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NOVEL CLASSES AS OOD DATA

Problem: Classifier predictions are incorrect on novel classes.
— Flag data from unseen classes as out-of-distribution (OOD).
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— Novel classes are often similar to in-distribution (ID) classes
= difficult to distinguish ID and OOD data.

Existing OOD detection methods (assuming different access to
OOQOD data) perform poorly on novel-class detection.

OUR SETTING
Available data:

> Labeled set with ID samples.
— e.g. the training set for the prediction task.

> Unlabeled set with unknown mixture of ID and OOD data.
— e.g. hospital collects all X-rays performed during the day.

Unknown OOD setting:

®/® Labeled set S; % Unlabeled set U
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Unknown OOD setting

Previous methods that employ the Unknown OOD setting
(e.g. nnPU, MCD) fail to leverage unlabeled data effectively.

OUR APPROACH

Idea: Train an Ensemble w/ Regularized Disagreement.

[-f- Labeled set S: % c-labeled (U, c)

Algorithm 1: Fine-tuning the ERD ensemble
(Uoop; ¢)

Input : Train set .S, Validation set V', Unlabeled set U,
— |-.

Weights W pretrained on S, Ensemble size K ‘xl o
Result: ERD ensemble { f,, }/=, - 5"‘ ,
Sample K different labels {1, ..., yx } from Y [P
for c + {y1,...,yx} do // fine-tune K models

fe « Initialize(W)
(U,c) + {(z,c) :x € U}
fe « FinetuneWithEarlyStopping (f., S U (U, c); V

return { fy, }i=

g (U, )
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Subsets of the c-labeled U

At test time:

» For a test sample x, use outputs fi(z), ..., fr(x) to compute
the average pairwise disagreement score (details later).

— Flag as OOD samples with score larger than threshold 7.

EXPERIMENTS

Easy OOD: SVHN vs CIFAR10, CIFAR10 vs SVHN etc
Novel class OOD: CIFAR100[0-49] vs CIFAR100[50-99] etc

Evaluation metric: TNR at a TPR of 95%.
— TNR = correctly identified ID; TPR = correctly flagged OOD.
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Our approach makes use of two key ingredients:

1. regularization
2. a suitable score for OOD detection.

KEY 1: ROLE OF REGULARIZATION

Goal: Prevent complex models from interpolating on SU(U, ¢).

‘ ®/® Labeled set S; /% Predicted label: % Identified as OOD

ERD - good func. complexity

ERD - large func. complexity

Advantages of early stopping:

> We prove that there exists an optimal stopping time at
which every model predicts: (1) the correct label on ID data;
and (2) the arbitrary label on the OOD unlabeled data.

» Efficient model selection (requires only one training run).

KEY 2: ENSEMBLE DISAGREEMENT SCORE

Prior work: Entropy of average predictor (H o Avg).
Our average pairwise disagreement score:
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— e.g. p = total variation distance

» Unlike (H o Avg), our score exploits ensemble diversity.
= lower FPR at the same TPR
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