GML Fall 25, Homework 2: Generalization bounds

Please send via email to Tobias Wegel (twegel@ethz.ch) by Tuesday, 11.11.25, at 23:59.
Typeset (Latex or Markdown) and start the answer to each question on a new page.
Name the file firstname lastname.pdf (e.g., max mustermann.pdf).

See website| for details regarding collaboration and honor code.

MW refers to Martin Wainwright’s book.

The homeworks are pass/fail: You pass if you properly attempted all questions (except the bonus ones).
A genuine attempt means showing your reasoning, intermediate steps, or an explanation of why you are
stuck (in case that you are).

1 Gaussian and Rademacher complexities

Read MW Chapter 5 as a reference. The Gaussian complexity of a class of functions H, for a fixed set
of covariates z1, ..., 2y, is defined as Esup,cy £ 37 | w;h(2;) where w; e N(0,1). When deriving uniform
bounds in regression problems with Gaussian noise, we will see that the Gaussian complexity arises naturally
and is relatively easier to bound.

Let us now define, for an arbitrary set T C R”, the Rademacher complexity as R, (T) := Esupger = >0 €
with €; being i.i.d. Rademacher random variables and the Gaussian complexity as G,,(T) := E supgycr % S wib;
with w; i.i.d. standard normal random variables. In this question, we show how the Rademacher complexity is
related to the Gaussian complexity. Formally, we prove that
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(a) Show that for any set T the Rademacher complexity satisfies the upper bound R \f Qn . Give

an example of a set for which this bound is met with equality.

(b) Show that gn(T) < 2y/log nﬁn(']l‘) for any set T. Give an example for which this upper bound is tight
up to a constant factor. You may use that R, (¢(T)) < R,(T) for any contraction (see Gaussian analog
MW Proposition 5.28).

2 Rates for smooth functions

Read MW Examples 5.10. through Example 5.12. (notice typos in Example 5.11. - it should be § = et
everywhere). The non-parametric least-squares estimate is defined as
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In this exercise we derive the prediction error bound for the examples of twice-differentiable functions F ;) and
a-th order Sobolev spaces W5 ([0, 1]) on [0, 1].

Foy={f:10,1] = R[[[flloo + IFfVlloc + ||f<2)||oo < C < o0}
Ws(10,1]) :={f:[0,1] = R | f¥ e £2(]0,1]) and fD(0)=0Vi=0,...,a —1}

where f(%) stands for the a-th (weak) derivative. Throughout the problem, we assume that f* € F.

(a) Prove that the set {fz,3 € {—1,+1}} in Example 5.10. forms a 2eL-covering in the sup-norm.

(b) For the function class

Foar =1 101 5 RIfP oo £ C; V5 =0, 0, [f(2) = f1(@)] < Lz — 2’| Va2’ € [0,1]}


https://sml.inf.ethz.ch/gml25/syllabus.html
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we have log N (¢; Fo s || - o) = O((l)%ﬂ) Use this fact to establish the following prediction error

€
bound for the non-parametric least-squares estimate f with F = F,) for positive constants co,c1,ca
which may depend on C but not on n, o2

2

B(IF = £I12 > co(Z)#) < cremean/oD'”
n
For a-th order Sobolev kernels, assume that the empirical eigenvalues decay with rate fi; = 772 and we

minimize the square loss in the constrained function class F = {f € Wg([0,1]) : || f||z < 1}. Show that
the prediction error of the non-parametric least-squares estimate reads
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P[|If = £*12 > co(Z)71] < cree2(®)
n
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Sparse linear functions

We already looked at the complexity of linear function classes with a margin v and ¢ norm constraint in
previous homeworks and lectures. In this exercise, we bound the Gaussian complexity of a smaller subset of ¢4
constrained balls, i.e.,

Frs = {f() = {0,2): |0]o <s,[0ll2 < B}

This is a useful quantity as it gives intuition for why constraining the function class to sparse linear models can
help to decrease the sample complexity below dimension d.

(a)

Define X € R™*? as consisting of rows z1, . . . , 2,, the sample covariate vectors. Let the matrix Xg € R?*I5I

be the submatrix of X consisting of columns of X that are indexed by S. First show that the Gaussian
T

complexity G,(Fps(2])) can be rewritten as ﬁ]E supg (6, X—ﬁ) where w ~ N(0,1,). Use this fact to
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establish G, (Fp s(27)) < BE, max g || =2—|2.

XJXs
n

Define wg = ﬁng. Assuming that for all subsets S of cardinality s we have )\max( ) < C?, prove

that 2
)
P(|lwgll2 > /sC +6) < e 2c2.

Hint: The Euclidean norm is a Lipschitz function.

Use the preceding parts to show
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We use the set
= [RYP
s — t) = 9) : 6 S s = S B
Foo= {10 = 0.0) 1ol <5, 12
for bounding the prediction error of the best linear sparse approximation. Prove that
~ slog(&d
G Froap) <0 | By TEE)

Consider the following model: We observe y; = f*(x;)+w; with i.i.d. noise w; ~ N (0,1) and f* = (6*,-) €
Foc,s- Consider the (computationally infeasible) estimator ¢ € argming, o < [y — X9||§ . Use Theorem
13.13 in MW and the previous bound to prove that with high probability,
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4 A minimax lower bound for dictionary learning

Consider the problem of dictionary learning: Suppose you want to solve a regression problem, and are given a
finite set of candidate models F = {fi,..., fin}, called a dictionary. The elements in F may have been trained
before using an independent dataset, or may simply be good candidates for the learning task at hand (think,
for instance, of using “foundation models”). For this exercise, we treat them as fixed, deterministic functions,
but do not assume anything else about them (beyond boundedness). A central question then becomes: How
can we find a predictor that is as good as the best one from the dictionary? And what is the minimal amount
of data necessary to achieve this (say, up to e-error)? It turns out that, despite the simple setup, answering
these questions yields a rich theory.

In this exercise, we prove a minimax lower bound on the problem from above in the following setting. Let u be
the Lebesgue measure on [0, 1], let X5,..., X, be i.i.d. samples from p, and let

Yi=f(Xy) + &

for some unknown function f* : [0,1] — R and i.i.d. Gaussian variables &1,...,&, ~ N(0,1). For any f :
[0,1] — R, denote by Py the distribution of (X1,Y7) if f* = f, so that D := ((X1,Y1),..., (Xn,Yn)) ~ Pji@” is
an i.i.d. dataset from this distribution. Let Fo = {f : [0,1] = R : || f]loc <1} and F = {f1,..., fm} C Fo be an
arbitrary set of measurable functions f : [0,1] — R where 3 < m < expn. We further denote P; = Py,. Under
these assumptions, it turns out that the following lower bound is true, and in fact tight up to constant factors.

Theorem 1 There exists a constant ¢ > 0 such that for all regressors fz ]?(D,]-") :[0,1] — R 4t holds

—~ 2 logm
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In this exercise, we will prove Theorem [I| by first proving a lower bound on general metric spaces, and then
applying this bound to the setting from Theorem

(a) Describe in words what Theorem [I| tells us about the dictionary learning problem.

(b) Let m > 2, and let (6, d) be some metric space that contains the elements 0,01, ...,0,,. Let Py, 0 € ©
be a family of probability measures on X', denote P; = Fp,, and assume that P; < Py and Py < P; (they
are absolutely continuous with respect to each other) for all j =1,... ,m.

(i) Prove that for any test (that is, measurable function) ¢ : X — {0,...,m} and any 7 > 0,

™m 1 — dPy
P; ) > — Pi|—>
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Here P;(1) # j) is short for Pj({x e X Yp(x) # ]})
Hint: To prove this bound, you may find it useful to proceed as follows: First show a lower bound on

Py(¢p # 0) using the events A; = {x € X : (dPy/dP;)(z) > 7}. Then combine it with a lower bound

on all other P;(¢ # j) using max;eyo,...,m} B (¥ # j) = APo(¥ # 0) + (1= A) maxjeq1,...my P (¢ # j)
for a well-chosen A € [0, 1].

(ii) Conclude from the previous step that, if for some s > 0 it holds d(6;,6;) > 2s > 0 for all j # k
and L Z;nzl KL(P;, Py) < alogm for some 0 < o < 1/8, any estimator 0 : X — © (measurable

function) satisfies
. vm \/W
sup Py(d(6,0) > ) > —Y" (124 —,/22 ] >o0. 1
Egg b )_S)_l-l—\/m “ logm )

Again, Py(d(0,0) > s) is short for Py({x € X : d(0(z),0) > s}).
Hint: For each estimator, construct a corresponding test and use the previous bound. You may then
use the following version of Pinsker’s inequality without proof: If P < @, then

/ max {1og ;Lg, o} dP < KL(P,Q) + VKL(P,Q)/2.

(¢) Prove Theorem
Hint: Prove the statement for a particular choice of F consisting orthogonal system in L?(u) where each
function has L?(u)-norm =< y/log(m)/n, and use the lower bound from Eq. .



5 (BONUS) Classification error bounds for hard margin support
vector machines (SVM)

Recal the material on max margin and SVMs from the lecture. In this exercise, we derive upper bounds for the
0 — 1 classification error of hard margin SVMs, also called max-¢s-margin classifiers, and defined by:

- 0,x

f = argmax min y7< ) (2)

ber? (zy)eD " ||0]|2

where D = {(z;,y;)}7, is the dataset consisting of n input features/label pairs. We remark that the hard-
margin SVM is obtained when running logistic regression until convergence on separable data.
For this exercise, we assume that the dataset D is generated by drawing iid samples form the following generative
data distribution (z,y) ~ P where the labels y are uniformly distributed on {—1,+1} and the input features

are in the form of = [yr, ] with & ~ N(0,I;_1). Furthermore, let v be the max-fo-margin of D in its last
d — 1 coordinates, defined by

0, 5.
7= max min yw (3)
0eRI-1 (z.y)€D " ||6]|2

A simple geometric argument shows that the max-fs-margin classifier (up to rescalings) points in the same
direction as ) .
0 = [r,~0) (4)

where [|0]]2 = 1.
(a) Compute the test error of the max-f5-margin classifier as a function of v and r, i.e. for (x,y) ~ P, what

is P[y0Tz < 0]? What is the dependence on 7?

(b) Note that v is a random variable dependent on n and d. We aim to understand the dependence of
the accuracy on n and d. Hence, we want to derive non-asymptotic high probability bounds on . Let
X € R"*(d-1) he the datamatrix in the last d — 1 dimensions, i.e. row i in X equals T [2:.q)- Show that

~y < Smax (X)
> \/ﬁ

where smw(f( ) is the largest singular value of the datamatrix X.

(5)

(c) Recall that each entry of X is i.i.d. standard normal Gaussian distributed. To achieve non-asymptotic
bounds on Sy, (X), we first prove the following Lemma in two steps.

Lemma 1 Let X € R"*¢ have i.i.d. normally distributed entries. Then, E [spma0(X)] < Vd+ /0

(i) Recall that spa.(X) = max,cgi-1 y,esn—1(Au,v) equals the supremum of the Gaussian process
Xuw = (Au,v). Define Y,, = (g,u) + (h,v) where g € R? and h € R" are independent stan-
dard normal distributed variables. Show that

2

E |Xu,v - Xu’,v’ ? S E ‘Yu,v - Yu’,'u’

(6)
(ii) To finish the proof of Lemma 1, we use the following important result: jbr; jbry

Lemma 2 (Slepian’s inequality) Consider two Gaussian processes (Xi¢)ier and (Yi)ier whose
increments satisfy Equation (4) for all ((u,v), (uv/,v")) € T. Then E[supter X¢] < ElsupterY?].

Prove Lemma [I] using Lemma [2]

(d) Use Theorem 2.26 in MW and Lemma 1 to prove that s,,..(X) < v/d + y/n + t with a probability of at
least 1 — 2/,
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