T 1, *| .— "benign overfitting”

\ variance literature

statistical bias

p=2 no inductive bias

strong inductive bias p=1 :
1 ) rate ®(1)  towards sparsity

towards sparsity rate © (

— no harmless interpolation! — but harmless interpolation!



Higher noise sensitivity for p = 1 (synthetic)

For p = 1, variance and “sensitivity to noise” larger than forp = 2

— increasing d vs. n does not regularize enough even though it has relatively small bias.

min — ¢, — norm (basis pursuit) ! 0 e
NN ¢ min — ¢, — norm o -~
—-— 3 — o) |
,(E - e et 0.8
~ ()
| 2 &> - - 0.61 .
: e ‘ 9 --- Noiseless MSE
— e © 0.4 ! —— Noisy MSE
f— . T . /
E/J) 1 %**@‘ﬁ - @ g /II Bias
Z o 0.21 Y2 EITTLR Variance
> el w e
0 _? Tl Tt e
0 2 4 6 8 10 12 0.0{ ---f--- ’ '
o’ 1.0 1.2 1.4 1.6 1.8 2.0
p
for d = 20000,n = 400 for d = 5000, 1 = 100

Trade-off between bias and variance for interpolators via strength of inductive bias!

23



So far: Interpolators are poorforp =1, 2

Min-£,-norm interpolation W = argmin,, ||W||p s.t.y = Xw

a
Our first Focus so far of the
resultss 7|, «— benign overfitting”
literature
strong inductive bias p=1 p=2 no inductive bias
. 1
towards sparsity rate © (logn) rate ®(1)  towards sparsity

— no harmless interpolation! = but harmless interpolation!



So far: Interpolators are poorforp =1, 2

constant 0.0

—0.2 A
(o]
-+
&
s Q -0.41
1
3 X
o —0.61
9
v ©
—
—0.81
rate— —-1.0

Evaluate MSE ||w — W*||2 ~ 0(n%)

with rate exponent a

minimax optimal rate, e.g. for (best)

regularized estimator with p = 1 (LASSO)

W, —w*|['= 8(nY) - a = -1

Interpolators with p = 1, 2:

||vT/—W*||2= (1) > a=0

How close can we gettoa = —1
with £,-norm interpolators with p € (1,2)?

25




Medium inductive bias: Fast rates with p € (1,2)

Theorem [DRSY' 22] (informal) - Upper & lower bounds for min-£,-norm interpolators

better

Ford =nf withl1<p <

p

2 and min-£,-norm interpolators with 1 < p < 2 and n large enough,
1

we obtain with high probability, error rates of order ®(n~%) with « as in graph below

constant 0.04 7"
S o2
)
c
O
C 0.4
(e}
o |\ N P Minimax rate
& o061 —— p=1.01
o i
v E 0.8 —— p=1.4
--- p=1land2
s >
rate — 104 o A
n - - - T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0

degree of overparameterization 8

» order-matching upper & lower bounds

« forfixed B, some p > 1 close to 1 gets best rate

« forpB = 2, rates close to ® (%)

Note: technique applies to classification (see paper)
and allows extension to X # I and s-sparse w*

26



Medium inductive bias: Fast rates with p € (1,2)

better

Theorem [DRSY' 22] (informal) - Upper & lower bounds for min-£,-norm interpolators

Ford =nf with1<p < P2 and min-£,-norm interpolators with 1 < p < 2 and n large enough,
1

we obtain with high probability, error rates of order O(n~%) with a as in graph below

constant 0.04
S 02 @ second descent 4
E . —
(&)
C 04
g
X oo @ harmless mterpolahon‘
q) /
Q@
A\ 4 o
~ 0.8
neralization
rate1—1 1.0 @ gOOd generalizatio J

1.0 15 2.0 25 30 35 4.0

degree of overparameterization 8

27/



Fast rates with p € (1,2) - caveat...

Theorem [DRSY' 22] (informal) - Upper & lower bounds for min-£,-norm interpolators

Ford =nf with1<p < P2 and min-£,-norm interpolators with 1 < p < 2 and n large enough,
1

we obtain with high probability, error rates of order O(n~%) with a as in graph below

constant 0.04
Caveat:

5 0.2 " n M
. E « “Large enough” actually requires
8 8 0.4 / 1
4+
(] c |\  \N A Minimax rate S p —_ 1 g Very |arge d
0 & o061 —— p=1.01 loglogd
) —o— p=1.1 .
v ® = pmi2 * Only holds for Gaussians
“ 08 —— p=1.4
--- p=1land2
rate 1—1 1.0 e
Lo 1520025 30 35 40 m) cannot obtain best p for given

degree of overparameterization 8
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Experimental results for classification (real-world)

Experimental results: hard-£,-margin SVM for o: proportion of random label flips

50% 1
16%1 —+»—o=0.0 o— 0 =0.05 oc=0.1
40% 13%
5 5 12%]
= 30% o 10%1 _
— ~ - -0 d
- L 8% . o
£ o o oo
20%1
’ 6% | W
10% 4%
10 12 14 16 18 20 10 12 14 16 1.8 2.0
p p
Synthetic experiment: Real-world experiment:
Isotropic Gaussians with d ~ 5000,n ~ 100 Leukemia dataset with d ~ 7000,n ~ 70

Strong ind. bias best to interpolate noiseless data, medium ind. bias best to interpolate noisy data!

29



Conclusions for full picture p € [1, 2]

W = argmin,, ||w||p s.t.y = Xw

test error

\

statistical
bias

rate @( ! ) rate O (n—la) rate ©(1)

p = 1 (strongest bias) best for noiseless interpolation
p =1+ € (medium bias) best for noisy interpolation!

Concrete non-asymptotic rates that show for
medium-strength inductive bias:

@ second descent l

@ harmless interpolation J
@ good generalization J
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Analogous phenomenon for non-linear models?

Part Il: not yet published

Kernel interpolators: Neural networks:
filter size for convolutional models

rotational invariance

Tight bounds for the risk Controlled experiments

@ second descent @ harmless interpolation @ good generalization



Nonlinear structure: Filter size of convolutional kernels

« Convolutional kernel with filter size g:

d
o consider patches {x,(cq)}k of size q of vector x € R?
1

@, Zl(cq)>>

. . 1
o and average of nonlinear function over these patches K (x,z) = EZ?zlk << -

x ~ U{—1,1}%) and y = f*(x) + g€ with Gaussian € ~ N(0,1) and consider f*(x) = x ... x;+

High-dimensional kernel learning: n € ©(d?), 02 € ©(d~%7) and q € 0(d") with £, 45,y = 0

Interpolator: min ||f||H s.t. Vi: f(x;) = y; vs.ridge regularized: min ||y - f(x{‘)||§ + /1||f||121
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Nonlinear structure: Filter size of convolutional kernels

Theorem [AMDY' 22] (informal) - Upper & lower bounds for high-dim kernel learning

Forn € ©(d?),a% € 8(d %), g € ©(d"), 2 € ©(d**) or 1 - 0 w.h.p., we obtain tight bounds

—tg—t ) 2 . N .
Var(fy) € (;)(naTA_%mln 01-8}y 3nd Bias? (1) € O(n2 n A YD)y ith § = ¢ {;" U _ l({} {;’1 DJ

yielding prediction error rates of order O(n~%) with a as in graph below for fixed 2, 23, £,

R Harmless B variance -

- 1 interoplation .

= 1i | s 2 / %

S | interpolator o P

§ _%L / -0.35 . ”"/’

(] ’/’

(] /z’ \

B - 1 g bias

S 0.35 A _ sl

9 b - /’,’

o _0.45 —————7 09— —————
01y st filter size g € ©(dY) 1 0.1 y s.t. filter size g € O(dY) 1

Prior work: [LRZ "19] showed multiple descent as a function of overparameterization
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Fitting noise is necessary for weak inductive bias

«  X(¢,¢,,7) minimizes population risk forn € 0(d*), % € 0(d~*7), ¢ € O(d")

—

« y*:filter size exponent at which bias = variance

medium inductive bias)

= 107 . @ 100% - _
3 i Y 2 £ noisy subset
g interpolator qc) §' of train. set on CNN
5 ® / & synthetic
8 — 5 > ,
s 2 5 image data
0]
% - 2 °
S 0.35 - z 8
§ ' J| \O/ 0% lllllll Frrrrrrrt [ffrrrrrT 1
o _0.45 - 5 13 22 31
0.1 y s.t. filter size q € 0(dY) 1 filter size

Theorem [AMDY' 22] (informal) - Training error for optimally regularized model

It holds for A* (¢, ¢,,v) that E. [%Z?:l(fa*(xi) — yl-)z] - 1,02 witht, =1if

14

“land 7, < 1ifly > y*

o : o .__stron
— any noise fitting harmful for strong inductive bias vs. some noise AN

in
o)

<

|4
%tlk?ﬁaas | for wekSRNINGi0i8 as
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Nonlinear structure: Filter size of convolutional NN

interpolating: -= 0% noise — 20% noise

. Synthetic image dataset opt. early-stopped: 0% noise 20% noise
) . 45% - Harmiess 4

allowing controlled experiments . ) /

9 P interpolation

where ground truth has small filter size

interpolator

10% - /
8%
0% = rTrrrrrri I LI |7| 7| Vﬁl LI I LI L L L L I

5) 13 22 31
filter size

32 32

test error

0 32

* simple NN with one convolutional layer

Al strongest inductive bias (smallest filter size) best for noiseless case, slightly weaker best for noisy

B | harmless interpolation only for weak inductive bias!

o
J1



Nonlinear structure: Rotational invariance for WideResNet

+ Satellite images (EuroSAT) to be interpolating: == 0% noise — 20% noise
classified in terms of type of land usage opt. early-stopped: 0% noise — 20% noise
17% - . Harmles;
mterpolatlon\\%
5 12% - £/
(0]
e 8% 7]
()
-‘J "/
3% q-==—=——===m=—m==—======T
O% T 1 ! 1
12 4 1

» strength of rotational invariance via
"amount of” data augmentation

## rotations

Al strongest inductive bias (largest # rotations) best for noiseless case, slightly weaker best for noisy

B | harmless interpolation only for weak inductive bias!




Take-aways... error i models
data fit perfectly fit
noisy data
test error strength of

training error

inductive bias

model size /
overparameterization

A

\

Interpolator can generalize well when

Our theorems: increasing inductive bias
while interpolating
decreases bias, increases variance!

known (noiseless case):
there is strong inductive bias
towards simple structure
matching optimal model.

A

test error —»

variance ———»

new (noisy case):

statistical bias \
there is some but not too much

interpolation
can do well

v

inductive bias training error—»

increasing inductive bias (via structure)
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Open questions

For linear

» Technical: Going beyond Gaussians - seems surprisingly difficult
For non-linear:

» Technical: going beyond toy covariate distributions (or toy kernels)

* Proof for neural networks?

« Experimental: What are other natural structural biases & datasets for NN

one could test our hypothesis on?
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Papers discussed in the talk

_/'"\_ SML group: sml.inf.ethz.ch
parks!
SO

Wang*, Donhauser*, Yang “Tight bounds for minimum [1-norm

interpolation of noisy data”, AISTATS '22

Stojanovic, Donhauser, Yang “Tight bounds for maximum €1-margin

classifiers”, arxiv preprint

Donhauser, Ruggeri, Stojanovic, Yang “Fast rates for noisy interpolation

require rethinking the effects of inductive bias”, ICML '22

Aerni*, Milanta*, Donhauser, Yang “Strong inductive biases provably

prevent harmless interpolation”, hopefully ICLR '23...
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Clean theorem statement for min—fp

Theorem 1. Let the data distribution be as described in Section 2.1 and assume that o < 1. Further,
let q be such that %—i—% = 1. Then there exist universal constants k1, ko, K3, K4, K5, K¢, k7 > 0 such that

for any n > k1 and any p € (1 - ﬁfg(—d)J) and nlog(n)* < d < n?2log(n) "4, the estimation
error of the min-£,-norm interpolator 1 is upper and lower bounded by
4—2p p 2p—2 2 4—-2p p 2p—2 2
o qPd Y o‘n < qPd

<
np d ~Y RR (w) ~J np qd ’ (2)

with probability at least 1 — kgd™"7 over the draws of the data set.

Theorem 4. Let the data distribution be as described in Section 3.1 and assume that the noise
model P, is independent of n,d and p. Let q be such that % + % = 1. There exist universal
constants K1, Ko, K3, K4, K5, Kg, K7 > 0 such that for any n > Kk, any p € (1 + logl'f)—"ig(d)ﬂ) and any

nlog™(n) $d < %, the prediction error of the maz-£,-norm interpolator 4 is upper bounded
by

log3/2(d)q2Pd3p—3 log™s (d
Re(o) g 8 DETET, nexblead)  Jog(d) ©)
n2 q n

with probability at least 1 — kgd™"" over the draws of the data set.
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