
GML Fall 25, Homework 2: Generalization bounds

• Please send via email to Tobias Wegel (twegel@ethz.ch) by Tuesday, 11.11.25, at 23:59.

• Typeset (Latex or Markdown) and start the answer to each question on a new page.

• Name the file firstname lastname.pdf (e.g., max mustermann.pdf).

• See website for details regarding collaboration and honor code.

• MW refers to Martin Wainwright’s book.

• The homeworks are pass/fail: You pass if you properly attempted all questions (except the bonus ones).
A genuine attempt means showing your reasoning, intermediate steps, or an explanation of why you are
stuck (in case that you are).

1 Gaussian and Rademacher complexities

Read MW Chapter 5 as a reference. The Gaussian complexity of a class of functions H, for a fixed set

of covariates x1, . . . , xn, is defined as E suph∈H
1
n

∑n
i=1 wih(xi) where wi

i.i.d.∼ N (0, 1). When deriving uniform
bounds in regression problems with Gaussian noise, we will see that the Gaussian complexity arises naturally
and is relatively easier to bound.

Let us now define, for an arbitrary set T ⊂ Rn, the Rademacher complexity as R̃n(T) := E supθ∈T
1
n

∑n
i=1 ϵiθi

with ϵi being i.i.d. Rademacher random variables and the Gaussian complexity as G̃n(T) := E supθ∈T
1
n

∑n
i=1 wiθi

with wi i.i.d. standard normal random variables. In this question, we show how the Rademacher complexity is
related to the Gaussian complexity. Formally, we prove that

G̃n(T)
2
√
logn

≤ R̃n(T) ≤
√
π

2
G̃n(T).

(a) Show that for any set T the Rademacher complexity satisfies the upper bound R̃n(T) ≤
√

π
2 G̃n(T). Give

an example of a set for which this bound is met with equality.

(b) Show that G̃n(T) ≤ 2
√
lognR̃n(T) for any set T. Give an example for which this upper bound is tight

up to a constant factor. You may use that R̃n(ϕ(T)) ≤ R̃n(T) for any contraction (see Gaussian analog
MW Proposition 5.28).

2 Rates for smooth functions

Read MW Examples 5.10. through Example 5.12. (notice typos in Example 5.11. - it should be δ = ϵα+γ

everywhere). The non-parametric least-squares estimate is defined as

f̂ = argmin
f∈F

Rn(f) :=
1

n

n∑
i=1

(yi − f(xi))
2.

In this exercise we derive the prediction error bound for the examples of twice-differentiable functions F(2) and
α-th order Sobolev spaces Wα

2 ([0, 1]) on [0, 1].

F(2) := {f : [0, 1] → R | ∥f∥∞ + ∥f (1)∥∞ + ∥f (2)∥∞ ≤ C <∞}
Wα

2 ([0, 1]) := {f : [0, 1] → R | f (i) ∈ L2([0, 1]) and f (i)(0) = 0 ∀i = 0, . . . , α− 1}

where f (a) stands for the α-th (weak) derivative. Throughout the problem, we assume that f⋆ ∈ F .

(a) Prove that the set {fβ , β ∈ {−1,+1}M} in Example 5.10. forms a 2ϵL-covering in the sup-norm.

(b) For the function class

Fα,γ = {f : [0, 1] → R | ∥f (j)∥∞ ≤ Cj ∀j = 0, . . . , α, |f (α)(x)− f (α)(x′)| ≤ L|x− x′|γ ∀x, x′ ∈ [0, 1]}
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we have logN (ϵ;Fα,γ , ∥ · ∥∞) = O(( 1ϵ )
1

α+γ ). Use this fact to establish the following prediction error

bound for the non-parametric least-squares estimate f̂ with F = F(2) for positive constants c0, c1, c2
which may depend on C but not on n, σ2

P(∥f̂ − f⋆∥2n ≥ c0(
σ2

n
)

4
5 ) ≤ c1e

−c2(n/σ
2)1/5

(c) For α-th order Sobolev kernels, assume that the empirical eigenvalues decay with rate µ̂j = j−2α and we
minimize the square loss in the constrained function class F = {f ∈ Wα

2 ([0, 1]) : ∥f∥F ≤ 1}. Show that
the prediction error of the non-parametric least-squares estimate reads

P
[
∥f̂ − f⋆∥2n ≥ c0(

σ2

n
)

2α
2α+1

]
≤ c1e

−c2(
n
σ2 )

1
2α+1

.

3 Sparse linear functions

We already looked at the complexity of linear function classes with a margin γ and ℓ2 norm constraint in
previous homeworks and lectures. In this exercise, we bound the Gaussian complexity of a smaller subset of ℓ2
constrained balls, i.e.,

FB,s = {f(·) = ⟨θ, x⟩ : ∥θ∥0 ≤ s, ∥θ∥2 ≤ B}

This is a useful quantity as it gives intuition for why constraining the function class to sparse linear models can
help to decrease the sample complexity below dimension d.

(a) DefineX ∈ Rn×d as consisting of rows x1, . . . , xn the sample covariate vectors. Let the matrixXS ∈ Rn×|S|

be the submatrix of X consisting of columns of X that are indexed by S. First show that the Gaussian

complexity Gn(FB,s(x
n
1 )) can be rewritten as 1√

n
E supθ⟨θ, X

Tw√
n
⟩ where w ∼ N (0, In). Use this fact to

establish Gn(FB,s(x
n
1 )) ≤ BEw max|S|=s ∥

X⊤
S w
n ∥2.

(b) Define wS = 1√
n
X⊤

S w. Assuming that for all subsets S of cardinality s we have λmax

(X⊤
S XS

n

)
≤ C2, prove

that

P(∥wS∥2 ≥
√
sC + δ) ≤ e−

δ2

2C2 .

Hint : The Euclidean norm is a Lipschitz function.

(c) Use the preceding parts to show

Gn(FB,s(x
n
1 )) ≤ O

BC
√
s log( eds )

n


(d) We use the set

F̃B,s =

{
f(·) = ⟨θ, x⟩ : ∥θ∥0 ≤ s,

∥Xθ∥2√
n

≤ B

}
for bounding the prediction error of the best linear sparse approximation. Prove that

Gn(F̃B,s(x
n
1 )) ≤ O

B
√
s log( eds )

n

 .

(e) Consider the following model: We observe yi = f⋆(xi)+wi with i.i.d. noise wi ∼ N (0, 1) and f⋆ = ⟨θ⋆, ·⟩ ∈
F∞,s. Consider the (computationally infeasible) estimator θ̂ ∈ argminθ:∥θ∥0≤s ∥y −Xθ∥22 . Use Theorem
13.13 in MW and the previous bound to prove that with high probability,

1

n

∥∥∥Xθ⋆ −Xθ̂
∥∥∥2
2
≲
s log(ed/s)

n
.
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4 A minimax lower bound for dictionary learning

Consider the problem of dictionary learning : Suppose you want to solve a regression problem, and are given a
finite set of candidate models F = {f1, . . . , fm}, called a dictionary. The elements in F may have been trained
before using an independent dataset, or may simply be good candidates for the learning task at hand (think,
for instance, of using “foundation models”). For this exercise, we treat them as fixed, deterministic functions,
but do not assume anything else about them (beyond boundedness). A central question then becomes: How
can we find a predictor that is as good as the best one from the dictionary? And what is the minimal amount
of data necessary to achieve this (say, up to ϵ-error)? It turns out that, despite the simple setup, answering
these questions yields a rich theory.

In this exercise, we prove a minimax lower bound on the problem from above in the following setting. Let µ be
the Lebesgue measure on [0, 1], let X1, . . . , Xn be i.i.d. samples from µ, and let

Yi = f⋆(Xi) + ξi

for some unknown function f⋆ : [0, 1] → R and i.i.d. Gaussian variables ξ1, . . . , ξn ∼ N (0, 1). For any f :
[0, 1] → R, denote by Pf the distribution of (X1, Y1) if f

⋆ = f , so that D := ((X1, Y1), . . . , (Xn, Yn)) ∼ P⊗n
f is

an i.i.d. dataset from this distribution. Let F0 = {f : [0, 1] → R : ∥f∥∞ ≤ 1} and F = {f1, . . . , fm} ⊂ F0 be an
arbitrary set of measurable functions f : [0, 1] → R where 3 ≤ m ≤ expn. We further denote Pj = Pfj . Under
these assumptions, it turns out that the following lower bound is true, and in fact tight up to constant factors.

Theorem 1 There exists a constant c > 0 such that for all regressors f̂ ≡ f̂(D,F) : [0, 1] → R it holds

sup
f⋆∈F0

F⊂F0,|F|=m

[
ED∼P⊗n

f⋆

∥∥∥f̂ − f⋆
∥∥∥2
L2(µ)

−min
f∈F

∥f − f⋆∥2L2(µ)

]
≥ c

logm

n
.

In this exercise, we will prove Theorem 1, by first proving a lower bound on general metric spaces, and then
applying this bound to the setting from Theorem 1.

(a) Describe in words what Theorem 1 tells us about the dictionary learning problem.

(b) Let m ≥ 2, and let (Θ, d) be some metric space that contains the elements θ0, θ1, . . . , θm. Let Pθ, θ ∈ Θ
be a family of probability measures on X , denote Pj = Pθj , and assume that Pj ≪ P0 and P0 ≪ Pj (they
are absolutely continuous with respect to each other) for all j = 1, . . . ,m.

(i) Prove that for any test (that is, measurable function) ψ : X → {0, . . . ,m} and any τ > 0,

max
j∈{0,...,m}

Pj(ψ ̸= j) ≥ τm

1 + τm

 1

m

m∑
j=1

Pj

(
dP0

dPj
≥ τ

) .

Here Pj(ψ ̸= j) is short for Pj(
{
x ∈ X : ψ(x) ̸= j

}
).

Hint: To prove this bound, you may find it useful to proceed as follows: First show a lower bound on
P0(ψ ̸= 0) using the events Aj =

{
x ∈ X : (dP0/dPj)(x) ≥ τ

}
. Then combine it with a lower bound

on all other Pj(ψ ̸= j) using maxj∈{0,...,m} Pj(ψ ̸= j) ≥ λP0(ψ ̸= 0)+(1−λ)maxj∈{1,...,m} Pj(ψ ̸= j)
for a well-chosen λ ∈ [0, 1].

(ii) Conclude from the previous step that, if for some s > 0 it holds d(θj , θk) ≥ 2s > 0 for all j ̸= k

and 1
m

∑m
j=1 KL(Pj , P0) ≤ α logm for some 0 < α < 1/8, any estimator θ̂ : X → Θ (measurable

function) satisfies

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥
√
m

1 +
√
m

(
1− 2α−

√
2α

logm

)
> 0. (1)

Again, Pθ(d(θ̂, θ) ≥ s) is short for Pθ({x ∈ X : d(θ̂(x), θ) ≥ s}).
Hint: For each estimator, construct a corresponding test and use the previous bound. You may then
use the following version of Pinsker’s inequality without proof : If P ≪ Q, then∫

max

{
log

dP

dQ
, 0

}
dP ≤ KL(P,Q) +

√
KL(P,Q)/2.

(c) Prove Theorem 1.
Hint : Prove the statement for a particular choice of F consisting orthogonal system in L2(µ) where each
function has L2(µ)-norm ≍

√
log(m)/n, and use the lower bound from Eq. (1).
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5 (BONUS) Classification error bounds for hard margin support
vector machines (SVM)

Recal the material on max margin and SVMs from the lecture. In this exercise, we derive upper bounds for the
0− 1 classification error of hard margin SVMs, also called max-ℓ2-margin classifiers, and defined by:

θ̂ = argmax
θ∈Rd

min
(x,y)∈D

y
⟨θ, x⟩
∥θ∥2

(2)

where D = {(xi, yi)}ni=1 is the dataset consisting of n input features/label pairs. We remark that the hard-
margin SVM is obtained when running logistic regression until convergence on separable data.

For this exercise, we assume that the datasetD is generated by drawing iid samples form the following generative
data distribution (x, y) ∼ P where the labels y are uniformly distributed on {−1,+1} and the input features
are in the form of x = [yr, x̃] with x̃ ∼ N (0, Id−1). Furthermore, let γ be the max-ℓ2-margin of D in its last
d− 1 coordinates, defined by

γ = max
θ∈Rd−1

min
(x,y)∈D

y
⟨θ̂, x2:d⟩
∥θ̂∥2

(3)

A simple geometric argument shows that the max-ℓ2-margin classifier (up to rescalings) points in the same
direction as

θ̂ = [r, γθ̃] (4)

where ∥θ̃∥2 = 1.

(a) Compute the test error of the max-ℓ2-margin classifier as a function of γ and r, i.e. for (x, y) ∼ P, what
is P [yθ̂⊤x < 0]? What is the dependence on r?

(b) Note that γ is a random variable dependent on n and d. We aim to understand the dependence of
the accuracy on n and d. Hence, we want to derive non-asymptotic high probability bounds on γ. Let
X̃ ∈ Rn×(d−1) be the datamatrix in the last d− 1 dimensions, i.e. row i in X̃ equals xi,[2:d]. Show that

γ ≤ smax(X̃)√
n

(5)

where smax(X̃) is the largest singular value of the datamatrix X̃.

(c) Recall that each entry of X̃ is i.i.d. standard normal Gaussian distributed. To achieve non-asymptotic
bounds on smax(X̃), we first prove the following Lemma in two steps.

Lemma 1 Let X ∈ Rn×d have i.i.d. normally distributed entries. Then, E
[
smax(X)

]
<

√
d+

√
n

(i) Recall that smax(X) = maxu∈Sd−1,v∈Sn−1⟨Au, v⟩ equals the supremum of the Gaussian process
Xu,v = ⟨Au, v⟩. Define Yu,v = ⟨g, u⟩ + ⟨h, v⟩ where g ∈ Rd and h ∈ Rn are independent stan-
dard normal distributed variables. Show that

E
∣∣Xu,v −Xu′,v′

∣∣2 ≤ E
∣∣Yu,v − Yu′,v′

∣∣2 (6)

(ii) To finish the proof of Lemma 1, we use the following important result: ¡br¿ ¡br¿

Lemma 2 (Slepian’s inequality) Consider two Gaussian processes (Xt)t∈T and (Yt)t∈T whose
increments satisfy Equation (4) for all ((u, v), (u′, v′)) ∈ T . Then E[supt∈TXt] ≤ E[supt∈TYt].

Prove Lemma 1 using Lemma 2.

(d) Use Theorem 2.26 in MW and Lemma 1 to prove that smax(X̃) ≤
√
d +

√
n + t with a probability of at

least 1− 2e−t2/2.
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