
Guarantees for Machine Learning, Fall 2025

Lecture 1: Introduction and concentration bounds
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Who is here?

Which department?

1. Computer Science
2. Mathematics/Statistics
3. Data Science
4. ITET & Robotics
5. Others

What stage of your studies are you?

1. Masters
2. PhD student
3. Bachelors
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Class intro

Objective. Develop graduate students into researchers who can
• understand and criticize papers in ML theory
• conjecture and prove new theorems with high impact

Prerequisites
• Familiar with core machine learning concepts
• Should be comfortable writing rigorous mathematical proofs
(for D-MATH courses)

Course structure
• First part: classical techniques for non-asymptotic risk bounds

• Core reference: Martin Wainwright: High-dimensional statistics
(available for free online via ETH)

• Second part: projects that review and extend current papers
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Logistics

• Class website sml.inf.ethz.ch/gml25/syllabus.html - material
• Lecture slides will be uploaded after lectures
• TAs: Tobias Wegel, Julia Kostin (Office hours on request)
• Internet platforms to sign up for: moodle (logistical questions and
on material, teammate search)
• Important announcements: in class and per email
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Evaluation

• 2 homeworks (0% but pass mandatory to take exam),
oral midterm (60%), project (40%)
• Homeworks (different than previous years):

• is pass-fail
• TAs will read your homework: to pass a homework you need to have

written down attempts to solve all questions (except those marked
optional/bonus). Explain your reasoning steps and if you’re stuck,
explain why.

• You can work with others, but indicate with whom.

• Oral midterm will be 17./18.11. and we will prepare a schedule
where everyone can make it
• Project work (presentation & report) and peer feedback for other
presentations
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Project

In groups of two:
• Pick a paper from a list (to be announced) according to your
interests & background, on (October 14)
• You can pick your own, but double-check with Tobias and me
• Understand, discuss & follow-up on one paper with substantial
theoretical content related to class
• 15-20 min presentation in last two weeks of class in December

• present the paper and main proof ideas
• present your discussion and extension/follow-up attempts/results

• around 10 pages of written report (due January 12)
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Enrollment

• Current waitlist: >150. Admitted: 30. Limit for admissions: 30
• By experience, everybody who wants to take it, can
• For that: If you find after first weeks and homework it’s not for you,
please de-register to make space for others!
• Final deadline to de-register: October 8th
• if you fail to do that, you will be graded (if none of the above are

attempted it shows as a no-show in your transcript)
• Others welcome to audit as long as there is space
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Plan for today

• Statistical perspective on the supervised learning pipeline
• Evaluation of an estimator using the excess risk
and what the course is about
• Concentration bounds of empirical means
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Recap: (Supervised) Machine Learning - Classification
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Classification examples: high-dim

input x

output y

x: X-Ray images

y: pneumonia or healthy

Genome 
(DNA)

Transcriptome 
(RNA)

Proteome Metabolome

Epigenome 
(chromatin)

Microbiome

y: cancer survival

x: multiomics

Figure 1: Classification examples
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Recap: (Supervised) Machine Learning - Regression
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Regression examples II

input x

output y
y: storm speed

x: storm track

y: Probability of click / purchase

x: User data & article/advertisement

Figure 2: Regression examples
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Statistical Perspective on (supervised) Machine Learning
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Statistical perspective on machine learning
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Figure 3: Supervised learning pipeline from statistical point of view

• some examples for P = Ptrain = Ptest include
• regression: marginal dist. over x and y = f ?(x) + ε for random ε
• classification: generative such as Gaussian mixture model or

discriminative: marginal dist. over x and y = sign(f ?(x))
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Evaluation of an estimator f̂n

The estimate f̂n ∈ F depends on D = (xi , yi)n
i=1 (with random

(xi , yi) i.i.d.∼ P for all i) and is in some function class F (e.g. linear,
neural network etc.). Whether f̂n is “good” is decided during test
time: On average over test points (x , y), we’d like the predictions
f̂n(x) to be close to y .

We now formalize this:
• For a given point (x , y), we measure “closeness” via a pointwise loss
`, e.g. `((x , y), f ) = (f (x)− y)2 for regression
or `(x , y ; f ) = 1f (x)=y for classification
• We call the average loss of any function f the population risk
R(f ) := R(f ;P) = E`((x , y); f ) where the expectation E is over
x , y following distribution P. This is the “average over test points”
that determines how “good” f̂n really is!
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Evaluation of an estimator f̂n
• We further call the training loss of any f the empirical risk
Rn(f ) := R(f ;D) = 1

n
∑n

i=1 `((xi , yi); f ). Recall that we also
assume (xi , yi) i.i.d.∼ P for all i
• In the next lectures we’ll consider the empirical risk minimization

paradigm where f̂n minimizes the training loss (or a modified variant
thereof, later in the course)

f̂n := arg min
f ∈F

Rn(f )

Q: For classification, is R(f̂n) = 20% bad or good?

A: Depends on how hard the task is! Perhaps it’s not possible to
achieve perfect accuracy!

We should compare population risk of f̂n with that of the best possible
function if we knew the full distribution, i.e. evaluate the excess risk:

ER(n) := R(f̂n)− inf
f
R(f )
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Evaluation of an estimator f̂n

Grab a neighbor and discuss for 5 minutes.

1. How is the population risk of an estimator related to its test error?

2. Which parameters of the problem setting (population risk) and
algorithm does the excess risk depend on? What happens to the
excess risk of an estimator f̂n when we vary these parameters?

3. When we consider the empirical risk minimizer
f̂n := arg minf ∈F Rn(f ) specifically, what are some tradeoffs when
choosing F?
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Questions on the excess risk
1. Population risk vs. test error
• Test error on n′ new samples follows Rn′(f̂n)→ Rn(f̂n) by law of
large numbers (LLN)

2. Excess risk depends on model class F , dimensionality of the data d ,
sample size n and consists of the following factors and trends
• approximation error (if f ? = arg minf R(f ) is complicated):
larger F , smaller d better

• optimization error (due to optimization algorithm):
Lipschitz, (strong) convex loss ` better

• statistical error (due to finite sample and noise):
larger n (usually) better (depends on F , d as well) of course ← this
course

3. Tradeoff: Larger F , bigger effect of noise (statistical error) but
smaller approx error (variance vs. bias)
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This course: Non-asymptotic take on statistical
“Guarantees for Machine Learning”

We introduce general frameworks to analyze excess risk and compute
concrete upper (and lower) bounds s.t. with prob. at least 1− δ

R(f̂n)− R(f ?) ≤ UB(n, d ,F , f ?)

where we assume f ? = argminf R(f ) exists.

Questions we’d like to answer:

1. Does UB converge to 0 as n increases? (consistency)

2. If I collect double as much data, how much do I decrease my excess
risk? → boils down to the exponent of n (statistical rate)

This course focuses on 2. We’ll now discuss some probabilistic basics
that give a sense for what to expect from course later.
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Excess risk decomposition
• Recall the population risk R(f ) = E`((X ,Y ); f )
• Recall the empirical risk Rn(f ) = 1

n
∑n

i=1 `((Xi ,Yi); f )
• Remember we want to bound the excess risk

R(f̂n)− R(f ?) = R(f̂n)− Rn(f̂n) +
T3≤0︷ ︸︸ ︷

Rn(f̂n)− Rn(f ?) +Rn(f ?)− R(f ?)
≤ R(f̂n)− Rn(f̂n)︸ ︷︷ ︸

T1

+Rn(f ?)− R(f ?)︸ ︷︷ ︸
T2

Question: Are T1 and T2 qualitatively similarly hard to bound? Is
T3 ≤ 0 always true? Briefly discuss with your neighbor.
• T3 ≤ 0 is only true when f ? ∈ F !
• T1 is harder than T2 since it’s a sum of dependent variables whereas
T2 is the difference between an emprical mean and its expectation.
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Concentration bounds for single random variables (R.V.)
• Markov inequality: P(X ≥ t) ≤ EX

t for X ≥ 0;

• Markov used on eλ(X−EX) for λ ≥ 0 yields the Chernoff bound

P(X − EX ≥ t) ≤ inf
λ≥0

E[eλ(X−EX)]
eλt

where where we use that eλx is monotonically increasing for λ ≥ 0
and assume the moment generating function (MGF) EeλX exists

We can use Chernoff to get tighter bounds for R.V. X with short tails

Definition (Sub-Gaussian random variables)
A random variable X with mean µ is sub-Gaussian w/ parameter σ if

Eeλ(X−µ) ≤ eλ2σ2/2 for all λ ∈ R

• For σ sub-Gaussians using Chernoff we obtain the tail bound

P(X − EX ≥ t) ≤ inf
λ≥0

eλ2σ2
2 −λt = e−

t2
2σ2
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Examples for sub-Gaussian random variables

• Gaussians N (0, σ2) are sub-Gaussian with parameter σ
• Rademacher variables ε = −1,+1 with equal probability 1/2 are
sub-Gaussian with parameter σ = 1
• We can directly compute and bound their MGF

Eeλε = 1
2(e−λ + eλ) ≤ eλ2/2

• Almost surely bounded in [a, b] (exercise)
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Empirical means of independent subgaussians

Lemma (Hoeffding’s inequality)
For i.i.d sub-Gaussian R.V. Xi , it holds that

P(1n

n∑

i=1
Xi − EX ≥ t) ≤ e−

nt2
2σ2

Neighbor-Q: Prove Hoeffding’s inequality
• Recall sub-Gaussian: Eeλ(X−µ) ≤ eλ2σ2/2 for all λ ∈ R
• Recall Chernoff for sub-Gaussians: P(X − EX ≥ t) ≤ e−

t2
2σ2
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Proof of Hoeffding’s inequality

1. We can apply Chernoff on the mean of n independent random
variables with moment generating function

Eeλ( 1
n

∑n
i=1(Xi−EXi )) =

n∏

i=1
Eeλ

n (Xi−µ) = [Eeλ
n (Xi−µ)]n

2. Hence, the mean of n i.i.d. sub-Gaussian variables is sub-Gaussian
with parameter σ√n since Eeλ( 1

n
∑n

i=1(Xi−EXi )) ≤ e
λ2σ2
2n2 n

3. yielding Hoeffding’s inequality for the mean of iid sub-Gaussians

P(1n

n∑

i=1
Xi − EX ≥ t) ≤ e−

nt2
2σ2

Q: How can we now use Hoeffding’s inequality to bound the term T2?
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Syllabus of course

The courses focuses on bounding T2 using so-called (localized)
uniform convergence.

We’ll cover
• uniform convergence using Rademacher and Gaussian complexity
• metric entropy and chaining to bound the complexity
• application to non-parametric regression (kernel methods)
• minimax lower bounds
• recent topics in statistical machine learning
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