
GML Fall 25, Homework 1: Concentration bounds

1 Optional Warm-up: Optimality of polynomial Markov

Chernoff’s bound is obtained via Markov’s inequality. In this question, we show that Markov’s inequality is
actually tight, and that the k-th moment Markov bounds are in fact never worse than the Chernoff bound based
on the moment generating function.

(a) Find a non-negative random variable X for which Markov’s inequality is met with equality.

(b) Suppose that X ≥ 0 and that EeλX exists in an interval around zero. Given some δ > 0, show that

inf
k=0,1,...

E[Xk]

δk
≤ inf

λ>0

E[eλX ]

eλδ
.

Solution

(a) Let a ≥ 0, and consider a random variable X on [0,∞) with the distribution PX(A) = δa(A) = 1{a∈A},
i.e., X = a with probability 1. Then E[X] = a, P(X ≥ a) = 1 and thus we have

1 = P (X ≥ a) ≤ E [X]

a
=

a

a
= 1.

(b) We suppose that for λ ∈ (−∆,∆), the expectation E
[
eλX

]
exists. Given a λ ∈ (−∆,∆), we write

E
[
eλX

]
= E

∑
k≥0

λkXk

k!

 =
∑
k≥0

λkE
[
Xk
]

k!
,

where we have used the Fubini-Tonelli theorem in the case of nonnegative measurable functions. We
rewrite

E
[
Xk
]
=

δkE
[
Xk
]

δk
≥ δk inf

k′≥0

E
[
Xk′

]
δk′ ,

and thus,

E
[
eλX

]
=

λkE
[
Xk
]

k!
≥ inf

k′≥0

E
[
Xk′

]
δk′

∑
k≥0

λkδk

k!
= inf

k′≥0

E
[
Xk′

]
δk′ eλδ.

Dividing by eλδ and taking the infimum over λ yields the inequality.

2 Concentration and kernel density estimation

Let {Xi}ni=1 be an i.i.d. sequence of random variables drawn from a density f on the real line. A standard
estimate of f is the kernel density estimate:

fn(x) :=
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where K : R → [0,∞) is a kernel function satisfying
∫∞
−∞ K(t) dt = 1, and h > 0 is a bandwidth parameter.

Suppose that we assess the quality of fn using the L1-norm, which is defined as ∥fn−f∥1 :=
∫∞
−∞ |fn(t)−f(t)| dt.

Prove that

P
[
∥fn − f∥1 ≥ E[∥fn − f∥1] + δ

]
≤ e−

nδ2

2 .
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Solution

We write the i.i.d. random variables (X1, ..., Xn) as a random vector and define the function

g(X1, ..., Xn) = ∥f − fn(X1, ..., Xn)∥1.

We show that g satisfies the bounded differences property with L = 2
n : For x = (x1, ..., xn) ∈ Rn and k ∈ [n],

define xk by xk
i = xi if i ̸= k, and xk

k = y, where y ∈ R. We calculate

|g(x)− g(xk)| = |∥f − fn(x)∥1 − ∥f − fn(x
k)∥1| ≤ ∥fn(x)− fn(x

k)∥1

=
1

nh

∫ ∣∣∣∣∣K
(
t− xk

h

)
−K

(
t− y

h

)∣∣∣∣∣ dt
≤ 1

n

(∫
K(u− xk/h)du+

∫
K(u′ − y/h)du′

)
≤ 2

n
.

Thus, by the (one-sided) bounded differences inequality (Corollary 2.21 in MW), we obtain

P
(
∥f − fn∥1 ≥ E

[
∥f − fn∥1

]
+ δ
)
≤ e

−2δ2

n 4
n2 = e−

nδ2

2 .

3 Sub-Gaussian maxima

In this exercise, we prove an inequality used repeatedly in later lectures. Let {Xi}ni=1 be a sequence of zero-
mean random variables, each sub-Gaussian with parameter σ. The random variables Xi are not assumed to be
independent.

(a) Prove that for all n ≥ 1 we have

E max
i=1,...,n

Xi ≤
√
2σ2 log n.

Hint: the exponential is a convex function.

(b) Prove that for all n ≥ 2 we have

E max
i=1,...,n

|Xi| ≤
√
2σ2 log(2n) ≤ 2

√
σ2 log n.

Solution

(a) We consider the moment generating function of maxi∈[n] Xi. Since exp(λ ·) is a convex function, we utilize
Jensen’s inequality to obtain

exp

λE

[
max
i∈[n]

Xi

] ≤ E

exp(λmax
i∈[n]

Xi

) .

We can interchange exp and max to obtain

E

exp(λmax
i∈[n]

Xi

) = E

[
max
i∈[n]

eλXi

]
≤ E

 n∑
i=1

eλXi

 =

n∑
i=1

E
[
eλXi

]
≤ neλ

2σ2/2,

using the sub-Gaussianity of the i.i.d. variables. In total, we have

exp

λE

[
max
i∈[n]

Xi

] ≤ neλ
2σ2/2.

Solving for E
[
maxi∈[n] Xi

]
, we get

E

[
max
i∈[n]

Xi

]
≤ 1

λ
(log(n) + λ2σ2/2) =

log(n)

λ
+ λσ2/2.

This expression is minimized for λ∗ =
√
2 logn
σ , where it achieves the value

√
2σ2 log n.
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(b) We have
max
i∈[n]
|Xi| = max

i∈[n]
max{−Xi, Xi} = max{−X1, X1, ...,−Xn, Xn},

which is a maximum over 2n sub-Gaussian random variables. Thus, we have by (a)

E

[
max
i∈[n]
|Xi|

]
≤
√

2σ2 log 2n =
√
2σ2(log n+ log 2) ≤

√
2σ22 logn = 2

√
σ2 log n,

where we have used n ≥ 2.

4 Sharper tail bounds for bounded variables: Bennett’s inequality

Read MW Section 2.1.3, and learn about sub-exponential tail bounds and Bernstein’s inequality, which yields
some more tail bounds for empirical means of random variables satisfying conditions other than the sub-Gaussian
tails. Bernstein’s inequality is sometimes tighter for bounded variables than applying the sub-Gaussian bound.
In this problem, we prove an even tighter bound for bounded variables, known as Bennett’s inequality.

(a) Consider a zero-mean random variable such that |Xi| ≤ b for some b > 0. Prove that

logEeλXi ≤ σ2
i

eλb − 1− λb

b2

for all λ ≥ 0, where σ2
i = Var(Xi).

(b) Given independent random variables X1, . . . , Xn satisfying the condition of part (a), let σ2 := 1
n

∑n
i=1 σ

2
i

be the average variance. Prove Bennett’s inequality, which states that for all δ > 0,

P

 1

n

n∑
i=1

Xi ≥ δ

 ≤ e−
nσ2

b2
h
(

bδ
σ2

)
where h(t) := (1 + t) log(1 + t)− t for t ≥ 0.

(c) Bonus: Show that Bennett’s inequality is at least as good as Bernstein’s inequality.

Solution

(a) First, note that the function f(x) = ex−1−x
x2 is positive and monotonically increasing over x ≥ 0, which is

easy to verify by expanding ex . Therefore, f(λXi) is bounded by f(λb), where we use that λ ≥ 0. We
can write:

EeλXi = E
∞∑
k=0

(λXi)
k

k!
= 1 + λ EXi︸︷︷︸

=0(zero mean)

+E

(
λ2X2

i

eλXi − 1− λXi

(λXi)2︸ ︷︷ ︸
=f(λXi)

)

≤ 1 + λ2σ2
i f(λb)

⇒ logEeλXi ≤ λ2σ2
i

eλb − 1− λb

(λb)2
≤ σ2

i

b2
(eλb − 1− λb)

where the last line follows from the definition of f and uses the inequality log(1 + x) ≤ x for x ≥ 0.

(b) By monotonicity of the exponential function and Markov’s inequality we can bound P( 1n
∑

i Xi ≥ δ) ≤
E exp(

∑
i

λ
nXi)

exp(λδ) like for Chernoff’s bound. Since this holds for any λ ≥ 0, we ultimately choose the one to

achieve the best (lowest) probability. By independence we have by setting λ← λ
n

E
n∏

i=1

exp(
λ

n
Xi) =

n∏
i=1

E exp(
λ

n
Xi) ≤ exp

nσ2

b2

(
exp

(
bλ

n

)
− 1− bλ/n

) .

Finally, substituting into Markov’s inequality we obtain

P

 1

n

∑
i

Xi ≥ δ

 ≤ exp

nσ2

b2

(
e

bλ
n − 1− bλ

n
− b2λδ

nσ2

) (⋆)
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In order to take the infimum over λ, we differentiate the term w.r.t λ and find that the derivative vanishes
at λ = n

b (log(
bδ
σ2 ) + 1). Plugging it into the right hand side of (⋆) concludes the proof.

(c) Denote A := bt
σ2 and recall the inequalities for the concentration of a single random variable:

Bernstein’s inequality: P[X ≥ t] ≤ exp

(
− t2

2(σ2 + bt)

)

Bennett’s inequality: P[X ≥ t] ≤ exp

(
−σ2

b2
h(A)

)

First, we show that for non-negative A ≥ 0, h(A) ≥ A2

2(A+1) :

h(A) = (1 +A) log(1 +A)−A ≥ A2

2(A+ 1)

⇐⇒ g(A) := 2 log(1 +A)− 2A

A+ 1
− A2

(A+ 1)2
≥ 0

Clearly, g(0) = 0. Hence, the claim follows when showing that g′(A) ≥ 0 for any A ≥ 0:

g′(A) =
2

1 +A
− 2

(1 +A)2
− 2A

(1 +A)3
≥ 0

⇐⇒ 2(A+ 1)2 − 2(A+ 1)− 2A

(1 +A)3
=

2A2

(1 +A)3
≥ 0

Rewriting the exponent of the RHS of Bernstein’s inequality, one can show that it is an upper bound on
the exponent in Bennett’s inequality:

− t2

2(σ2 + bt)
= −σ2

b2

b2t2

σ2

2(σ2 + bt)
= −σ2

b2
btA

2(σ2 + bt)
= −σ2

b2
A

2(σ
2

bt + 1)

= −σ2

b2
A

2( 1
A + 1)

= −σ2

b2
A2

2 + 2A
≥ −σ2

b2
h(A).

5 Sharp upper bounds on binomial tails

Let {Xi}ni=1 be an i.i.d. sequence of Bernoulli variables with parameter α ∈ (0, 1
2 ], and consider the binomial

random variable Zn =
∑n

i=1 Xi. The goal of this exercise is to prove, for any δ ∈ (0, α), a sharp upper bound
on the tail probability P[Zn ≤ δn].

(a) Show that
P [Zn ≤ δn] ≤ e−nD(δ∥α),

where the quantity

D(δ ∥ α) := δ log
δ

α
+ (1− δ) log

1− δ

1− α

is the Kullback–Leibler divergence between the Bernoulli distributions with parameters δ and α, respec-
tively.

(b) Show that the bound from part (a) is strictly better than the Hoeffding bound for all δ ∈ (0, α).

Solution

(a) By Chernoff, we have for λ < 0

P (Zn ≤ δn) ≤
E
[
eλZn

]
eλδn

= e−λδn(αeλ + (1− α))n,

where we have inserted the moment generating function of the binomial distribution. Taking the log of
both sides and setting the derivative of the RHS w.r.t. λ to zero, we obtain

−δ + αeλ

αeλ + 1− α
= 0,
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which yields

λ∗ = log
δ(1− α)

α(1− δ)
= log

(
1− α

1− δ

)
− log

(
α

δ

)
.

Inserting λ∗ in the logarithm of the RHS, we obtain

logP (Zn ≤ δn) ≤ −n
[
λ∗δ − log(αeλ

∗
+ (1− α))

]
= −n

[
(δ − 1) log

(
1− α

1− δ

)
− δ log

(
α

δ

)]
= −nD(δ ∥ α).

(b) Any bounded random variable (X ∈ [a, b]) is sub-Gaussian with parameter at most (b−a)
2 . Thus, Xi are

sub-Gaussian with parameter 1/2. By Hoeffding, we have

P (Zn ≤ δn) = P
(
(Zn − αn) ≤ (δn− αn)

)
≤ exp

(
−n(δ − α)2

)
.

It remains to compare D(δ ∥ α) and (δ − α)2 for δ ∈ (0, α). At δ = α, both functions are zero and their
first derivatives are zero. The second derivative of (δ − α)2 at δ = α is 2, whereas the second derivative
of D(δ ∥ α) at δ = α is 1

α(1−α) , which is larger than 4 for α ∈ (0, 1/2). This yields the claim.

6 Robust estimation of the mean

Suppose we want to estimate the mean µ of a random variable X from a sample X1, · · · , Xn, drawn indepen-
dently from the distribution of X. Assume that the second moment of X exists, so that σ2 = Var(X) <∞. We
want an ϵ-accurate estimate of the mean, i.e., one that falls with probability ≥ 1− δ in the interval [µ− ϵ, µ+ ϵ].

Show that a sample size of N = O
(
log(δ−1)σ

2

ϵ2

)
suffices to compute an ϵ-accurate estimate of the mean with

probability at least 1− δ. Hint: Compute the median of log(δ−1) weak estimates.

Solution

We divide the proof into two steps, where we first construct weak learners that are with probability at least
p > 1

2 an ϵ-accurate estimate of the mean (for simplicity, we can simply choose p = 3/4). In a second step, we
then show that the median of the weak learners is with probability at least 1− δ an ϵ-accurate estimate of the
mean.

Step 1: We begin with the construction of K weak learners µ̂i. For this, we divide the dataset into K parts,
equally large in size NK , and compute the mean µ̂i for each of these subsets. By Chebyshev’s inequality, we
get that

1− p := P(|µ− µ̂i| > ϵ) ≤ σ2

NKϵ2
.

In particular, when choosing NK ≥ 4σ2

ϵ2 , we have that with probability at least p ≥ 3/4, µ̂i is an ϵ-accurate
estimate of the mean.

Step 2: Let µ̃ be the median of the K estimates µ̂i, which are by construction all independent. Furthermore,
define the variables ϕi = 1

{
µ̂i ∈ [µ− ϵ, µ+ ϵ]

}
and S =

∑K
i=1 ϕi. Notice that Eϕi = p, and that S is a Binomial

random variable with K trials and success probability p. Moreover, notice that µ̃ /∈ [µ − ϵ, µ + ϵ] implies that
at least half of the means lie outside of [µ− ϵ, µ+ ϵ], which in turn implies that S < K/2. Hence, we can upper
bound the probability that µ̃ is not an ϵ-accurate estimate of the mean by:

P
(
|µ̃− µ| > ϵ

)
≤ P

 K∑
i=1

ϕi <
K

2

 = P

 K∑
i=1

ϕi − p <
K

2
−Kp

 .

We can now apply Hoeffdings inequality, which gives us

P

 K∑
i=1

ϕi − p <
K

2
−Kp

 ≤ exp

(
−

2(K2 − pK)2∑K
i=1(1− 0)2

)
= exp

(
−2K

(
1

2
− p

)2
)

= δ

where we choose p = 3
4 and K = ⌈8 log(δ−1)⌉. Hence we can conclude the proof, as NK ·K = O(log(δ−1)σ

2

ϵ2 )
samples suffice.
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7 Best-arm identification

We now look at an interesting application of concentration bounds. Assume that we have K newly developed
drugs to cure a disease. Denote with µk ∈ [0, 1] the probability of getting cured by the k-th drug, which
is assumed to be unknown. In order to determine the best drug k⋆ with the highest chance of a successful
treatment µ⋆ = µk⋆ = maxk∈[K] µk, we treat different volunteers in a clinical trial with one drug each and
record the outcome. We model the observation of the outcome on one patient as sampling from a Bernoulli
distribution with parameter µk. We denote with Xk,t ∈ {0, 1} the random variable indicating whether the t-th
volunteer was successfully treated with the k-th drug.

In a randomized control trial, all drugs would have the same probability of getting assigned to any patient
throughout the trial. In this exercise, we want to study an adaptive algorithm that assigns treatment depending
on the outcome of previous treatments. The goal is to assign the drugs in a way such that for some δ ∈ (0, 1),
with probability ≥ 1− δ, the algorithm finds the best drug k⋆ in as few volunteers as possible. This is ethically
more reasonable than assigning a ”bad” drug to patients even when their results are clearly inferior to others
in the trial.

In this exercise, we analyze the following algorithm to solve the problem.

Algorithm 1: Best-arm identification

S0 = {1, · · · ,K} ;
for 1 ≤ t ≤ ∞ do

Pull all arms in St−1 to obtain samples Xk,t ∼ Dk with k ∈ St−1;
Update St = St−1 − {i ∈ St−1 : ∃k ∈ St−1 : µ̂k,t − U(t, δ/K) > µ̂i,t + U(t, δ/K)};
Stop when |St| = 1;

end

Here we denote

• St: The active set of arms at time t.

• µ̂k,t :=
1
t

∑t
i=1 Xk,i: Estimated mean of the reward µk for arm k after t pulls.1

• U(t, δ): An any-time confidence interval, such that for any arm k,

P

 ∞⋃
t=1

{|µ̂k,t − µk| ≥ U(t, δ)}

 ≤ δ.

The goal of this exercise is to prove Theorem 1 where we show that the Successive Elimination algorithm is
correct and derive an upper bound on the maximum amount of steps needed to for the algorithm to terminate.

Theorem 1 With probability ≥ 1− δ:

1. For any t ≥ 1, the best arm k⋆ is contained in the set St.

2. There exists an any-time confidence interval U such that the Successive Elimination algorithm terminates
after O(

∑K
k ̸=k⋆ △−2

k log(K△−1
k )) samples with △k := µ⋆−µk and the O notation is with respect to K and

△k for a constant δ.

We first prove that with high probability the best arm stays in the active set St for all t until termination.

(a) Define E as the event that for any t ≥ 1, the estimated reward µ̂k,t of any arm k is not contained in the
confidence interval U(t, δ/K) around the true mean µk, i.e.

E :=

K⋃
k=1

∞⋃
t=1

{|µ̂k,t − µk| > U(t, δ/K)}.

Show that P(E) ≤ δ.

(b) Prove statement 1 in Theorem 1.

1Note that this notation is meaningful because if the kth arm is active in the t-th round, then it was active in all previous
rounds. Hence, in all previous rounds, a sample was drawn from this arm and therefore all samples Xk,1, . . . , Xk,t exist. Once an
arm is eliminated, the empirical mean is not used anymore.
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It is not yet shown whether and after how many steps the algorithm terminates. To do so, we derive a sufficiently
tight any-time confidence interval U based on the concentration inequalities discussed in the lecture.

(c) Let {Zt}∞t=1 be i.i.d bounded random variables with Zt ∈ [a, b] with a ≤ b. Show that

U =

√
(b− a)2 log(4t2/δ)

2t

is a valid any-time confidence interval for the random variable Zt. Hint : Use Hoeffding’s bound and union
bound.

(d) Bonus: Prove statement 2 in Theorem 1.

Solution

The algorithm analyzed in this exercise is known as the Successive Elimination algorithm.

(a) First, by the Union bound,

P(E) ≤
K∑

k=1

P

 ∞⋃
t=1

{|µ̂k,t − µk| > U(t, δ/K)}

 .

Next, we already know from the definition of the any-time confidence interval that

P

 ∞⋃
t=1

{|µ̂k,t − µk| > U(t, δ/K)}

 ≤ δ/K.

Hence, combining these results, we get P(E) ≤
∑K

k=1 δ/K = δ.

(b) We assume that Ec holds and show that the best arm k⋆ will never be dropped. The proof then the follows
trivially from a). Any arm k, with 1 ≤ k ≤ K, will only be dropped by the algorithm if there exists t ≥ 1
and i ∈ St−1 such that k ∈ St−1 and

µ̂i,t − U(t, δ/K) > µ̂k,t + U(t, δ/K).

Now consider k∗. Ec holds by assumption and for any t ≥ 1 we have:

µ̂k⋆,t ≥ µk⋆ − U(t, δ/K)

Furthermore, for any t ≥ 1 and 1 ≤ i ≤ K that µi ≥ µ̂i,t−U(t, δ/K). By definition µk⋆ ≥ µi, and we get:

µ̂k⋆,t + U(t, δ/K) > µk⋆ ≥ µi > µ̂i,t − U(t, δ/K)

Meaning that k⋆ is never dropped, hence completing the proof.

(c) First, we take the Union bound to obtain

P

 ∞⋃
t=1

{
∣∣µ̂k,t − µk

∣∣ > U(t, δ)}

 ≤ ∞∑
t=1

P
(∣∣µ̂k,t − µk

∣∣ ≥ U(t, δ)
)
≤

∞∑
t=1

P

1

t

∣∣∣∣∣∣
t∑

s=1

Zs − EZs

∣∣∣∣∣∣ ≥ U(t, δ)


Next, note that the case where a = b follows trivially. Hence we can assume a < b and observe that the
random variable Zi is a σ-sub-Gaussian random variable with parameter σ = b−a

2 . Therefore, we can
apply Hoeffindgs inequality:

P

1

t

∣∣∣∣∣∣
t∑

s=1

Zs − EZs

∣∣∣∣∣∣ ≥ U(t, δ)

 ≤ 2 exp

(
− tU(t, δ)

2σ2

)
= 2 exp

(
− t(b− a)2 log(4t2/δ)

2t b−a
4

)

= 2 exp(− log(4t2/δ)) = 2
δ

4t2
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where the factor 2 in front of the exponential comes from the fact that we take a two sided bound, i.e.

P

1

t

∣∣∣∣∣∣
t∑

s=1

Zs − EZs

∣∣∣∣∣∣ ≥ U(t, δ)

 = P

1

t

t∑
s=1

Zs − EZs ≥ U(t, δ)

+ P

1

t

t∑
s=1

Zs − EZs ≥ −U(t, δ)

 .

Plugging this equation into the previous equation gives the desired solution:

P

 ∞⋃
t=1

{
∣∣µ̂k,t − µk

∣∣ > U(t, δ)}

 ≤ ∞∑
t=1

δ

2t2
≤ δ

(d) We can again assume that the event Ec holds. Clearly, for any k ̸= k⋆, we know that the algorithm
removes the k-th when

µ̂k⋆,t − U(t, δ/K) > µ̂k,t + U(t, δ/K). (1)

While the arm can also drop earlier, we note that we are only interested in an upper bound for the total
amount of samples. Next, because Ec holds by assumption, we have that µ̂k⋆,t ≥ µ⋆ − U(t, δ/K) and
µk + U(t, δ/K) ≥ µ̂k,t. Therefore, Equation 1 is guaranteed to hold as long as:

µ⋆ − 2U(t, δ/K) > µk + 2U(t, δ/K).

As a result, we obtain that the k-th arm must drop if

△k > 4U(t, δ/K).

Next, the goal is to show that we can find a constant c > 0 independent of 0 < △k ≤ 1 and K ≥ 1, such
that for Tk = c△−2

k log(K△−1
k ), we have that △k > 4U(Tk, δ/K).

As a result, and because U(t, δ/K) is monotonically decreasing with respect to t, we can conclude that
the k-th arm will be removed by the algorithm at least after ⌈Tk⌉ steps. Plugging the expression for U
from c) into the above equation, we get that

△k ≥ 4

√
log( 4Kδ (c△−2

k log(K△−1
k ))2)

2c△−2
k log(K△−1

k )
(2)

⇔ 1 ≥
16 log(4nδ (c△−2

k log(K△−1
k ))2)

2c log(K△−1
k )

(3)

Clearly, for any fixed 1 ≥ △k > 0 and n ≥ 1, we can find c such that the inequality holds. Hence, the
only thing we need to show is that we do not require c → ∞ as K → ∞ or △k → 0. However, this
follows trivially from the fact that a log(b) = log(ba). We can conclude that there exists c > 0 such that
the inequality holds for all △k and n. As a result, we can see that the total amount of samples for the
algorithm needed to terminate is at most

∑
k ̸=k⋆

⌈Tk⌉ =
∑
k ̸=k⋆

⌈c△−2
k log(K△−1

k )⌉ = O

∑
k ̸=k⋆

△−2
k log(K△−1

k )

 .
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