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PHENOMENON 1: DOUBLE DESCENT

Observed empirically for neural networks and theoretically
e.g. for highly overparameterized (d� n) linear models [1].
I Regularization does not improve generalization, com-

pared to interpolating the training data.

I Overparameterization implicitly controls the variance.

→ Regularization is redundant.

PHENOMENON 2: ROBUST OVERFITTING

Observed empirically for neural networks on image data [2].
I Robust generalization benefits greatly from regularization.
I Prior work has attributed this phenomenon to:

– noise in the training data

– non-smooth predictors

Does robust overfitting occur on noiseless data?

Does this provably happen even for linear models?

ROBUST LINEAR REGRESSION

Ridge regularization avoids the min-norm interpolator.
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I The lowest robust risks are not obtained by the min-norm
interpolators, but by the regularized estimators.

– holds true even for noiseless data!

ROBUST LINEAR CLASSIFICATION
I Evaluation with the robust risk wrt `∞-perturbations:

Rε(θ) := EX∼P max
δ∈Uc(ε)

1sgn(〈θ,X+δ〉)6=sgn(〈θ?,X〉)

I We use adversarial training to obtain a robust estimator:

θ̂λ := argmin
θ

1

n

n∑
i=1

max
δ∈Uc(ε)

`(〈θ, xi + δ〉yi) + λ‖θ‖22.

I For λ→ 0, it maximizes the robust margin of the data:

θ̂0 := argmin
θ
‖θ‖2 such that for all i, max

δ∈Uc(ε)
yi〈θ, xi+δ〉 ≥ 1.

THEORETICAL RESULT FOR CLASSIFICATION

Problem setting:
I Data model: covariates x ∼ N (0, Id), deterministic labels

given by y = sgn〈θ?, x〉 ∈ {−1,+1}. → Noiseless data!
I We consider linear classifiers trained with the logistic loss.

Theorem. For a sparse ground truth, we derive the limitRλ(ε, γ)
of the robust risk as d, n→∞ and d/n→ γ:

Rε(θ̂λ)
prob−→ Rλ(ε, γ)

In particular, for some λopt > 0: Rλopt(ε, γ)︸ ︷︷ ︸
regularized

< lim
λ→0
Rλ(ε, γ)︸ ︷︷ ︸

interpolating

.

Lines: asymptotic risks (theory)
Markers: risks for finite d, n (simulations)

I Ridge regularization avoids the max-margin estimator.

OTHER WAYS TO AVOID θ̂0
1. Early stopping avoids the max-margin estimator and

achieves a lower robust risk.

102 103 104 105

Iteration

−0.2

0.0

0.2
Standard risk
Robust risk
Normalized
robust margin

2. Adding artificial label noise prevents a vanishing training
loss and avoids the max-margin estimator.

Surprising consequence: Smaller robust risk, compared
to the max-margin interpolator of the original clean data.
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Remark: Regularization still leads to smaller robust risk,
even in the presence of noise.
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