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Motivation
• Large overparameterized models: regularization is not necessary for good generalization

• Even when training data is noisy

• Inspired a new line of research studying simple high-dimensional interpolators 

Counter-intuitive from a classical statistical viewpoint
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Setting: High-dimensional linear models 𝑓 𝑥 = 𝑤!𝑥

Interpolators:

for p ∈ [1,2]

Regression:

,𝑤 = argmin" 𝑤
#
𝑠. 𝑡. 𝑦 = 𝑋𝑤

Classification:

,𝑤 = argmin$ 𝑤 # 𝑠. 𝑡. 𝑦% 𝑥% , 𝑤 ≥ 1 ∀𝑖

Counter-intuitive from a classical statistical viewpoint
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Data distribution for regression

Data model: 𝑛 samples 𝑥% , 𝑦% with

• 𝑦% = ⟨𝑤⋆, 𝑥%⟩ + 𝜉% with 𝑥% ∼ 𝑁(0, 𝐼' )

• structured (sparse) ground truth

𝑤⋆ = (1,0, … , 0)

• 𝑑 ≍ 𝑛( with 𝛽 > 1 and 𝑛 large enough
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• 𝑦% = ⟨𝑤⋆, 𝑥%⟩ + 𝜉% with 𝑥% ∼ 𝑁(0, 𝐼' )

• structured (sparse) ground truth

𝑤⋆ = (1,0, … , 0)

• 𝑑 ≍ 𝑛( with 𝛽 > 1 and 𝑛 large enough

𝛽: 𝑑 ≍ 𝑛(

ra
te

 α
:

,𝑤
−
𝑤
⋆

)
∼
N Θ(
𝑛*
)
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Prior work: Slow rates for 𝑝 = 1 or 𝑝 = 2

rate !"
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𝛽: 𝑑 ≍ 𝑛(

constant • Interpolators with 𝑝 = 1, 2:

,𝑤 − 𝑤⋆ )= NΘ 1 → 𝛼 = 0
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𝛽: 𝑑 ≍ 𝑛(

constant • Interpolators with 𝑝 = 1, 2:

,𝑤 − 𝑤⋆ )= NΘ 1 → 𝛼 = 0

• minimax optimal rate (e.g., ℓ+-norm 

regularized estimator LASSO) 

,𝑤 − 𝑤⋆ )
= NΘ 𝑛,+ → 𝛼 = −1
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Prior work: Slow rates for 𝑝 = 1 or 𝑝 = 2

rate !"
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𝛽: 𝑑 ≍ 𝑛(

constant • Interpolators with 𝑝 = 1, 2:

,𝑤 − 𝑤⋆ )= NΘ 1 → 𝛼 = 0

• minimax optimal rate (e.g., ℓ+-norm 

regularized estimator LASSO) 

,𝑤 − 𝑤⋆ )
= NΘ 𝑛,+ → 𝛼 = 1

Interpolators have far from optimal
prediction performance?

ra
te

 α
:

,𝑤
−
𝑤
⋆

)
∼
N Θ(
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This paper: Fast rates for 𝑝 ∈ 1,2

Main Theorem: non-asymptotic 

upper and lower bounds for 𝑝 ∈ 1,2
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• 𝑝 = 1.1 → ,𝑤 − 𝑤⋆ )
≈ 𝑛,-./

• 𝑝 = 1.01 → ,𝑤 − 𝑤⋆ )
≈ 𝑛,+

rate !"

be
tte
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𝛽: 𝑑 ≍ 𝑛(

constant

Can achieve rates even close to the 
minimax lower bound U𝑂 𝑛,+
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𝛽: 𝑑 ≍ 𝑛(

constant

Similar results also hold for classification 

ra
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Thanks for listening! 

We are looking forward to seeing you at
the poster #1109


