
GML Fall 25, Homework 1: Concentration bounds

• Please send via email to Tobias Wegel (twegel@ethz.ch) by Wednesday, 08.10.25, at 23:59.

• Typeset (Latex or Markdown) and start the answer to each question on a new page.

• See website for details regarding collaboration and honor code.

• MW refers to Martin Wainwright’s book.

• The homeworks are pass/fail: You pass if you properly attempted all questions (except the bonus ones).
A genuine attempt means showing your reasoning, intermediate steps, or an explanation of why you are
stuck (in case that you are).

• Please de-register if you do not want to solve the homework.

1 Optional Warm-up: Optimality of polynomial Markov

Chernoff’s bound is obtained via Markov’s inequality. In this question, we show that Markov’s inequality is
actually tight, and that the k-th moment Markov bounds are in fact never worse than the Chernoff bound based
on the moment generating function.

(a) Find a non-negative random variable X for which Markov’s inequality is met with equality.

(b) Suppose that X ≥ 0 and that EeλX exists in an interval around zero. Given some δ > 0, show that

inf
k=0,1,...

E[Xk]

δk
≤ inf

λ>0

E[eλX ]

eλδ
.

2 Concentration and kernel density estimation

Let {Xi}ni=1 be an i.i.d. sequence of random variables drawn from a density f on the real line. A standard
estimate of f is the kernel density estimate:

fn(x) :=
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where K : R → [0,∞) is a kernel function satisfying
∫∞
−∞ K(t) dt = 1, and h > 0 is a bandwidth parameter.

Suppose that we assess the quality of fn using the L1-norm, which is defined as ∥fn−f∥1 :=
∫∞
−∞ |fn(t)−f(t)| dt.

Prove that

P
[
∥fn − f∥1 ≥ E[∥fn − f∥1] + δ

]
≤ e−

nδ2

2 .

3 Sub-Gaussian maxima

In this exercise, we prove an inequality used repeatedly in later lectures. Let {Xi}ni=1 be a sequence of zero-
mean random variables, each sub-Gaussian with parameter σ. The random variables Xi are not assumed to be
independent.

(a) Prove that for all n ≥ 1 we have

E max
i=1,...,n

Xi ≤
√
2σ2 log n.

Hint: the exponential is a convex function.

(b) Prove that for all n ≥ 2 we have

E max
i=1,...,n

|Xi| ≤
√
2σ2 log(2n) ≤ 2

√
σ2 log n.
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4 Sharper tail bounds for bounded variables: Bennett’s inequality

Read MW Section 2.1.3, and learn about sub-exponential tail bounds and Bernstein’s inequality, which yields
some more tail bounds for empirical means of random variables satisfying conditions other than the sub-Gaussian
tails. Bernstein’s inequality is sometimes tighter for bounded variables than applying the sub-Gaussian bound.
In this problem, we prove an even tighter bound for bounded variables, known as Bennett’s inequality.

(a) Consider a zero-mean random variable such that |Xi| ≤ b for some b > 0. Prove that

logEeλXi ≤ σ2
i

eλb − 1− λb

b2

for all λ ≥ 0, where σ2
i = Var(Xi).

(b) Given independent random variables X1, . . . , Xn satisfying the condition of part (a), let σ2 := 1
n

∑n
i=1 σ

2
i

be the average variance. Prove Bennett’s inequality, which states that for all δ > 0,

P

 1

n

n∑
i=1

Xi ≥ δ

 ≤ e−
nσ2

b2
h
(

bδ
σ2

)
where h(t) := (1 + t) log(1 + t)− t for t ≥ 0.

(c) Bonus: Show that Bennett’s inequality is at least as good as Bernstein’s inequality.

5 Sharp upper bounds on binomial tails

Let {Xi}ni=1 be an i.i.d. sequence of Bernoulli variables with parameter α ∈ (0, 1
2 ], and consider the binomial

random variable Zn =
∑n

i=1 Xi. The goal of this exercise is to prove, for any δ ∈ (0, α), a sharp upper bound
on the tail probability P[Zn ≤ δn].

(a) Show that
P [Zn ≤ δn] ≤ e−nD(δ∥α),

where the quantity

D(δ ∥ α) := δ log
δ

α
+ (1− δ) log

1− δ

1− α

is the Kullback–Leibler divergence between the Bernoulli distributions with parameters δ and α, respec-
tively.

(b) Show that the bound from part (a) is strictly better than the Hoeffding bound for all δ ∈ (0, α).

6 Robust estimation of the mean

Suppose we want to estimate the mean µ of a random variable X from a sample X1, · · · , Xn, drawn indepen-
dently from the distribution of X. Assume that the second moment of X exists, so that σ2 = Var(X) < ∞. We
want an ϵ-accurate estimate of the mean, i.e., one that falls with probability ≥ 1− δ in the interval [µ− ϵ, µ+ ϵ].

Show that a sample size of N = O
(
log(δ−1)σ

2

ϵ2

)
suffices to compute an ϵ-accurate estimate of the mean with

probability at least 1− δ. Hint: Compute the median of log(δ−1) weak estimates.

7 Best-arm identification

We now look at an interesting application of concentration bounds. Assume that we have K newly developed
drugs to cure a disease. Denote with µk ∈ [0, 1] the probability of getting cured by the k-th drug, which
is assumed to be unknown. In order to determine the best drug k⋆ with the highest chance of a successful
treatment µ⋆ = µk⋆ = maxk∈[K] µk, we treat different volunteers in a clinical trial with one drug each and
record the outcome. We model the observation of the outcome on one patient as sampling from a Bernoulli
distribution with parameter µk. We denote with Xk,t ∈ {0, 1} the random variable indicating whether the t-th
volunteer was successfully treated with the k-th drug.
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In a randomized control trial, all drugs would have the same probability of getting assigned to any patient
throughout the trial. In this exercise, we want to study an adaptive algorithm that assigns treatment depending
on the outcome of previous treatments. The goal is to assign the drugs in a way such that for some δ ∈ (0, 1),
with probability ≥ 1− δ, the algorithm finds the best drug k⋆ in as few volunteers as possible. This is ethically
more reasonable than assigning a ”bad” drug to patients even when their results are clearly inferior to others
in the trial.

In this exercise, we analyze the following algorithm to solve the problem.

Algorithm 1: Best-arm identification

S0 = {1, · · · ,K} ;
for 1 ≤ t ≤ ∞ do

Pull all arms in St−1 to obtain samples Xk,t ∼ Dk with k ∈ St−1;
Update St = St−1 − {i ∈ St−1 : ∃k ∈ St−1 : µ̂k,t − U(t, δ/K) > µ̂i,t + U(t, δ/K)};
Stop when |St| = 1;

end

Here we denote

• St: The active set of arms at time t.

• µ̂k,t :=
1
t

∑t
i=1 Xk,i: Estimated mean of the reward µk for arm k after t pulls.1

• U(t, δ): An any-time confidence interval, such that for any arm k,

P

 ∞⋃
t=1

{|µ̂k,t − µk| ≥ U(t, δ)}

 ≤ δ.

The goal of this exercise is to prove Theorem 1 where we show that the Successive Elimination algorithm is
correct and derive an upper bound on the maximum amount of steps needed to for the algorithm to terminate.

Theorem 1 With probability ≥ 1− δ:

1. For any t ≥ 1, the best arm k⋆ is contained in the set St.

2. There exists an any-time confidence interval U such that the Successive Elimination algorithm terminates
after O(

∑K
k ̸=k⋆ △−2

k log(K△−1
k )) samples with △k := µ⋆−µk and the O notation is with respect to K and

△k for a constant δ.

We first prove that with high probability the best arm stays in the active set St for all t until termination.

(a) Define E as the event that for any t ≥ 1, the estimated reward µ̂k,t of any arm k is not contained in the
confidence interval U(t, δ/K) around the true mean µk, i.e.

E :=

K⋃
k=1

∞⋃
t=1

{|µ̂k,t − µk| > U(t, δ/K)}.

Show that P(E) ≤ δ.

(b) Prove statement 1 in Theorem 1.

It is not yet shown whether and after how many steps the algorithm terminates. To do so, we derive a sufficiently
tight any-time confidence interval U based on the concentration inequalities discussed in the lecture.

(c) Let {Zt}∞t=1 be i.i.d bounded random variables with Zt ∈ [a, b] with a ≤ b. Show that

U =

√
(b− a)2 log(4t2/δ)

2t

is a valid any-time confidence interval for the random variable Zt. Hint : Use Hoeffding’s bound and union
bound.

(d) Bonus: Prove statement 2 in Theorem 1.

1Note that this notation is meaningful because if the kth arm is active in the t-th round, then it was active in all previous
rounds. Hence, in all previous rounds, a sample was drawn from this arm and therefore all samples Xk,1, . . . , Xk,t exist. Once an
arm is eliminated, the empirical mean is not used anymore.

3


	Optional Warm-up: Optimality of polynomial Markov
	Concentration and kernel density estimation
	Sub-Gaussian maxima
	Sharper tail bounds for bounded variables: Bennett's inequality
	Sharp upper bounds on binomial tails
	Robust estimation of the mean
	Best-arm identification

