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PHENOMENON 1: DOUBLE DESCENT

Observed empirically for neural networks and theoretically
e.g. for highly overparameterized (d > n) linear models [1].

» Regularization does not improve generalization, com-
pared to interpolating the training data.

> Overparameterization implicitly controls the variance.

— Regularization is redundant.

PHENOMENON 2: ROBUST OVERFITTING

Observed empirically for neural networks on image data [2].
> Robust generalization benetfits greatly from regularization.

> Prior work has attributed this phenomenon to:
— noise in the training data

— non-smooth predictors

ROBUST LINEAR REGRESSION

Ridge regularization avoids the min-norm interpolator.

— Standard, interpolating
—= Standard, regularized (opt.)

Robust, interpolating
Robust, regularized (opt.)

Population risk
Population risk

d/n d/n
Noisy observations Noiseless observations

The lowest robust risks are not obtained by the min-norm
interpolators, but by the regularized estimators.

— holds true even for noiseless data!

ROBUST LINEAR CLASSIFICATION

> BEvaluation with the robust risk wrt /. -perturbations:

= Ex.p 52212%2) Lsan((0, X +6))£sen((0*, X))

» We use adversarial training to obtain a robust estimator:
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» For A — 0, it maximizes the robust margin of the data:

Ao := argmmHé’Hg such that for all 7, 511}/{&:(5{)@/ (0, x;40) >
cU. (€

THEORETICAL RESULT FOR CLASSIFICATION

Problem setting:

> Data model: covariates x ~ N (0, I;), deterministic labels
given by y = sgn(0*,z) € {—1,41}. — Noiseless data!

> We consider linear classifiers trained with the logistic loss.

Theorem. For a sparse ground truth, we derive the limit R » (e, )

of the robust risk as d,n — oo and d/n — ~:
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In particular, for some Aopr > 0: Ry, (€,77) < lim Ry (€,7).
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» Ridge regularization avoids the max-margin estimator.

OTHER WAYS TO AVOID 6

1. Early stopping avoids the max-margin estimator and
achieves a lower robust risk.
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2. Adding artificial label noise prevents a vanishing training
loss and avoids the max-margin estimator.

Surprising consequence: Smaller robust risk, compared
to the max-margin interpolator of the original clean data.
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Remark: Regularization still leads to smaller robust risk,
even in the presence of noise.
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