
GML Fall 25, Interactive Session on Multi-objective Learning

Recap of presentation & goal

Setting. We consider K ∈ N binary classification problems, composed of distributions P 1, . . . , PK on
X × {0, 1} where X = {x1, . . . , xm}. We use zero-one loss ℓ(y, ŷ) = 1 {y ̸= ŷ} and risks of a classifier
f : X → {0, 1} defined as

Rk(f) = E
Pk

ℓ(Y, f(X)) where f⋆
k ∈ arg min

f :X→{0,1}
Rk(f)

achieves optimal risk. We consider the set G of all 2m possible functions X → {0, 1}. Our goal is to learn

a subset of functions ĝλ ∈ G with λ ∈ ∆K−1 =
{
λ ∈ RK :

∑K
k=1 λk = 1, λk ≥ 0

}
that achieves

P

(
∀λ ∈ ∆K−1 :

K∑
k=1

λkRk(ĝλ) ≤ inf
g∈G

K∑
k=1

λkRk(g) + ε

)
≥ 1− δ, (1)

where we take the probability with respect to K i.i.d. datasets of size n sampled from P k.
Recall from class that G has VC dimension VC(G) = m. We know that learning G to error ε on

one distribution P k requires Θ(VC(G)/ε2) i.i.d. samples. So it is not surprising that achieving Eq. (1)
requires at least Θ(K · VC(G)/ε2) samples. After all, Eq. (1) includes all individual learning tasks. But
does the hardness of Eq. (1) really originate in the fact that it includes the individual learning tasks?

Goal of the session. To investigate this, we assume that the learner has additional access to
{
f⋆
k , P

k
X

}K
k=1

:
it can perfectly solve all tasks individually, and even has access to the marginal distributions over X . If
we can show a similar lower bound of order Ω(K ·VC(G)/ε2), we know that achieving good trade-offs can
be inherently hard, even when we know how to solve the tasks separately! In particular, we will prove
such a lower bound for the simpler case of K = 2 objectives.

To that end, we study the specific family of distributions P 1
σ , P

2
σ indexed by σ ∈ {0, 1}m, which are

defined through

X1
σ, X

2
σ ∼ Uniform(X ), (Y 1

σ |X1
σ = xi) ∼ Ber

(
1

2
+ 4εσi

)
, (Y 2

σ |X2
σ = xi) ∼ Ber

(
1

2
− 4ε(1− σi)

)
.

(2)
Hence, when we see n samples from both P 1

σ and P 2
σ , this is equivalent to seeing one sample Z from

Qσ := (P 1
σ ⊗ P 2

σ )
⊗n, where Qσ is now a distribution on (X × {0, 1})2n. We denote ĝ ≡ ĝ(Z) ∈ G.

Theorem 1. Let K = 2 and ε ∈ (0, 1/12). Even when the learner ĝ : (X × {0, 1})2n → G has access to
solutions f⋆

1 ≡ 1, f⋆
2 ≡ 0 and the marginals P k

X , it still requires n ≥ VC(G)/1024ε2 samples from P 1 and
P 2 to achieve

min
σ∈{0,1}m

P
Z∼Qσ

(
R1(ĝ) +R2(ĝ)

2
− inf

g∈G

{
R1(g) +R2(g)

2

}
≤ ε

)
≥ 5/6,

even though it can trivially achieve minimal risks R1(ĝ) = R1(f
⋆
1 ) or R2(ĝ) = R2(f

⋆
2 ) by returning f⋆

1
and f⋆

2 , respectively.

This demonstrates that for zero-one loss, even if we can perfectly solve each task separately, that does
not imply any benefit for solving both tasks jointly (Eq. (1))!

Bonus if you are done early: From Theorem 1, derive the lower bound n ≥ cK · VC(G)/ε2 in the
general case K ≥ 2, where c > 0 is some universal constant.
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Group 1: Gaining some intuition

Consider the following game: There are two biased coins, C1 and C2, that have probabilities of landing
heads up P(C1 = H) = p1 and P(C2 = H) = p2. Before both coins are tossed, you have to make exactly
one prediction ŷ ∈ {H,T}. After the coins are tossed, you then get points according to the following rule:

s(ŷ) := score from betting ŷ = 1 {C1 = ŷ}+ 1 {C2 = ŷ} ∈ {0, 1, 2} .
Of course, without any prior knowledge, there is not much you can do beyond random guessing. Instead,
you can choose to get prior knowledge in one of two ways:

1. (sign) You get to know y1 ∈ argmaxy∈{H,T} P(C1 = y) and y2 ∈ argmaxy∈{H,T} P(C2 = y), but if
there are multiple maximizers, you don’t know which one you are getting.

2. (toss) You can toss the two coins once before the game and observe the outcome (i.e., observe i.i.d.

copies C̃1, C̃2 of C1, C2).

In either case, you then play these strategies, respectively:

ŷsign =

{
H if y1 = y2 = H,
T if y1 = y2 = T,
Uniform({H,T}) else,

and ŷtoss =

H if C̃1 = C̃2 = H,

T if C̃1 = C̃2 = T,
Uniform({H,T}) else.

Answer the following questions as a function of p1, p2:

(a) Compute maxy∈{H,T} E[s(y)] and Eŷrand∼Uniform({H,T}) E[s(ŷrand)].

(b) Compute the expected scores E[s(ŷtoss)]] and miny1,y2 E[s(ŷsign)]] (where the min is over the max-
imizer in {H,T}) and try to visualize them as a function of (p1, p2) ∈ [0, 1]2.

(c) On the set P ⊂ [0, 1]2 where the sign strategy is no better than random guessing, solve the following
maximization problem:

max
(p1,p2)∈P

{
max

y∈{H,T}
E[s(y)]− E[s(ŷtoss)]]

}
.

(d) How does it relate to the distributions in Eq. (2)? And what do you expect happens when we get
to throw the dice multiple times before the game?

Solution. The expected score for playing heads and tails is

E [s(y)] = P (C1 = y) + P (C2 = y) =
{
p1 + p2 y = H,
2− p1 − p2 y = T.

(a) So, under perfect knowledge, the optimal strategy is to play y = H if p1 + p2 ≥ 1, otherwise play
y = T , which then yields maxy∈{H,T} E[s(y)] = max {p1 + p2, 2− p1 − p2}. On the other hand, a
random guesser that chooses ŷrand = Uniform({H,T}) will achieve expected score E [s(ŷrand)] =
1
2 (p1 + p2) +

1
2 (2− p1 − p2) = 1, which serves as a baseline for any strategy.

(b) A direct calculation shows that the first strategy has the expected score

min
y1,y2

E [s(ŷsign)] = min
y1,y2

{
p1 + p2 y1 = y2 = H
2− p1 − p2 y1 = y2 = T
1 else

=

{
p1 + p2 p1, p2 > 1/2
2− p1 − p2 p1, p2 < 1/2
1 else,

where minimizing over y1, y2 yields the second equality: If p1 = 1/2 and p2 > 1/2, choose y1
adversarially as y1 = T , and so on.

To compute the score for the second strategy, define the events AH = {C̃1 = C̃2 = H}, AT =

{C̃1 = C̃2 = T} and AR = (AH ∪AT )
c and note that P(AH) = p1p2, P(AT ) = (1− p1)(1− p2) and

P(AR) = 1− p1p2 − (1− p1)(1− p2) = p1 + p2 − 2p1p2. We can see that the expected score is

E [s(ŷtoss)] = (P(AH) + 1
2 P(AR))(p1 + p2) + (P(AT ) +

1
2 P(AR)))(2− (p1 + p2))

= 1
2 (p1 + p2)(p1 + p2) + ((1− p1)(1− p2) +

1
2 (p1 + p2 − 2p1p2))(2− (p1 + p2))

= 1 + (p1 + p2 − 1)2.

See also Fig. 1.
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Figure 1: Expected scores.

(c) We see that P = {(p1, p2) : p1 ≤ 1/2 ≤ p2 or p2 ≤ 1/2 ≤ p1}. By symmetry, we can focus on the
case p1 ≤ 1/2 ≤ p2 and p1 + p2 ≥ 1. Then

max
(p1,p2)∈P

{
max

y∈{H,T}
E[s(y)]− E[s(ŷtoss)]]

}
= max

(p1,p2)∈P

{
p1 + p2 − 1− (p1 + p2 − 1)2

}
which is clearly attained at p1 = 1/2, p2 = 1. By symmetry, we know the set of solution is

{(0, 1/2), (1/2, 1), (1/2, 0), (1, 1/2)} .

(d) Consider the distributions of Y 1
σ , Y

2
σ conditioned on Xk

σ = xi, and w.l.o.g. consider σi = 1: We have
that p1 = 1/2 + 4ε > 1/2 and p2 = 1/2, that is, coin 1 is biased towards 1, while the other coin is
unbiased. In this setting, we have seen that the strategy using sign information has expected score
1, and does not perform better than random guessing. However, seeing just one sample of labeled
data, we know that the coin toss strategy improves upon random guessing. Naturally, the more
often we toss the coins, the closer to optimal the estimates will be of an “adapted” coin tossing
strategy will be:

ŷn =

{
H 1

n

∑n
i=1 C̃1,i +

1
n

∑n
i=1 C̃2,i > 1

T 1
n

∑n
i=1 C̃1,i +

1
n

∑n
i=1 C̃2,i < 1

with the standard tie-break. In particular, without proving it here, the parameters maximizing the
excess risk then become{

(1/2− 1/
√
4n, 1/2), (1/2, 1/2 + 1/

√
4n), (1/2, 1/2− 1/

√
4n), (1/2 + 1/

√
4n, 1/2)

}
.

Hence, we should choose ε ≍ 1/
√
n, or, n ≍ 1/ε2. To solve m such coin tossing problems simulta-

neously, we hence need n ≍ m/ε2. This is exactly the intuition we will use to establish the lower
bound.

Group 2: Reduction to estimating σ

In this exercise, we prove an equality that is reminiscent of the “estimation to testing” reduction we saw
in the lecture on minimax lower bounds. This is a key ingredient for proving Theorem 1.

Prove that for the set of distributions Qσ from Eq. (2), it holds that

sup
ĝ

min
σ

P
Z∼Qσ

(
R1(ĝ) +R2(ĝ)

2
− inf

g∈G

{
R1(g) +R2(g)

2

}
≤ ε

)
= sup

σ̂
min
σ

P
Z∼Qσ

(
∥σ̂(Z)− σ∥1

d
≤ 1

4

)
.

(3)
Hints: 1. It may be useful to replace the risks by the excess risks Ek(g) = Rk(g)−Rk(f

⋆
k ).

2. When you explicitly compute E1(g)+E2(g)
2 , notice that the infimum over G vanishes. Why?

3. Given an ĝ, consider the estimator σ̂(Z) = ĝ(xm
1 ) ∈ Rn where g(xm

1 ) = (g(x1), . . . , g(xm)) ∈ {0, 1}m.

Solution. First, note that by linearity,

R1(ĝ) +R2(ĝ)

2
− inf

g∈G

{
R1(g) +R2(g)

2

}
=

E1(ĝ) + E2(ĝ)
2

− inf
g∈G

{
E1(g) + E2(g)

2

}
.

Second, note that on the first distribution, f⋆
1 ≡ 1 is an optimal predictor, and so a function g only incurs

a worse error on xi than f⋆
1 if σi = 1 and g(xi) = 0, in which case the expected error is exactly 1

2 + 4ε
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whereas f⋆ would have error 1
2 − 4ε, and so the excess on such a point is 8ε. The analogue also holds on

the second distribution, and so averaging yields that the excess risks of any g are

E1(g) =
8ε

m

m∑
j=1

σj1 {g(xi) = 0} and E2(g) =
8ε

m

m∑
j=1

(1− σj)1 {g(xi) = 1} .

Combining the two yields

E1(g) + E2(g)
2

=
4ε

m

m∑
j=1

1 {g(xi) ̸= σi} =
4ε

m
∥g(xm

1 )− σ∥1 .

Since G contains one g so that g(xj) = σj for all j, the infimum of the excess risks is zero.
From the previous derivation, we get that

E1(g) + E2(g)
2

=
4ε

m
∥g(xm

1 )− σ∥1 ≤ ε ⇐⇒
∥g(xm

1 )− σ∥1
m

≤ 1

4
.

The equality then follows from the previous derivation by considering, for any ĝ, the estimator (σ̂(Z))i =
ĝ(xi).

Group 3: Application of Assouad’s method

We are now going to prove Theorem 1 using an alternative to Fano’s method, which is called Assouad’s
method, captured in the following Lemma:

Lemma 1 (Assouad). Write σ ∼ σ′ if σ and σ′ differ only in one coordinate, and let Qσ, σ ∈ {0, 1}m be
any distributions. It holds that

inf
σ̂

max
σ

E
Z∼Qσ

[∥σ̂(Z)− σ∥1] ≥
m

2
min

{
1−

√
1

2
KL(Qσ, Qσ′) : σ ∼ σ′

}
.

Using Lemma 1, and the reduction from Eq. (3) from Group 2, prove Theorem 1.
Hints: 1. Assume that n < m/1024ε2 and find a contradiction.

2. You may use that if σ ∼ σ′ and ε ≤ 1/12, KL(Qσ, Qσ′) ≤ 128nε2

m where Qσ is defined in Eq. (2).

Solution. We will show that if n < m/1024ε2,

sup
σ̂

min
σ

P
Z∼Qσ

(
∥σ̂(Z)− σ∥1

m
≤ 1

4

)
<

5

6
.

Theorem 1 then follows by the reduction in Eq. (3).
Fix any estimator σ̂. From Markov’s inequality, we get that

P
Z∼Qσ

(
∥σ̂(Z)− σ∥1

m
≤ 1

4

)
= P

Z∼Qσ

(
1−

∥σ̂(Z)− σ∥1
m

≥ 3

4

)
≤ 4

3

(
1− E

Z∼Qσ

[
∥σ̂(Z)− σ∥1

m

])
.

From Assouad’s Lemma and the previous bound, we get

max
σ

E
Z∼Qσ

[∥σ̂(Z)− σ∥1] ≥
m

2

(
1−

√
64nε2

m

)
>

m

2

(
1− 1

4

)
=

3m

8

where the last inequality follows from n < m/1024ε2. Combining the two, we get that

min
σ

P
Z∼Qσ

(
∥σ̂(Z)− σ∥1

d
≤ 1

4

)
<

4

3

(
1− 3

8

)
=

5

6
.

That concludes the proof by contradiction.
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