
GML Fall 25, Homework 2: Generalization bounds

1 Gaussian and Rademacher complexities

Read MW Chapter 5 as a reference. The Gaussian complexity of a class of functions H, for a fixed set

of covariates x1, . . . , xn, is defined as E suph∈H
1
n

∑n
i=1 wih(xi) where wi

i.i.d.∼ N (0, 1). When deriving uniform
bounds in regression problems with Gaussian noise, we will see that the Gaussian complexity arises naturally
and is relatively easier to bound.

Let us now define, for an arbitrary set T ⊂ Rn, the Rademacher complexity as R̃n(T) := E supθ∈T
1
n

∑n
i=1 ϵiθi

with ϵi being i.i.d. Rademacher random variables and the Gaussian complexity as G̃n(T) := E supθ∈T
1
n

∑n
i=1 wiθi

with wi i.i.d. standard normal random variables. In this question, we show how the Rademacher complexity is
related to the Gaussian complexity. Formally, we prove that

G̃n(T)
2
√
logn

≤ R̃n(T) ≤
√
π

2
G̃n(T).

(a) Show that for any set T the Rademacher complexity satisfies the upper bound R̃n(T) ≤
√

π
2 G̃n(T). Give

an example of a set for which this bound is met with equality.

(b) Show that G̃n(T) ≤ 2
√
lognR̃n(T) for any set T. Give an example for which this upper bound is tight

up to a constant factor. You may use that R̃n(ϕ(T)) ≤ R̃n(T) for any contraction (see Gaussian analog
MW Proposition 5.28).

Solution

(a) Using the fact that E|wi| =
√

2
π if wi ∼ N(0, 1), we can write:

√
2

π
Rn(T) = Eϵ

sup
θ

1

n

n∑
i=1

ϵiθi

√
2

π

 = Eϵ

sup
θ

1

n

n∑
i=1

ϵiθiEw[|wi|]


≤ Eϵ,w

sup
θ

1

n

n∑
i=1

θiϵi|wi|

 (i)
= Ew′

sup
θ

1

n

n∑
i=1

θiw
′
i

 = G̃n(T)

Step (i) comes from the fact that w′
i := ϵi|wi| is distributed like a standard normal if ϵi is a Rademacher

random variable and wi ∼ N(0, 1)

Equality happens for instance when we take T = Bd
∞(1) = {θ ∈ T | ∥θ∥∞ ≤ 1}
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(b) We can write

G̃n(T) = Ew

 1

n
sup
θ

∑
i

wiθi


(i)
= Ew,ϵ

 1

n
sup
θ

∑
i

ϵiwiθi

 = Ew,ϵ

 1

n
sup
θ

∑
i

ϵi|wi|θi


= Ew,ϵ

max
j

|wj | sup
θ

1

n

∑
i

ϵi
|wi|θi

maxj |wj |


= Ew

max
j

|wj |Eϵ

sup
θ

1

n

∑
i

ϵi
|wi|θi

maxj |wj |




(ii)
= Ew

[
max

j
|wj |R̃n(ϕw(T))

]
(iii)

≤ Ew

[
max

j
|wj |R̃n(T)

]
= R̃n(T)Ew

[
max

j
|wj |

]
(iv)

≤ 2
√

log nR̃n(T).

For (i) we use symmetrization: By symmetry, the random variables wi, ϵiwi and ϵi|wi| with independent (of
wi) Rademacher variables ϵi have the same distribution. In (ii) we define the function ϕi,w(θi) =

wiθi
maxj |wj |

for arbitrarily fixed w yields. It is then easy to verify that ϕi,w is a contraction and hence the contraction
inequality can be used to obtain (iii). In (iv) we use the inequality proved in the first homework.

Equality (up to constant factors) happens for instance when we choose T = Bd
1(1) = {θ ∈ T | ||θ||1 ≤ 1}.

2 Rates for smooth functions

Read MW Examples 5.10. through Example 5.12. (notice typos in Example 5.11. - it should be δ = ϵα+γ

everywhere). The non-parametric least-squares estimate is defined as

f̂ = argmin
f∈F

Rn(f) :=
1

n

n∑
i=1

(yi − f(xi))
2.

In this exercise we derive the prediction error bound for the examples of twice-differentiable functions F(2) and
α-th order Sobolev spaces Wα

2 ([0, 1]) on [0, 1].

F(2) := {f : [0, 1] → R | ∥f∥∞ + ∥f (1)∥∞ + ∥f (2)∥∞ ≤ C <∞}
Wα

2 ([0, 1]) := {f : [0, 1] → R | f (i) ∈ L2([0, 1]) and f (i)(0) = 0 ∀i = 0, . . . , α− 1}

where f (a) stands for the α-th (weak) derivative. Throughout the problem, we assume that f⋆ ∈ F .

(a) Prove that the set {fβ , β ∈ {−1,+1}M} in Example 5.10. forms a 2ϵL-covering in the sup-norm.

(b) For the function class

Fα,γ = {f : [0, 1] → R | ∥f (j)∥∞ ≤ Cj ∀j = 0, . . . , α, |f (α)(x)− f (α)(x′)| ≤ L|x− x′|γ ∀x, x′ ∈ [0, 1]}

we have logN (ϵ;Fα,γ , ∥ · ∥∞) = O(( 1ϵ )
1

α+γ ). Use this fact to establish the following prediction error

bound for the non-parametric least-squares estimate f̂ with F = F(2) for positive constants c0, c1, c2
which may depend on C but not on n, σ2

P(∥f̂ − f⋆∥2n ≥ c0(
σ2

n
)

4
5 ) ≤ c1e

−c2(n/σ
2)1/5

(c) For α-th order Sobolev kernels, assume that the empirical eigenvalues decay with rate µ̂j = j−2α and we
minimize the square loss in the constrained function class F = {f ∈ Wα

2 ([0, 1]) : ∥f∥F ≤ 1}. Show that
the prediction error of the non-parametric least-squares estimate reads

P
[
∥f̂ − f⋆∥2n ≥ c0(

σ2

n
)

2α
2α+1

]
≤ c1e

−c2(
n
σ2 )

1
2α+1

.
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Solution

(a) We prove that the set {fβ , β ∈ {−1,+1}M} is a 2ϵL-cover of FL by showing that for any f ∈ FL it is
possible to construct a sequence β such that ∥f − fβ∥∞ ≤ 2ϵL. For an arbitrary f ∈ FL, let us construct
β = {β1, ..., βM} in the following way:

β1 = sgn(f(ϵ)); βk+1 = sgn
(
f((k + 1)ϵ)− lkϵL)

)
, ∀k ≥ 1

where lk ∈ Z is the level in the grid on the vertical axis that approximates f(kϵ) according to the previous
choices of {β1, ..., βk}. Assuming the whole β is known and the function f is completely determined, we
can write fβ(kϵ) = lkϵL. As shown in Exercise 5.10 from MW, fβ ∈ FL, ∀β ∈ {−1,+1}M . So what
remains to be proved is that an arbitrary f ∈ FL is 2ϵL-covered by fβ , with β defined as above. More
formally, we have to show that ∥f − fβ∥∞ ≤ 2ϵL.

We propose a proof by induction over the M intervals that |f(kϵ)− fβ(kϵ)| ≤ ϵL, ∀k ∈ [M ]. An essential
premise for several steps in the proof is that f is L-Lipschitz. For the first interval we have for any x ∈ [0, ϵ]
that:

sup
x∈[0,ϵ]

∣∣f(x)− fβ(x)
∣∣ = sup

x∈[0,ϵ]

∣∣∣∣f(x)− ϵL · sgn(f(x))x
ϵ

∣∣∣∣
≤ sup

x∈[0,ϵ]

∣∣f(x)∣∣+ ∣∣∣∣ϵL · sgn(f(x))x
ϵ

∣∣∣∣
≤ 2ϵL

For the inductive step, we assume that supx∈[0,kϵ] |f(x)−fβ(x)| ≤ 2ϵL and want to show that supx∈(kϵ,(k+1)ϵ] |f(x)−
fβ(x)| ≤ 2ϵL.

sup
x∈(kϵ,(k+1)ϵ]

|f(x)− fβ(x)| = sup
x∈(kϵ,(k+1)ϵ]

∣∣∣∣∣f(x)−
(
fβ(kϵ) + ϵL · sgn(f(x)− fβ(kϵ))

x− kϵ

ϵ

)∣∣∣∣∣
= sup

x∈(kϵ,(k+1)ϵ]

∣∣∣∣∣f(x)− fβ(kϵ) + fβ(kϵ)−
(
fβ(kϵ) + ϵL · sgn(f(x)− fβ(kϵ))

x− kϵ

ϵ

)∣∣∣∣∣
≤ sup

x∈(kϵ,(k+1)ϵ]

∣∣sgn(f(x)− fβ(kϵ))
∣∣ · ∣∣∣∣∣∣f(x)− fβ(kϵ)

∣∣− ϵL
x− kϵ

ϵ

∣∣∣∣
≤ sup

x∈(kϵ,(k+1)ϵ]

∣∣∣∣∣∣f(x)− fβ(kϵ)
∣∣− ϵL

x− kϵ

ϵ

∣∣∣∣
≤ 2ϵL

The last inequality holds because on the one hand we have that 0 ≤ ϵLx−kϵ
ϵ ≤ ϵL and on the other hand

0 ≤
∣∣f(x)− fβ(kϵ)

∣∣ ≤ ∣∣f(x)− f(kϵ) + f(kϵ)− fβ(kϵ)
∣∣ ≤ 2ϵL.

Remark : A similar argument can be used to show that the same set is a ϵL-cover of Fl, but in this case
one would have to be more careful to keep into account the smoothness of a function f ∈ FL *inside* the
quadrants as well.

(b) The main idea is to bound the error of the non-parametric least-square estimate using the prediction error
bound in Lecture 4/5 (MW Theorem 13.5). We set out to find a δn that satisfies the critical inequality
and thus makes the bound in the theorem hold. We can use Dudley’s integral to bound the localized
Gaussian complexity in the critical inequality. One such result is given by Theorem on slide 7 Lecture 5
(MW Corollary 3.17). We use this to select the δn. Concretely, for the function class Fα,γ , we can start
by rewriting the integral as follows:

l
1√
n

∫ δ

δ2

4σ

√
logN (t;Fα,γ , ∥ · ∥∞)dt ≤ 1√

n

∫ δ

0

√
logN (t;Fα,γ , ∥ · ∥∞)dt

=
1√
n

∫ δ

0

(
1

t

) 1
2(α+γ)

dt

= O
(

1√
n
δ1−

1
2(α+γ)

)
Using Corollary 13.7 from MW we can conclude that in order to choose a δn that satisfies the critical

inequality it is sufficient to select a value that satisfies 1√
n
δ1−

1
2(α+γ) ≤ O

(
δ2

4σ

)
.
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By rearranging the terms we obtain δ2n ≈ σ2

n

2(α+γ)
2(α+γ)+1

.

By the definition of F(2), we see that F(2) ⊂ F1,1 by the fundamental theorem of calculus. The final result

follows now by plugging the value of δ2n = cσ
2

n

4
5
into the prediction error bound (note that we choose t = 1

in the bound by notation in lecture, which differs from the notation in the book).

(c) The solution follows the derivation in Example 13.20 in MW. We use the bound on the localized Gaussian
complexity of a norm-bounded RKHS introduced in lecture 6 (see Lemma on slide 8). We then plug this
into the critical inequality to choose a δn that satisfies it, thus bounding the prediction error with high
probability. We start from the aforementioned lemma in the lecture. Let us choose k ∈ N such that
µ̂k = k−2α ≥ δ2 ≥ (k + 1)−2α = µ̂k+1 i.e. the index k of the smallest eigenvalue larger than δ.

G̃n(Wα
2 ([0, 1]); δ) ≤

√
2

n

√√√√ n∑
j=1

min{δ2, µ̂j}

=

√
2

n

√√√√ n∑
j=1

min{δ2, 1

j2α
}

=

√
2

n

√√√√kδ2 +

n∑
j=k+1

1

j2α

(i)

≤
√

2

n

√
kδ2 +

∫ ∞

k+1

1

t2α
dt

=

√
2

n

√
kδ2 +O

(
(k + 1)1−2α

)
(ii)
=

√
2

n

√
O (kδ2)

The resulting second term can be then upper bounded by an integral as we did in (i). In (ii) we use the
fact that, by the definition of k, kδ2 ≥ (k + 1)1−2α.

In order to get rid of the dependence on k, we can further upper bound kδ2 like kδ2 ≤ δ2−
1
α by using the

left-hand side inequality in the definition of k. We obtain that:

G̃n(Wα
2 ([0, 1]); δ) ≤

√
2

n

√
O (kδ2) ≤ O


√
δ2−

1
α

n


Using Corollary 13.7 from MW it follows that in order to satisfy the critical inequality, it suffices to choose

a δ such that

√
δ2−

1
α

n ≤ O
(

δ2

σ

)
. After conveniently rearranging the terms we arrive at δ2n ≈

(
σ2

n

) 2α
2α+1

.

Plugging everything into the statement of Theorem 13.5 from MW, like we did for part a), concludes the
proof.

3 Sparse linear functions

We already looked at the complexity of linear function classes with a margin γ and ℓ2 norm constraint in
previous homeworks and lectures. In this exercise, we bound the Gaussian complexity of a smaller subset of ℓ2
constrained balls, i.e.,

FB,s = {f(·) = ⟨θ, x⟩ : ∥θ∥0 ≤ s, ∥θ∥2 ≤ B}
This is a useful quantity as it gives intuition for why constraining the function class to sparse linear models can
help to decrease the sample complexity below dimension d.

(a) DefineX ∈ Rn×d as consisting of rows x1, . . . , xn the sample covariate vectors. Let the matrixXS ∈ Rn×|S|

be the submatrix of X consisting of columns of X that are indexed by S. First show that the Gaussian

complexity Gn(FB,s(x
n
1 )) can be rewritten as 1√

n
E supθ⟨θ, X

Tw√
n
⟩ where w ∼ N (0, In). Use this fact to

establish Gn(FB,s(x
n
1 )) ≤ BEw max|S|=s ∥

X⊤
S w
n ∥2.
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(b) Define wS = 1√
n
X⊤

S w. Assuming that for all subsets S of cardinality s we have λmax

(X⊤
S XS

n

)
≤ C2, prove

that

P(∥wS∥2 ≥
√
sC + δ) ≤ e−

δ2

2C2 .

Hint : The Euclidean norm is a Lipschitz function.

(c) Use the preceding parts to show

Gn(FB,s(x
n
1 )) ≤ O

BC
√
s log( eds )

n


(d) We use the set

F̃B,s =

{
f(·) = ⟨θ, x⟩ : ∥θ∥0 ≤ s,

∥Xθ∥2√
n

≤ B

}
for bounding the prediction error of the best linear sparse approximation. Prove that

Gn(F̃B,s(x
n
1 )) ≤ O

B
√
s log( eds )

n

 .

(e) Consider the following model: We observe yi = f⋆(xi)+wi with i.i.d. noise wi ∼ N (0, 1) and f⋆ = ⟨θ⋆, ·⟩ ∈
F∞,s. Consider the (computationally infeasible) estimator θ̂ ∈ argminθ:∥θ∥0≤s ∥y −Xθ∥22 . Use Theorem
13.13 in MW and the previous bound to prove that with high probability,

1

n

∥∥∥Xθ⋆ −Xθ̂
∥∥∥2
2
≲
s log(ed/s)

n
.

Solution

(a) To rewrite the Gaussian complexity we simply rearrange some terms and use the matrix notation for the
points xn1 . We then use Cauchy-Schwarz inequality to pull out the supremum of ∥θ∥2 and arrive at the
final result. In what follows, we denote with ⊙ the elementwise product and for a set S ⊆ [d] and the
vector 1S ∈ Rn is defined as (1S)i = 1, for i ∈ S and 0 otherwise. It is important to observe that any
sparse θ with ∥θ∥0 ≤ s can be written as θ = θ ⊙ 1Sθ

, where Sθ ⊂ [d] is the set of indices of the non-zero
values of θ and thus |Sθ| ≤ s.

Gn(FB,s(x
n
1 )) =

1

n
E sup

θ

n∑
i=1

wi⟨θ, xi⟩

=
1√
n
E sup

θ

n∑
i=1

⟨θ, wixi√
n
⟩

=
1√
n
E sup

θ
⟨θ, X

Tw√
n

⟩

=
1√
n
E sup

θ,|Sθ|=s

⟨θ ⊙ 1Sθ
,
XTw√
n

⟩

CS
≤ 1√

n
E sup

θ,|Sθ|=s

∥θ∥2
∥1T

Sθ
⊙XTw∥2√
n

≤ BEmax
|S|=s

∥XT
S w∥2
n

(b) A key insight for solving this is to notice that for any i ∈ [s], (wS)i is a linear combination of iid standard
Gaussians. This means that it is itself distributed according to a Gaussian N (0,

∑n
j=0(XS)

2
ij). Moreover

it is important to point out that the norm of wS is C-Lipschitz wrt w because ∥wS∥ = ∥ 1√
n
XT

S w∥ ≤ C∥w∥.
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This allows us to use Theorem 2.26 from MW from which it follows that ∥wS∥ − E∥wS∥ is sub-Gaussian
with parameter C.

E[∥wS∥2] = E

[
∥X

T
S w√
n

∥2

]
= E

[√
wTXSXT

S w

n

]
(i)

≤

√√√√E

[
wTXSXT

S w

n

]
=

√√√√E

[
tr
(
wTXSXT

S w
)

n

]

(ii)
=

√√√√E

[
tr
(
XSXT

S ww
T
)

n

]
=

√√√√ tr
(
XSXT

S E
[
wwT

])
n

=

√
tr
(
XSXT

S

)
n

(iii)
=

√√√√ s∑
i=0

λi

(
XSXT

S

n

)
≤

√√√√sλmax

(
XSXT

S

n

)
≤ C

√
s

This yields the following:

P
[
∥wS∥ ≥ C

√
s+ δ

]
≤ P

[
∥wS∥ ≥ E[∥wS∥] + δ

]
≤ e

−δ2

2C2

Inequality (i) follows from Jensen, in (ii) we have used the cyclic property of the trace. The identity (iii)
uses the fact that the trace of the matrix A is equal to the sum of its eigenvalues, denoted by λi(A).

(c) For point a) we have proved that the Gaussian complexity is bounded by the expectation of the maximum
of a finite collection of random variables. As we stated in part b), the random variable ∥wS∥ − E∥wS∥
is zero-mean and sub-Gaussian with parameter C for any S. Notice that there are

(
d
s

)
ways to select

the set S ⊂ [d]. We can use the inequality for the expectation of the maximum of sub-Gaussian random
variables that we derived in the previous homework, because it applies for random variables that are not
independent as well (as is the case here). Thus we arrive at the following:

Gn(FB,s(x
n
1 )) ≤ BEmax

|S|=s

∥XT
S w∥2
n

= B
C
√
s√
n

+BEmax
|S|=s

∥wS∥2 − C
√
s√

n

≤ B
C
√
s√
n

+BEmax
|S|=s

∥wS∥2 − E∥wS∥2√
n

≤ B
C
√
s√
n

+BO

C
√

log
(
d
s

)
n


(i)

≤ B
C
√
s√
n

+BO

C
√√√√s log

(
ed
s

)
n


(ii)

≤ BCO


√
s log( eds )

n


Inequality (i) employs the fact that

(
d
s

)
≤
(

ed
s

)s
and inequality (ii) follows from the fact that we ignore

constants (hiding them inside the big-O notation) and
√
s ≤

√
s log

(
ed
s

)
.

(d) The main idea is to use the same arguments as before in parts a), b) and c) but applied for a different
Lipschitz function. From part a) we have that:

Gn(F̃B,s(x
n
1 )) =

1√
n
E sup

θ
⟨X

Tw√
n
, θ⟩ = 1√

n
E sup

|S|=s

sup
θS

⟨X
T
S w√
n
, θS⟩
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We can rewrite the inner product to take advantage of the upper bound on ∥Xθ√
n
∥2.

Gn(F̃B,s(x
n
1 )) =

1√
n
E sup

|S|=s

sup
θS

⟨X
T
S w√
n
, θS⟩

=
1√
n
E sup

|S|=s

sup
θS

⟨w, XSθS√
n

⟩

=
1√
n
E sup

|S|=s

sup
θS

⟨wS ,
XSθS√

n
⟩

≤ B√
n
E sup

|S|=s

∥wS∥2

We denoted by wS the orthogonal projection of w onto span(XS) and by P [XS ] ∈ Rs×n the projection
operator. By the orthogonality of the projection, the norm of wS is 1-Lipschitz wrt w. So given parts b)
and c), the conclusion follows by taking C = 1√

n
.

(e) Denote ∂F̃B,s := F̃B,s − F̃B,s. By Theorem 13.13, any positive solution δn > 0 to

Gn(∂F̃δ,s(x
n
1 ))

δ
≤ δ

2

will be a bound on the prediction error. By the inclusion ∂F̃B,s ⊂ F̃2B,2s and the previous derivation, we
know that

Gn(∂F̃δ,s(x
n
1 )) ≲ δ

√
s log(ed/s)

n
.

Solving δ
√

s log(ed/s)
n /δ =

√
s log(ed/s)

n ≤ δ
2 yields that, up to constants,

δ2n ≍ s log(ed/s)

n

bounds the prediction error by Theorem 13.13 in MW.

4 A minimax lower bound for dictionary learning

Consider the problem of dictionary learning : Suppose you want to solve a regression problem, and are given a
finite set of candidate models F = {f1, . . . , fm}, called a dictionary. The elements in F may have been trained
before using an independent dataset, or may simply be good candidates for the learning task at hand (think,
for instance, of using “foundation models”). For this exercise, we treat them as fixed, deterministic functions,
but do not assume anything else about them (beyond boundedness). A central question then becomes: How
can we find a predictor that is as good as the best one from the dictionary? And what is the minimal amount
of data necessary to achieve this (say, up to ϵ-error)? It turns out that, despite the simple setup, answering
these questions yields a rich theory.

In this exercise, we prove a minimax lower bound on the problem from above in the following setting. Let µ be
the Lebesgue measure on [0, 1], let X1, . . . , Xn be i.i.d. samples from µ, and let

Yi = f⋆(Xi) + ξi

for some unknown function f⋆ : [0, 1] → R and i.i.d. Gaussian variables ξ1, . . . , ξn ∼ N (0, 1). For any f :
[0, 1] → R, denote by Pf the distribution of (X1, Y1) if f

⋆ = f , so that D := ((X1, Y1), . . . , (Xn, Yn)) ∼ P⊗n
f is

an i.i.d. dataset from this distribution. Let F0 = {f : [0, 1] → R : ∥f∥∞ ≤ 1} and F = {f1, . . . , fm} ⊂ F0 be an
arbitrary set of measurable functions f : [0, 1] → R where 3 ≤ m ≤ expn. We further denote Pj = Pfj . Under
these assumptions, it turns out that the following lower bound is true, and in fact tight up to constant factors.

Theorem 1 There exists a constant c > 0 such that for all regressors f̂ ≡ f̂(D,F) : [0, 1] → R it holds

sup
f⋆∈F0

F⊂F0,|F|=m

[
ED∼P⊗n

f⋆

∥∥∥f̂ − f⋆
∥∥∥2
L2(µ)

−min
f∈F

∥f − f⋆∥2L2(µ)

]
≥ c

logm

n
.

In this exercise, we will prove Theorem 1, by first proving a lower bound on general metric spaces, and then
applying this bound to the setting from Theorem 1.
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(a) Describe in words what Theorem 1 tells us about the dictionary learning problem.

(b) Let m ≥ 2, and let (Θ, d) be some metric space that contains the elements θ0, θ1, . . . , θm. Let Pθ, θ ∈ Θ
be a family of probability measures on X , denote Pj = Pθj , and assume that Pj ≪ P0 and P0 ≪ Pj (they
are absolutely continuous with respect to each other) for all j = 1, . . . ,m.

(i) Prove that for any test (that is, measurable function) ψ : X → {0, . . . ,m} and any τ > 0,

max
j∈{0,...,m}

Pj(ψ ̸= j) ≥ τm

1 + τm

 1

m

m∑
j=1

Pj

(
dP0

dPj
≥ τ

) .

Here Pj(ψ ̸= j) is short for Pj(
{
x ∈ X : ψ(x) ̸= j

}
).

Hint: To prove this bound, you may find it useful to proceed as follows: First show a lower bound on
P0(ψ ̸= 0) using the events Aj =

{
x ∈ X : (dP0/dPj)(x) ≥ τ

}
. Then combine it with a lower bound

on all other Pj(ψ ̸= j) using maxj∈{0,...,m} Pj(ψ ̸= j) ≥ λP0(ψ ̸= 0)+(1−λ)maxj∈{1,...,m} Pj(ψ ̸= j)
for a well-chosen λ ∈ [0, 1].

(ii) Conclude from the previous step that, if for some s > 0 it holds d(θj , θk) ≥ 2s > 0 for all j ̸= k

and 1
m

∑m
j=1 KL(Pj , P0) ≤ α logm for some 0 < α < 1/8, any estimator θ̂ : X → Θ (measurable

function) satisfies

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥
√
m

1 +
√
m

(
1− 2α−

√
2α

logm

)
> 0. (1)

Again, Pθ(d(θ̂, θ) ≥ s) is short for Pθ({x ∈ X : d(θ̂(x), θ) ≥ s}).
Hint: For each estimator, construct a corresponding test and use the previous bound. You may then
use the following version of Pinsker’s inequality without proof : If P ≪ Q, then∫

max

{
log

dP

dQ
, 0

}
dP ≤ KL(P,Q) +

√
KL(P,Q)/2.

(c) Prove Theorem 1.
Hint : Prove the statement for a particular choice of F consisting orthogonal system in L2(µ) where each
function has L2(µ)-norm ≍

√
log(m)/n, and use the lower bound from Eq. (1).

Solution

(a) This question is open ended, but this is one of the take-aways: In the worst case, we can “only” handle
an exponential number of models m = o(exp(n)) (in particular, no infinite function class). In the learning
settings we have considered in the class so far, we learned how to deal with function classes that are infinite
through covering numbers, Rademacher complexity, VC dimension, etc. But for those to be meaningful,
we need stronger assumptions on the function class, which are not satisfies in the counterexample of this
lower bound.

Arguably, though, the logarithmic dependence on m is more of a blessing than a curse, and it stems from
the fact that we only want to do as well as the best in the dictionary. In contrast, suppose you would
want to match the performance of the best linear combination of the dictionary functions

∑
i wifi with

w ∈ Rm. Then, using similar arguments, one can show a lower bound of order m/n.

(b) (i) We begin by defining the events Aj =
{
x ∈ X : dP0

dPj
(x) ≥ τ

}
⊂ X . A calculation shows that

P0 (ψ ̸= 0) =

m∑
j=1

P0(ψ = j)

≥
m∑
j=1

τPj({ψ = j} ∩Aj)

≥ τm

 1

m

m∑
j=1

Pj(ψ = j)

− τ

m∑
j=1

Pj(A
c
j)

= τm(p0 − t)
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where we defined the two helper quantities

p0 =
1

m

m∑
j=1

Pj(ψ = j) and t =
1

m

m∑
j=1

Pj

(
dP0

dPj
< τ

)
.

Therefore, we get that for λ = 1/(1 + τm) ∈ [0, 1]

max
j∈{0,...,m}

Pj(ψ ̸= j) = max

{
P0(ψ ̸= 0), max

j∈{1,...,m}
Pj(ψ ̸= j)

}
≥ max

{
τm(p0 − t), 1− p0

}
≥ λτm(p0 − t) + (1− λ)(1− p0)

=
τm

1 + τm
(1− t)

This yields the claim by plugging in the definition of t.

(ii) Let β = α logm, 1
m

∑m
j=1 KL(Pj , P0) ≤ β, and choose τ ∈ (0, 1). For each estimator θ̂, we can

construct the following test:
ψ(x) = argmin

j∈{0,...,m}
d(θ̂(x), θj).

Because d(θj , θk) ≥ 2s > 0, we get that

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥ max
j∈{0,...,m}

Pj(d(θ̂, θj) ≥ s) ≥ max
j∈{0,...,m}

Pj(ψ ̸= j).

We can now lower bound this quantity using the previous bound. Specifically, we have to lower bound

the term 1
m

∑m
j=1 Pj

(
dP0

dPj
≥ τ

)
. To that end, we obtain from Markov’s and Pinsker’s inequalities

that

Pj

(
dP0

dPj
≥ τ

)
= 1− Pj

(
log

dPj

dP0
> log

1

τ

)
≥ 1− 1

log(1/τ)

∫
max

{
log

dPj

dP0
, 0

}
dPj

≥ 1− 1

log(1/τ)

(
KL(Pj , P0) +

√
KL(Pj , P0)/2

)
.

From Jensen’s inequality and the assumption, we know that 1
m

∑m
j=1

√
KL(Pj , P0) ≤

√
β, and so it

holds that
1

m

m∑
j=1

Pj

(
dP0

dPj
≥ τ

)
≥ 1−

β +
√
β/2

log(1/τ)
.

The result then follows from the previous derivation with τ = 1/
√
m. A calculation shows that this

is positive for any 0 < α < 1/8.

(c) Let
{
ϕj
}m
j=1

be an orthogonal set of functions in L2(µ), such that

∀j ̸= k :

∫
ϕj(x)ϕk(x)dµ(x) = 0,

∥∥ϕj∥∥L2(µ)
= 1 and

∥∥ϕj∥∥∞ ≤ 1.

For instance, this could be the Rademacher functions defined as ϕ1 = 1 and for j > 1, ϕj(x) =
sgn(sin(2j−1πx)).

Define for some 0 < γ ≤ 1 to be chosen later

fj(x) = γ

√
logm

n
ϕj(x).

Then F ⊂ F0. If f
⋆ ∈ F , then minf∈F ∥f − f⋆∥L2(µ) = 0, and so

inf
f̂

sup
f⋆∈F0

F⊂F0,|F|=m

ED∼P⊗n
f⋆

∥∥∥f̂ − f⋆
∥∥∥2
L2(µ)

−min
f∈F

∥f − f⋆∥2L2(µ) ≥ inf
f̂

sup
f⋆∈F

ED∼P⊗n
f⋆

∥∥∥f̂ − f⋆
∥∥∥2
L2(µ)
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Notice that by construction, we have that∥∥fj − fk
∥∥2
L2(µ)

=

∫
(fj − fk)

2dµ =

∫
f2j dµ+

∫
f2kdµ = 2γ2

logm

n
,

and moreover,

KL(P⊗n
j , P⊗n

k ) = nKL(Pj , Pk) =
n

2

∥∥fj − fk
∥∥2
L2(µ)

= γ2 logm.

Hence, we can now employ the lower bound from the previous section, with the metric space (Θ, d) =
(F0, ∥·∥L2(µ)), θj = fj , and s2 = γ2(logm)/(2n) and α = γ2, which we choose to be γ2 = 1/16. By
Markov’s inequality, we get that

inf
f̂

sup
f⋆∈F

ED∼P⊗n
f⋆

∥∥∥f̂ − f⋆
∥∥∥2
L2(µ)

≥ s2 inf
f̂

sup
f⋆∈F

Pf⋆

(∥∥∥f̂ − f⋆
∥∥∥2
L2(µ)

≥ s2
)

≥ logm

32n

 √
m

1 +
√
m

1− 2

16
−

√
2/16

logm




≥ 0.01
logm

n

where the last inequality holds because the second factor is minimized at m = 3. Since this holds for a
particular choice of a subset of m measurable functions, it also holds for the supremum. That concludes
the proof with c = 0.01.

5 (BONUS) Classification error bounds for hard margin support
vector machines (SVM)

Recal the material on max margin and SVMs from the lecture. In this exercise, we derive upper bounds for the
0− 1 classification error of hard margin SVMs, also called max-ℓ2-margin classifiers, and defined by:

θ̂ = argmax
θ∈Rd

min
(x,y)∈D

y
⟨θ, x⟩
∥θ∥2

(2)

where D = {(xi, yi)}ni=1 is the dataset consisting of n input features/label pairs. We remark that the hard-
margin SVM is obtained when running logistic regression until convergence on separable data.

For this exercise, we assume that the datasetD is generated by drawing iid samples form the following generative
data distribution (x, y) ∼ P where the labels y are uniformly distributed on {−1,+1} and the input features
are in the form of x = [yr, x̃] with x̃ ∼ N (0, Id−1). Furthermore, let γ be the max-ℓ2-margin of D in its last
d− 1 coordinates, defined by

γ = max
θ∈Rd−1

min
(x,y)∈D

y
⟨θ̂, x2:d⟩
∥θ̂∥2

(3)

A simple geometric argument shows that the max-ℓ2-margin classifier (up to rescalings) points in the same
direction as

θ̂ = [r, γθ̃] (4)

where ∥θ̃∥2 = 1.

(a) Compute the test error of the max-ℓ2-margin classifier as a function of γ and r, i.e. for (x, y) ∼ P, what
is P [yθ̂⊤x < 0]? What is the dependence on r?

(b) Note that γ is a random variable dependent on n and d. We aim to understand the dependence of
the accuracy on n and d. Hence, we want to derive non-asymptotic high probability bounds on γ. Let
X̃ ∈ Rn×(d−1) be the datamatrix in the last d− 1 dimensions, i.e. row i in X̃ equals xi,[2:d]. Show that

γ ≤ smax(X̃)√
n

(5)

where smax(X̃) is the largest singular value of the datamatrix X̃.

(c) Recall that each entry of X̃ is i.i.d. standard normal Gaussian distributed. To achieve non-asymptotic
bounds on smax(X̃), we first prove the following Lemma in two steps.

10



Lemma 1 Let X ∈ Rn×d have i.i.d. normally distributed entries. Then, E
[
smax(X)

]
<

√
d+

√
n

(i) Recall that smax(X) = maxu∈Sd−1,v∈Sn−1⟨Au, v⟩ equals the supremum of the Gaussian process
Xu,v = ⟨Au, v⟩. Define Yu,v = ⟨g, u⟩ + ⟨h, v⟩ where g ∈ Rd and h ∈ Rn are independent stan-
dard normal distributed variables. Show that

E
∣∣Xu,v −Xu′,v′

∣∣2 ≤ E
∣∣Yu,v − Yu′,v′

∣∣2 (6)

(ii) To finish the proof of Lemma 1, we use the following important result: ¡br¿ ¡br¿

Lemma 2 (Slepian’s inequality) Consider two Gaussian processes (Xt)t∈T and (Yt)t∈T whose
increments satisfy Equation (4) for all ((u, v), (u′, v′)) ∈ T . Then E[supt∈TXt] ≤ E[supt∈TYt].

Prove Lemma 1 using Lemma 2.

(d) Use Theorem 2.26 in MW and Lemma 1 to prove that smax(X̃) ≤
√
d +

√
n + t with a probability of at

least 1− 2e−t2/2.

Solution

(a) Using that θ̂ = [r, γθ̃], we find that

P
[
yθ̂⊤x < 0

]
= P

yrx1 + γ

d∑
i=2

xiθ̃i−1 < 0

 = P

r2 + γ

d∑
i=2

xiθ̃i−1 < 0

 , (7)

where we used that x1 = yr. Note that
∑d

i=2 xiθ̃i−1 is a sum of independent Gaussian distributed random
variables (RVs). Recall that the sum of two Gaussian distributed RVs is again a Gaussian distributed RV
with a variance equaling the square sum of the variances and the mean the sum of the means. Using this
fact, we find that

∑d
i=2 xiθ̃i−1 is standard normal distributed since

∑d−1
i=1 θ̃

2 = 1 and

P
[
yθ̂⊤x < 0

]
= Φ

(
−r

2

γ

)
, (8)

where Φ denotes the cumulative density function of a normal distributed RV. Clearly, the test error is
monotonically decreasing in r.

(b) We can rewrite the definition of the max-ℓ2-margin γ as follows:

γ = max
θ∈Rd−1,∥θ∥2=1

min
(x,y)∈D

y⟨θ̃, x2:d⟩. (9)

Let 1n denote the all ones vector of size n and recall that the labels y are independent of the last d − 1
coordinates of the input features x. Using the definition of X̃ and the fact that a standard normal
distributed RV times an independet RV which take the values +1 or −1 remains a standard normal
distributed RV, we can write

γ = max
θ∈Rd−1,∥θ∥2=1

b

subject to θ⊤X̃ > b1n,
(10)

where the greater than sign is elementwise. Recall the following important property of the maximal
singular value: for any vector θ with ∥θ∥2 = 1, we have that ∥θ⊤X̃∥2 < smax(X̃). Hence, taking the
norms on both sides yields smax > b∥1n∥2 such that b < smax/

√
n.

(c) (i) Using the definition of Xu,v, we find that

E[|Xu,v −Xu′,v′ |2] = E
[∣∣⟨Au, v⟩ − ⟨Au′, v′⟩

∣∣2] = E


∣∣∣∣∣∣

d∑
i=1

n∑
j=1

ai,j(uiv
′
j − u′ivj)

∣∣∣∣∣∣
2
 , (11)

where ai,j is the (i, j)th entry of A and normal distributed. Since all entries of A are i.i.d. standard
normal distributed the cross terms of the expectation are 0, i.e. E[ai,jai′,j′ ] = 0 if i ̸= i′ or j ̸= j′

and the non-cross terms satisfy E[a2i,j ] = 1. We find that

E
[∣∣Xu,v −Xu′,v′

∣∣2] = ∣∣⟨u, v⟩ − ⟨u′, v′⟩
∣∣2 =

∣∣⟨u− u′, v − v′⟩
∣∣2 ≤ ∥u− u′∥22 + ∥v − v′∥22. (12)
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Similarly, from the right hand side, where in this case h, g are vectors as entries i.i.d. normal
distributed RVs, we find that

E
[∣∣Yu,v − Yu′,v′

∣∣2] = ∥u− u′∥2 + ∥v − v′∥2. (13)

(ii) Using Slepian’s Lemma, we find that

E
[
smax(X)

]
= E

[
max
(u,v)

Xu,v

]
≤ E

[
max
(u,v)

Yu,v

]
= E

[
max
(u,v)

⟨g, u⟩+ ⟨h, v⟩

]
. (14)

Clearly, maxu⟨g, u⟩ is achieved by setting u = g
∥g∥2

. Hence, we find that

E[smax(X)] ≤ ∥g∥2 + ∥h∥2 =
√
d+

√
n. (15)

(d) We can write the matrix X as a vector of size Rd·n. If the maximum singular value functional is a 1-
Lipschitz function, then Theorem 2.26 yields the result directly. Note that for any matrices A1, A2 of size
Rn×d it holds that

∣∣smax(A1)− smax(A2)
∣∣ = ∣∣∣∣∣ max

θ∈Rd,∥θ∥2=1
∥A1θ∥2 − max

θ′∈Rd,∥θ∥2=1
∥A2θ

′∥2

∣∣∣∣∣ . (16)

Without loss of generality, we assume that smax(A1) > smax(A2). We find∣∣∣∣∣ max
θ∈Rd,∥θ∥2=1

∥A1θ∥2 − max
θ′∈Rd,∥θ∥2=1

∥A2θ
′∥2

∣∣∣∣∣ ≤ max
θ∈Rd,∥θ∥2=1

∥A1θ∥2 − ∥A2θ∥2 ≤ ∥A1 −A2∥F , (17)

where ∥A1 −A2∥F is the Frobenius norm of A1 −A2. Hence, the maximum singular value functional is a
1-Lipschitz function, which concludes the proof.
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