GML Fall 25, Homework 2: Generalization bounds

1 Gaussian and Rademacher complexities

Read MW Chapter 5 as a reference. The Gaussian complexity of a class of functions H, for a fixed set
of covariates x1, ..., 2y, is defined as Esup,cy £ 37 | w;h(z;) where w; b N(0,1). When deriving uniform
bounds in regression problems with Gaussian noise, we will see that the Gaussian complexity arises naturally
and is relatively easier to bound.

Let us now define, for an arbitrary set T C R”, the Rademacher complexity as R, (T) := Esupger = >0 €

with €; being i.i.d. Rademacher random variables and the Gaussian complexity as g~n(11‘) = Esupger % S wib;
with w; i.i.d. standard normal random variables. In this question, we show how the Rademacher complexity is
related to the Gaussian complexity. Formally, we prove that

én(']T) ~ T~
0 < () < \@gnar)-

(a) Show that for any set T the Rademacher complexity satisfies the upper bound R, (T) < \/§Q~n(']l‘) Give
an example of a set for which this bound is met with equality.

(b) Show that G, (T) < 2y/IognR,(T) for any set T. Give an example for which this upper bound is tight
up to a constant factor. You may use that R, (é(T)) < R,(T) for any contraction (see Gaussian analog
MW Proposition 5.28).

Solution

(a) Using the fact that E|w;| = \/g if w; ~ N(0,1), we can write:

™

2 1 — 2 1 —
—R,.(T) =E, |sup — 0,7/ —| =E. |sup — €0, Eypl|w;
(T) epn; = apn; [|w; ]

1 ¢ () I, | _5
<Ec, [sup— Oicilw;|| = Ey, |sup — O,w; | =Gn(T
33 i w3 ™

Step (i) comes from the fact that w} := ¢;|w;| is distributed like a standard normal if ¢; is a Rademacher
random variable and w; ~ N (0, 1)

Equality happens for instance when we take T =BJ (1) = {0 € T | ||0] . <1}



(b) We can write

~ 1
Gn(T) w | Sup % w;0;
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; Ew,e E Sgpzﬁiwiei = Ew,e E Sgpzei‘wiwi
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—E 1 |wl|92
=Ey. max|wj|supfg 6G————
J o n <~ max; lw;]
1 10;
=E, |max|w;E, |sup— E 61&
J o n <~ max;|wjl

i ~ (4i7) -
@, [max|wj7zn<¢>wmr>>} < E. [maxmjmnar)}
J J

~ (iv) ~
=Rn(T)E, {max|wj|} < 24y/lognR,(T).
J

For (i) we use symmetrization: By symmetry, the random variables w;, €;w; and €;|w;| with independent (of

w;) Rademacher variables ¢; have the same distribution. In (ii) we define the function ¢; ., (6;) = maﬁiﬁiﬂw
J J

for arbitrarily fixed w yields. It is then easy to verify that ¢; ., is a contraction and hence the contraction

inequality can be used to obtain (iii). In (iv) we use the inequality proved in the first homework.

Equality (up to constant factors) happens for instance when we choose T = B¢(1) = {# € T | ||6]|; < 1}.

2 Rates for smooth functions

Read MW Examples 5.10. through Example 5.12. (notice typos in Example 5.11. - it should be § = ¢**7
everywhere). The non-parametric least-squares estimate is defined as

o~

F = argmin Ra(f) =+ > (i ()"
=1

fer
In this exercise we derive the prediction error bound for the examples of twice-differentiable functions F,) and
a-th order Sobolev spaces W([0, 1]) on [0, 1].
Fioy = {f [0, = R [ flloc + 1f P loo + 1P oo < C < 00}
Wy ([0,1)) == {f : [0,1] = R | /¥ € £([0,1]) and f7(0) =0Vi =0,...,a — 1}

where f(%) stands for the a-th (weak) derivative. Throughout the problem, we assume that f* € F.

(a) Prove that the set {fz,3 € {—1,+1}*} in Example 5.10. forms a 2eL-covering in the sup-norm.

(b) For the function class

Fary =L O SR fD e <G ¥ = 0,0, [ (@) = O )] < Ll — 2/ Va2’ € [0,1]}

we have log N (€; Fo v, || |loo) = O((l)#w) Use this fact to establish the following prediction error

€
bound for the non-parametric least-squares estimate f with F = F,) for positive constants co,c1,c2
which may depend on C but not on n, o2

2

]P’(”J?_ f*”i > Co(g )%) < Cle—cz(n/o2)1/5
n
(c) For a-th order Sobolev kernels, assume that the empirical eigenvalues decay with rate fi; = j 2% and we

minimize the square loss in the constrained function class F = {f € Wg'([0,1]) : || f||z < 1}. Show that
the prediction error of the non-parametric least-squares estimate reads

~ 2 o R
P[Hf . f*Hi > CO(i)‘ziﬂ] < 616_82(672)2 +1'
n



Solution

(a) We prove that the set {fg,3 € {—1,+1}M} is a 2eL-cover of F, by showing that for any f € Fy it is
possible to construct a sequence (3 such that ||f — fgllco < 2¢L. For an arbitrary f € Fr, let us construct
B ={p1,...,fnm} in the following way:

B1 =sgn(f(€)); Brt1 =sgn (f((k+1)e) — lyel)) ,Vk > 1

where [}, € Z is the level in the grid on the vertical axis that approximates f(ke) according to the previous
choices of {51, ..., Br}. Assuming the whole § is known and the function f is completely determined, we
can write fz(ke) = lyeL. As shown in Exercise 5.10 from MW, fz € F1,V3 € {—1,+1}M. So what
remains to be proved is that an arbitrary f € Fr is 2eL-covered by fs, with 3 defined as above. More
formally, we have to show that || f — fg]|cc < 2€L.

We propose a proof by induction over the M intervals that |f(ke) — fg(ke)| < eL,Vk € [M]. An essential
premise for several steps in the proof is that f is L-Lipschitz. For the first interval we have for any x € [0, €]
that:

sup ’f ’ = sup
z€[0,¢] z€[0,€]

@) < sl )Y

< sup [f(2)] +

z€[0,€] €
< 2L
For the inductive step, we assume that sup, [,z [f(2)—f3(2)| < 2eL and want to show that sup,¢ ke, (k4-1)¢) [/ (2)—
fa(z)| < 2eL.
x — ke
sup |f(x) = fp(@)| = sup | f(z) — ( fa(ke) + €L -sgn(f(x) — fg(ke))
z€(ke,(k+1)e€] z€(ke,(k+1)¢€] €

= sup
z€(ke,(k+1)¢€]

< sup [sgn(f(z) — fa(ke))|-
z€(ke,(k+1)¢€]

ﬂ@M@@+ﬁ@@Omhﬂeb%mﬂ@m%mxemﬂ

— ke

— fs( ke}—eL

T — ke
< sup
z€(ke,(k+1)¢€]

< 2¢elL

|f(2) = fa(ke)| — €L

The labt inequality holds because on the one hand we have that 0 < e *—*< ke < €L and on the other hand
0< |f — fa(ke) | |f fke) + f(ke) — fg(ke)| < 2¢L.

Remark: A similar argument can be used to show that the same set is a eL-cover of F;, but in this case
one would have to be more careful to keep into account the smoothness of a function f € F *inside* the
quadrants as well.

(b) The main idea is to bound the error of the non-parametric least-square estimate using the prediction error
bound in Lecture 4/5 (MW Theorem 13.5). We set out to find a ¢,, that satisfies the critical inequality
and thus makes the bound in the theorem hold. We can use Dudley’s integral to bound the localized
Gaussian complexity in the critical inequality. One such result is given by Theorem on slide 7 Lecture 5
(MW Corollary 3.17). We use this to select the §,,. Concretely, for the function class F, ,, we can start
by rewriting the integral as follows:

1 10
NG / V10BN (t Fo |- )t < 7/ VIOEN (1 Fo sy, | - oot

\f/ ( )2(a+w) it
z(’)(\/ﬁ&l‘zmm)

Using Corollary 13.7 from MW we can conclude that in order to choose a d,, that satisfies the critical

1
inequality it is sufficient to select a value that satisfies ﬁél_ﬂuﬂ) <O (g)



3

2(atv)

. . 2 «@
By rearranging the terms we obtain §2 ~ 2TV
n

By the definition of F(3), we see that F(3) C Fi 1 by the fundamental theorem of calculus. The final result
4

follows now by plugging the value of 62 = c%zg into the prediction error bound (note that we choose t = 1
in the bound by notation in lecture, which differs from the notation in the book).

The solution follows the derivation in Example 13.20 in MW. We use the bound on the localized Gaussian
complexity of a norm-bounded RKHS introduced in lecture 6 (see Lemma on slide 8). We then plug this
into the critical inequality to choose a §,, that satisfies it, thus bounding the prediction error with high
probability. We start from the aforementioned lemma in the lecture. Let us choose & € N such that
fr = k720 > 62> (k+1)72* = jig41 i.e. the index k of the smallest eigenvalue larger than 4.

~ 2 n ] R
Guws (0.1:) < /2 [ 32 mingo2, )
j=1
2 L
=\ Zmln{(ﬁ,%}
j=1
2 LB |
:\/> R+ D o
" j=k+1

= \/g\/w + O ((k+1)1-2)
eI

The resulting second term can be then upper bounded by an integral as we did in (i). In (ii) we use the
fact that, by the definition of k, kd% > (k + 1)1 72,

In order to get rid of the dependence on k, we can further upper bound k62 like k62 < 62 a by using the
left-hand side inequality in the definition of k. We obtain that:

1

gn(Wg([O, 1]),5) < \/z\/m <0 02— a

n

Using Corollary 13.7 from MW it follows that in order to satisfy the critical inequality, it suffices to choose
_1 Zia
a ¢ such that 4/ ‘szT” <O (%) After conveniently rearranging the terms we arrive at 62 ~ ("—2 e

n
Plugging everything into the statement of Theorem 13.5 from MW, like we did for part a), concludes the
proof.

Sparse linear functions

We already looked at the complexity of linear function classes with a margin v and ¢ norm constraint in
previous homeworks and lectures. In this exercise, we bound the Gaussian complexity of a smaller subset of /5
constrained balls, i.e.,

Frs = {f()={0,2): [0]lo <s[0ll2 < B}

This is a useful quantity as it gives intuition for why constraining the function class to sparse linear models can
help to decrease the sample complexity below dimension d.

(a) Define X € R™*¢ as consisting of rows z1, .. ., ,, the sample covariate vectors. Let the matrix Xg € R?*I5I

be the submatrix of X consisting of columns of X that are indexed by S. First show that the Gaussian

complexity G,(Fps(z])) can be rewritten as ﬁ]E supg (6, X—\/Tﬁ“’) where w ~ N(0,1,). Use this fact to

establish G, (Fp .(z7)) < BE,, max g _, || X2],.




XJd Xs
n

(b) Define wg = ﬁX;w. Assuming that for all subsets S of cardinality s we have )\max(
that

) < C?, prove
P([|wsll2 > v/sC + 6) < e~ ze7.

Hint: The Euclidean norm is a Lipschitz function.

(c) Use the preceding parts to show

slog(e—d)

S

(d) We use the set

J%B,s = {f() =(0,z) : |0]]p < s, ”X\/gb < B}

for bounding the prediction error of the best linear sparse approximation. Prove that

slog(%)
n

gn(}:B,s(fE?)) S O|B

(e) Consider the following model: We observe y; = f*(x;)+w; with i.i.d. noise w; ~ N (0,1) and f* = (*,-) €
Foo,s- Consider the (computationally infeasible) estimator 6 € argming, o < [y — X0||§ . Use Theorem
13.13 in MW and the previous bound to prove that with high probability,

slog(ed/s)

1 12
Lo - xa][ g slosteds),
n 2 n

Solution

(a) To rewrite the Gaussian complexity we simply rearrange some terms and use the matrix notation for the
points zt. We then use Cauchy-Schwarz inequality to pull out the supremum of ||f||2 and arrive at the
final result. In what follows, we denote with ® the elementwise product and for a set S C [d] and the
vector 1g € R™ is defined as (1g); = 1, for ¢ € S and 0 otherwise. It is important to observe that any
sparse 6 with ||f|lo < s can be written as § = 0 ® 1g,, where Sy C [d] is the set of indices of the non-zero
values of 6 and thus |Sy| < s.

1 Xt w

— Esup(d, =2

i

1 XTw
=—=E sup (0015, )

VI 9,1S|=s n

cs 1 17 o XTw
VI g,1Se|=s Vn
T
< BE max 7||XSIUH2
|S|=s n

(b) A key insight for solving this is to notice that for any ¢ € [s], (ws); is a linear combination of iid standard
Gaussians. This means that it is itself distributed according to a Gaussian A(0, Z?ZO(X 5)12]) Moreover

it is important to point out that the norm of wg is C-Lipschitz wrt w because ||wg|| = || ﬁngH < C|lwl].



This allows us to use Theorem 2.26 from MW from which it follows that ||wg|| — E|lwg]| is sub-Gaussian

with parameter C.
wl Xg Xt w
n

TU}
Elwslo] = E [IIX\% ”2] =E

(2 E wl XgXTw _ g tr (wTXSng)]
n n
(i) E tr (XSngwT)‘| _ tr (XSX?;E [wa]) _ tr (XSXg)
n n

° X¢XT X¢XT
Z)\i <S;/LS> < SAmax ( Sn S> < C'\/g

This yields the following;:

P [|lws]| > OV + 6] < P [[lws]| > Elws]] + 6] < e3e?

Inequality () follows from Jensen, in (i¢) we have used the cyclic property of the trace. The identity (iii)
uses the fact that the trace of the matrix A is equal to the sum of its eigenvalues, denoted by A;(A).

(¢) For point a) we have proved that the Gaussian complexity is bounded by the expectation of the maximum
of a finite collection of random variables. ~As we stated in part b), the random variable ||wg|| — E|lwg]|
is zero-mean and sub-Gaussian with parameter C' for any S. Notice that there are (‘f) ways to select
the set S C [d]. We can use the inequality for the expectation of the maximum of sub-Gaussian random
variables that we derived in the previous homework, because it applies for random variables that are not
independent as well (as is the case here). Thus we arrive at the following:

XT
Go(Fis(27)) < BE max 125 ll2

|S|=s n
= Bio\/g + BE max 7“105”2 _ C\/E

NG |S|=s vn
—E
< BEY® | BE max sll2 — Ellws|l2
NG |S|=s vn
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Inequality (i) employs the fact that (f) < (%d) and inequality (ii) follows from the fact that we ignore

o7 . . . . d
constants (hiding them inside the big-O notation) and /s < {/slog (%)

(d) The main idea is to use the same arguments as before in parts a), b) and c¢) but applied for a different
Lipschitz function. From part a) we have that:

= 1 XT’LU 1 XTw
n s(zh)) = —=E 779 = & Lye
Gn(FB.s(z1)) NG Sl;P( N ) NG lztllfss;lsm n 5)



We can rewrite the inner product to take advantage of the upper bound on || ||2

1 XTw
—E sup sup(is ,05)
VI s12s 05 VI

1 Xs0
—E sup sup{w 578

T VR (sims 05 ’\/ﬁ>

1 Xs0
= —=E sup sup(ws, —=>)

VI |s|=s 0s Vn

B
< —=E sup [Jws]|
\/>

|S|=s

gn(fBS(x?)) =

We denoted by wg the orthogonal projection of w onto span(Xg) and by P[Xg] € R**™ the projection
operator. By the orthogonality of the projection, the norm of wg is 1-Lipschitz wrt w. So given parts b)
and c), the conclusion follows by taking C = ﬁ

(e) Denote 6]?375 = ]?378 - ]?B,s. By Theorem 13.13, any positive solution d,, > 0 to

Gu(0Fss(a1)) _ &
0 -2
will be a bound on the prediction error. By the inclusion oF B,s C j':g B,2s and the previous derivation, we
know that
~ slog(ed/s
G (0Fs.(a7)) 5 01 1Y),

Solving &4/ Slog7‘“”3’)/(5 v/ %&d/s) < g yields that, up to constants,

slog(ed/s)

n

2
52 =<

bounds the prediction error by Theorem 13.13 in MW.

4 A minimax lower bound for dictionary learning

Consider the problem of dictionary learning: Suppose you want to solve a regression problem, and are given a
finite set of candidate models F = {f1,..., fm}, called a dictionary. The elements in F may have been trained
before using an independent dataset, or may simply be good candidates for the learning task at hand (think,
for instance, of using “foundation models”). For this exercise, we treat them as fixed, deterministic functions,
but do not assume anything else about them (beyond boundedness). A central question then becomes: How
can we find a predictor that is as good as the best one from the dictionary? And what is the minimal amount
of data necessary to achieve this (say, up to e-error)? It turns out that, despite the simple setup, answering
these questions yields a rich theory.

In this exercise, we prove a minimax lower bound on the problem from above in the following setting. Let u be
the Lebesgue measure on [0,1], let X5,..., X, be i.i.d. samples from p, and let

Y= f(Xi) +&

for some unknown function f* : [0,1] — R and i.i.d. Gaussian variables &1,...,&, ~ N(0,1). For any f :
[0,1] = R, denote by Py the distribution of (X1,Y;) if f* = f, so that D := ((X1,Y1),...,(Xp,Y,)) ~ PP is
an i.i.d. dataset from this distribution. Let Fo = {f : [0,1] > R : || flloc <1} and F = {f1,..., fm} C Fo be an

arbitrary set of measurable functions f : [0,1] — R where 3 < m < expn. We further denote P; = Py,. Under
these assumptions, it turns out that the following lower bound is true, and in fact tight up to constant factors.

Theorem 1 There exists a constant ¢ > 0 such that for all regressors fz f(D,]-") :[0,1] — R it holds

{ If — f* H logm
su ®@n — min

f*epO D~P, L2( ) fer L2(u)
FCFo,|Fl=m

In this exercise, we will prove Theorem |1} by first proving a lower bound on general metric spaces, and then
applying this bound to the setting from Theorem



(a) Describe in words what Theorem (1| tells us about the dictionary learning problem.

(b) Let m > 2, and let (©,d) be some metric space that contains the elements 6,61, ...,0,,. Let Py, 0 € ©
be a family of probability measures on &', denote P; = Py, , and assume that P; < Py and Py < P; (they
are absolutely continuous with respect to each other) for all j =1,...,m.

(i) Prove that for any test (that is, measurable function) ¢ : X — {0,...,m} and any 7 > 0,

, ™m 1 & dPy
P; > — Pl — >
je{%l,é.?fm} j(w#j)* 1+7mm mjzz1 J (de T)

Here P;(1 # j) is short for P;({z € X : ¢(z) # j}).
Hint: To prove this bound, you may find it useful to proceed as follows: First show a lower bound on

Py(1) # 0) using the events A; = {z € X : (dPy/dP;)(z) > 7}. Then combine it with a lower bound
on all other P; (¢ # j) using maxeo,....m} P (¢ # j) = APo(¢ # 0) + (1= A) maxje 1. my P (¢ # J)
for a well-chosen A € [0, 1].

(ii) Conclude from the previous step that, if for some s > 0 it holds d(6;,60xr) > 2s > 0 for all j # k

and L > ey KL(Pj, Py) < alogm for some 0 < a < 1/8, any estimator § : X — © (measurable

function) satisfies
. vm \/T
sup Pyp(d(60,0) > s) > —— | 1 —2a — > 0. 1
sup P(d(0.0) > 5) > 12— T (1)

Again, Py(d(0,0) > s) is short for Py({x € X : d(0(z),0) > s}).
Hint: For each estimator, construct a corresponding test and use the previous bound. You may then
use the following version of Pinsker’s inequality without proof: If P < @, then

/ max {1og Zg,o} dP < KL(P,Q) + VKL(P,Q)/2.

(¢) Prove Theorem
Hint: Prove the statement for a particular choice of F consisting orthogonal system in L?(u) where each
function has L?(u)-norm < y/log(m)/n, and use the lower bound from Eq. .

Solution

(a) This question is open ended, but this is one of the take-aways: In the worst case, we can “only” handle
an exponential number of models m = o(exp(n)) (in particular, no infinite function class). In the learning
settings we have considered in the class so far, we learned how to deal with function classes that are infinite
through covering numbers, Rademacher complexity, VC dimension, etc. But for those to be meaningful,
we need stronger assumptions on the function class, which are not satisfies in the counterexample of this
lower bound.

Arguably, though, the logarithmic dependence on m is more of a blessing than a curse, and it stems from
the fact that we only want to do as well as the best in the dictionary. In contrast, suppose you would
want to match the performance of the best linear combination of the dictionary functions ), w; f; with
w € R™. Then, using similar arguments, one can show a lower bound of order m/n.

(b) (i) We begin by defining the events A; = {x eXx: i—ﬁ:(x) > T} C X. A calculation shows that

m

Py(y #0) =) Po(v =)

zszj({wﬂ}ﬂAJ)

>rm | =3 P =j) | -7 Pj(A9)
Jj=1 j=1

= Tm(po — t)



where we defined the two helper quantities

1 & _ 1 & dPy
po:%ZP](’(ﬂ:j) and t:mzpj<d_P]<T>

j=1 j=1

Therefore, we get that for A =1/(1 4+ mm) € [0, 1]

max }Pj(w ;éj)}

)
je{l,....m

max | P( # j) = max {Pow #0)

j€{0,....m
> max {Tm(po —t),1 —po}
> Atm(po —t) + (1 = A)(1 — po)

™
= 1-—t
1—|—7‘m( )

This yields the claim by plugging in the definition of ¢.

(ii) Let 8 = alogm, %Z;nzl KL(P;, Py) < B, and choose 7 € (0,1). For each estimator 0, we can
construct the following test:
Y(z) = argmin d(A(z),6;).
j€{0,....,m}

Because d(f;,0;) > 2s > 0, we get that

sup Py(d(6,60) > s) > ax P;j(d(0,0;)>s)> max P; ).
sup o (d( )_8)_j€{r(r)1wm} i (d(8,0;) = )—je{o,...,m} ACEN)

We can now lower bound this quantity using the previous bound. Specifically, we have to lower bound
the term L Sy By (% > 7'). To that end, we obtain from Markov’s and Pinsker’s inequalities
J

that
dP, dP; 1
Pl >r)=1-P (logZd > log ~
j<dpa‘_T> J(Ogdpo>og7>

1 dP;
- log 253 04 qp,
log(1/7) /max{ 8 B, } i

>1- m (KL(Pj,PO) + \/KL(Pj,Po)/2) :

From Jensen’s inequality and the assumption, we know that L Z;n:l VKL(P;, By) < /B, and so it
holds that

1 &« dP, VB/2

il E P: aro >r|>1- M

m dP; log(1/7)

j
The result then follows from the previous derivation with 7 = 1/4/m. A calculation shows that this
is positive for any 0 < o < 1/8.

j=1

(c) Let {¢; }Tzl be an orthogonal set of functions in L2(u), such that

Vitk: [o@o@di@) =0, 6l =1 and ] <1

For instance, this could be the Rademacher functions defined as ¢; = 1 and for j > 1, ¢;(z) =
sgn(sin(2/~17x)).

Define for some 0 < v < 1 to be chosen later

logm

fi(z) =~ ¢;j(x).

n
Then F C Fo. If f* € F, then minger || f — f*||L2(H) =0, and so

2

N 2
_f* —min|lf = 7 > inf sup E ®n
f=17 L2 fefo SN2 7 f*el; D~P

F-r

inf sup K, pen
f fr€Fo s
.7:C_7:0,|.7-'\=m

L2(p)



Notice that by construction, we have that

5logm

5= flltagy = [ = 5Pdu= [ dur [ shau=22 2",

and moreover,
n n 2
KL(P", PE") = nKL(P;, P Hfg Fill g2 = 7 logm.

Hence, we can now employ the lower bound from the previous section, with the metric space (0,d) =
(Fos Il z2¢))s 05 = f5, and 52 = 4%(logm)/(2n) and o = 42, which we choose to be 42 = 1/16. By
Markov’s inequality, we get that
s2>
Lz(ﬂ)

inf sup E,_ pEy > 52 inf sup P« (

f freF L2 (p) f freF
S logm vm 1 2 [2/16
32n |1+m 16 logm

> 0,01298™

where the last inequality holds because the second factor is minimized at m = 3. Since this holds for a
particular choice of a subset of m measurable functions, it also holds for the supremum. That concludes
the proof with ¢ = 0.01.

5 (BONUS) Classification error bounds for hard margin support
vector machines (SVM)

Recal the material on max margin and SVMs from the lecture. In this exercise, we derive upper bounds for the
0 — 1 classification error of hard margin SVMs, also called max-fo-margin classifiers, and defined by:

N . <97 SC)
h = 2
A8 e (een [0 @)

where D = {(z;,y;)}7, is the dataset consisting of n input features/label pairs. We remark that the hard-
margin SVM is obtained when running logistic regression until convergence on separable data.

For this exercise, we assume that the dataset D is generated by drawing iid samples form the following generative
data distribution (z,y) ~ P where the labels y are uniformly distributed on {—1,+1} and the input features
are in the form of x = [yr,Z] with & ~ N(0,I;_1). Furthermore, let v be the max-f>-margin of D in its last
d — 1 coordinates, defined by
0, xo.
4= max min y<A72‘d> (3)
ezt @jen” 0]
A simple geometric argument shows that the max-¢3-margin classifier (up to rescalings) points in the same
direction as

0 = [r,70] (4)
where [|0]]2 = 1.
(a) Compute the test error of the max-f>-margin classifier as a function of v and r, i.e. for (z,y) ~ P, what

is P[y0Tz < 0]? What is the dependence on 7?

(b) Note that v is a random variable dependent on n and d. We aim to understand the dependence of
the accuracy on n and d. Hence, we want to derive non-asymptotic high probability bounds on . Let
X € R"*(4=1) he the datamatrix in the last d — 1 dimensions, i.e. row i in X equals T [2:q)- Show that

Smax ()N()
S —

where $;,00 (X ) is the largest singular value of the datamatrix X.

(5)

(c) Recall that each entry of X is i.i.d. standard normal Gaussian distributed. To achieve non-asymptotic
bounds on $,,4.(X), we first prove the following Lemma in two steps.
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Lemma 1 Let X € R™*? have i.i.d. normally distributed entries. Then, E [smaz(X)} <Vd+n

(i) Recall that spae(X) = max,cgi-1 yesn—1(Au,v) equals the supremum of the Gaussian process
Xuw = (Au,v). Define Y, , = {(g,u) + (h,v) where g € R? and h € R" are independent stan-
dard normal distributed variables. Show that

E |Xu,v - Xu’,v’ ? S E ‘Yu,v - Yu’,v’ 2 (6)

(ii) To finish the proof of Lemma 1, we use the following important result: jbr; jbry,

Lemma 2 (Slepian’s inequality) Consider two Gaussian processes (Xi)ier and (Yi)ier whose
increments satisfy Equation (4) for all ((u,v), (W/,v")) € T. Then E[supierX:] < E[supierYz].

Prove Lemma [ using Lemma [2]

(d) Use Theorem 2.26 in MW and Lemma 1 to prove that s,..(X) < v/d + v/ + t with a probability of at
least 1 — 2e~+"/2,

Solution
(a) Using that 6 = [r, 6], we find that

d d

P {yéTx < 0} =P |yraz; Jr’Yinéz‘—l <0| =P |r? +72x¢9~i_1 <0], (7)
i=2 i=2

where we used that x1 = yr. Note that Z?:2 xiéi,l is a sum of independent Gaussian distributed random
variables (RVs). Recall that the sum of two Gaussian distributed RVs is again a Gaussian distributed RV
with a variance equahng the square sum of the variances and the mean the sum of the means. Using this
fact, we find that E 5 x;0;_1 is standard normal distributed since Z 1 192 =1 and

P {yéTx < 0] = (—f) , (8)

where ® denotes the cumulative density function of a normal distributed RV. Clearly, the test error is
monotonically decreasing in 7.

(b) We can rewrite the definition of the max-fo-margin v as follows:

= max min 0 T 9

= oeri T o1 pen V6 72) )

Let 1,, denote the all ones vector of size n and recall that the labels y are independent of the last d — 1
coordinates of the input features x. Using the definition of X and the fact that a standard normal
distributed RV times an independet RV which take the values +1 or —1 remains a standard normal

distributed RV, we can write
v = max b
OcRI-L0||2=1 (10)

subject to 87 X > bl,,,

where the greater than sign is elementwise. Recall the following important property of the maximal
singular value: for any vector  with ||8]o = 1, we have that |07 X |2 < $maz(X). Hence, taking the
norms on both sides yields ;42 > b]|1,||2 such that b < Smaz/\/N-

(c) (i) Using the definition of X, ,, we find that

2

d n
EHXu,v - Xu’.,v/|2] =E U(Au,v} <Au ’U :| = ZZ Qg5 Uz ugvj) ) (11)

where a; ; is the (i, 7)th entry of A and normal distributed. Since all entries of A are i.i.d. standard
normal distributed the cross terms of the expectation are 0, i.e. Ea; ja; ;7] = 01if ¢ # i’ or j # 5/
and the non-cross terms satisfy E[a? ;1 =1. We find that

E |:|Xu,v - X’u/,v’

= lfwwy = @) = = o =) < Ju =G+ o -3 (12)
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Similarly, from the right hand side, where in this case h,g are vectors as entries i.i.d. normal
distributed RVs, we find that

E [V = Yo '] = lu =2 + o = /|l (13)
(ii) Using Slepian’s Lemma, we find that
E [Smaaz(X)] = E gliqu,v <E Eiquyv =E {22})){(9,1;) + (h,v)] . (14)
Clearly, max, (g, u) is achieved by setting u = Hgg||2' Hence, we find that
E[smaz(X)] < lgll2 + [|2]l2 = Vd + v/n. (15)

(d) We can write the matrix X as a vector of size R¥™. If the maximum singular value functional is a 1-
Lipschitz function, then Theorem 2.26 yields the result directly. Note that for any matrices Ay, Ay of size
R"™*4 it holds that

max  ||A4160]2 — max [|A20"]|2]| - (16)

Ay) - Ay)| =
’Smaw( 1) Smaw( 2)’ 0ERY, |[6]2=1 0/ R4 [0} 5=1

Without loss of generality, we assume that S;a:(A1) > Smaz(A2). We find

<  max A0z — [[A20]]2 < || A1 — A2l F, (17)

max ||A10H2 — max ||A29,||2 <
OER, [|0]|2=1

0€R?||0]2=1 0’€R4,[|0]|2=1

where ||A; — Az||# is the Frobenius norm of A; — A,. Hence, the maximum singular value functional is a
1-Lipschitz function, which concludes the proof.
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