GML Fall 25, Interactive Session on Multi-objective Learning

Recap of presentation & goal

Setting. We consider K € N binary classification problems, composed of distributions P*, ..., PX on
X x {0,1} where X = {z1,...,2m}. We use zero-one loss ¢(y,y) = 1{y # y} and risks of a classifier
f: X — {0,1} defined as

Ri(f) = E LY, f(X)) where fi € arg f:XHii{I})yl}Rk(f)

achieves optimal risk. We consider the set G of all 2™ possible functions X — {0, 1}. Our goal is to learn
a subset of functions g\ € G with A € AK—1 = {/\ c RE . Zszl A =1, > O} that achieves

K K
P (V/\ e AR Z MRy (Gx) < Z MeRi(g) + 5) >1-4, (1)
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c
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where we take the probability with respect to K i.i.d. datasets of size n sampled from P¥.
Recall from class that G has VC dimension VC(G) = m. We know that learning G to error £ on

one distribution P* requires ©(VC(G)/e?) i.i.d. samples. So it is not surprising that achieving Eq.
requires at least (K - VC(G)/e?) samples. After all, Eq. includes all individual learning tasks. But
does the hardness of Eq. (1] really originate in the fact that it includes the individual learning tasks?

Goal of the session. To investigate this, we assume that the learner has additional access to { fr, P% }szlz
it can perfectly solve all tasks individually, and even has access to the marginal distributions over X. If
we can show a similar lower bound of order Q(K - VC(G)/e?), we know that achieving good trade-offs can
be inherently hard, even when we know how to solve the tasks separately! In particular, we will prove
such a lower bound for the simpler case of K = 2 objectives.

To that end, we study the specific family of distributions P}, P? indexed by o € {0,1}", which are
defined through

1 1
X1 X2 ~ Uniform(X), (VX! =2;) ~Ber (2 + 4sai> . (Y2X2 =2;) ~Ber (2 —4e(1 — O’i)> .
(2)

Hence, when we see n samples from both P} and P2, this is equivalent to seeing one sample Z from
Q, = (P! @ P2)®" where @, is now a distribution on (X x {0,1})?". We denote § = g(Z) € G.

Theorem 1. Let K =2 and ¢ € (0,1/12). Even when the learner g : (X x {0,1})*" — G has access to
solutions ff =1, f5 =0 and the marginals P)k(, it still requires n > VC(G)/1024&? samples from P! and
P? to achieve

min p (B@+Rg) o [Ri(g) +Ralg) <) >3/,
ce{0,1}™ Z~Q, 2 g€g 2

even though it can trivially achieve minimal risks R1(g) = R1(f7) or Ra(9) = Ra(f3) by returning f7
and f5, respectively.

This demonstrates that for zero-one loss, even if we can perfectly solve each task separately, that does
not imply any benefit for solving both tasks jointly (Eq. )!

Bonus if you are done early: From Theorem [I| derive the lower bound n > ¢K - VC(G)/e? in the
general case K > 2, where ¢ > 0 is some universal constant.



Group 1: Gaining some intuition

Consider the following game: There are two biased coins, C; and Cs, that have probabilities of landing
heads up P(Cy = H) = p; and P(Cy = H) = po. Before both coins are tossed, you have to make exactly
one prediction 5 € {H,T}. After the coins are tossed, you then get points according to the following rule:

s(y) := score from betting y = 1{C; =gy} + 1{Cy =75} € {0,1,2}.

Of course, without any prior knowledge, there is not much you can do beyond random guessing. Instead,
you can choose to get prior knowledge in one of two ways:

1. (sign) You get to know y; € argmaxye g,y P(C1 = y) and y» € argmax,c¢y 7 P(Co = y), but if
there are multiple maximizers, you don’t know which one you are getting.

2. (toss) You can toss the two coins once before the game and observe the outcome (i.e., observe i.i.d.
copies C1, Cs of Cy, ().

In either case, you then play these strategies, respectively:

H ify1 =y = H, H ifQIZQQZH’
/y\sign =T . if Y1 =Y2 = Ta and @\toss =437 O =03 = T’7
Uniform({H,T}) else, Uniform({H,T}) else.

Answer the following questions as a function of py, ps:
(a) Compute max,cp,ry E[s(y)] and B, . ~uniform({#,7}) E[s(Urand)]-

(b) Compute the expected scores E[s(Jioss)]] and miny, ., E[s(Ysign)]] (where the min is over the max-
imizer in {H,T}) and try to visualize them as a function of (py, p2) € [0,1]2.

(c) On theset P C [0,1]? where the sign strategy is no better than random guessing, solve the following
maximization problem:

(prpa)EP {yen{lgf;} Els(y)] - E[s@toss)n} .

(d) How does it relate to the distributions in Eq. ? And what do you expect happens when we get
to throw the dice multiple times before the game?

Solution. The expected score for playing heads and tails is

— — _ ) = [Pt y=4H,

Els(y)] =P(Cr =) +P(C2=y) = {B "2 V21
(a) So, under perfect knowledge, the optimal strategy is to play y = H if p1 + pa > 1, otherwise play
y = T, which then yields max,c¢y 1y E[s(y)] = max {p1 + p2,2 — p1 — p2}. On the other hand, a
random guesser that chooses Yrana = Uniform({H,T'}) will achieve expected score E [$(Jrand)] =

%(pl +p2) + %(2 —p1 —p2) = 1, which serves as a baseline for any strategy.

(b) A direct calculation shows that the first strategy has the expected score

] R - [(pr+p2 n=y=H p1+ P2 p1,p2 >1/2
min E [s(Ysign)] = min ¢ 2—p1—p2 y1=y2=T =¢2—p; —p2 p1,p2 < 1/2
Y1,Y2 y1,y2 | ] else 1 else,

where minimizing over y1,ys yields the second equality: If p; = 1/2 and ps > 1/2, choose y;
adversarially as y; = T, and so on.

To compute the score for the second strategy, define the events Ay = {5’1 =Cy=H }, Ar =
{C1, =Cy =T} and A = (Ag U A7)¢ and note that P(Ay) = p1p2, P(Ar) = (1 —p1)(1 — p2) and
P(ARr) =1—pips — (1 —p1)(1 — p2) = p1 + p2 — 2p1p2. We can see that the expected score is
E [s(Fross)] = (P(Ar) + 3 P(AR))(p1 + p2) + (B(AT) + 3 P(AR)))(2 — (p1 + p2))
= 3(p1 +p2)(p1 +p2) + (1 = p1)(1 — p2) + 3(p1 + P2 — 2p1p2))(2 — (p1 + p2))
=1+ (p1+p2—1)>°
See also Fig.
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Figure 1: Expected scores.

(c) We see that P = {(p1,p2) : p1 <1/2<ps or po <1/2 < p;}. By symmetry, we can focus on the
case p1 < 1/2 < po and p; + p2 > 1. Then

1ma ma Els _]ESAOSS = a + -1 - + —1
(P17P2)X€7) {ye{HXT} [5(v)] [s(5e )]]} (phm)xe {P1 2] (p1+ p2 ) }

which is clearly attained at p; = 1/2,ps = 1. By symmetry, we know the set of solution is
{(0,1/2),(1/2,1),(1/2,0),(1,1/2)} .

(d) Consider the distributions of Y;!, Y2 conditioned on X* = z;, and w.l.o.g. consider o; = 1: We have
that p1 = 1/2+4¢ > 1/2 and ps = 1/2, that is, coin 1 is biased towards 1, while the other coin is
unbiased. In this setting, we have seen that the strategy using sign information has expected score
1, and does not perform better than random guessing. However, seeing just one sample of labeled
data, we know that the coin toss strategy improves upon random guessing. Naturally, the more
often we toss the coins, the closer to optimal the estimates will be of an “adapted” coin tossing

strategy will be: B -
U = {H s Crit i Cai > 1

n n
T % >im1 Cra + % D1 Coy <1

with the standard tie-break. In particular, without proving it here, the parameters maximizing the
excess risk then become

{(1/2—1/\/@,1/2) (1/2,1/2 + 1/Van), (1/2,1/2 — 1/3/4n), (1/2 + 1/v/4n, 1/2)}

Hence, we should choose € < 1/y/n, or, n < 1/¢2. To solve m such coin tossing problems simulta-

neously, we hence need n < m/e?. This is exactly the intuition we will use to establish the lower
bound.

O

Group 2: Reduction to estimating o

In this exercise, we prove an equality that is reminiscent of the “estimation to testing” reduction we saw
in the lecture on minimax lower bounds. This is a key ingredient for proving Theorem [I}
Prove that for the set of distributions @, from Eq. , it holds that

supmin P <Minf{w}§5)mpmm P <||3(>0||1 1>

g 7 2@ 2 9€¢ 2 5 0 Z2~Qo d

N

Hints: 1. It may be useful to replace the risks by the excess risks £x(9) = Ri(9) — Ri(f7)-
2. When you explicitly compute M, notice that the infimum over G vanishes. Why?

3. Given an g, consider the estimator 7(Z) = g(z7*) € R"™ where g(z7*) = (9(x1),...,9(zm)) € {0,1}"

Solution. First, note that by linearity,

R1(9) + R2(9) of {Rl(g) +R2(9)} ~ &1(9) + &(9) inf {51(9) +52(9)}
2 geg 2 2 '

2 Y

Second, note that on the first distribution, f; =1 is an optimal predictor, and so a function g only incurs
a worse error on x; than f7 if o; = 1 and g(z;) = 0, in which case the expected error is exactly % + 4e



whereas f* would have error % — 4e, and so the excess on such a point is 8¢. The analogue also holds on

the second distribution, and so averaging yields that the excess risks of any g are

&(g) = % Zajl {g(z;) =0} and  &(g) = % > (1 —o)1{g(z:) =1}.

j=1

Combining the two yields

M _ fni S 1{g(x) # 0i} = 4—7; lg(a7) = ol -

j=1

Since G contains one g so that g(z;) = o; for all j, the infimum of the excess risks is zero.
From the previous derivation, we get that

Elg) +Elg) _dey lo(e) — ol _ 1
pEACPARIRC A VA - < LLASS WANES
; = |lg(at) — ol <= 2% <

The equality then follows from the previous derivation by considering, for any g, the estimator (6(Z2)); =
ag(z;). O

Group 3: Application of Assouad’s method

We are now going to prove Theorem [I] using an alternative to Fano’s method, which is called Assouad’s
method, captured in the following Lemma:

Lemma 1 (Assouad). Write o ~ o’ if o and o’ differ only in one coordinate, and let Qy, 0 € {0,1}"™ be
any distributions. It holds that

1
infmax E [[5(2) ~ol|,] > % min {1 ~ /5 KLQr. Qo) 10~ a'} .

Using Lemma (I} and the reduction from Eq. from Group 2, prove Theorem
Hints: 1. Assume that n < m/1024¢? and find a contradiction.

2. You may use that if o ~ ¢’ and £ < 1/12, KL(Q,, Q) < LW?EZ where ), is defined in Eq. .
supmin P

52) ol _ 1) _5
5 0 Z~Q, m 4 6

Theorem [1| then follows by the reduction in Eq. (3).
Fix any estimator &. From Markov’s inequality, we get that

P (|<?(Z)—a||1<1> P <1||3<Z>—U||123>§;1(1 E {IE(Z)—UMD

750, m =4 Z~Qy m 4

Solution. We will show that if n < m/1024¢2,

From Assouad’s Lemma and the previous bound, we get

" m 64ne? m 1 3m
— > — — —_ ) = —
ijZlEQ”[HJ(Z) oll,] > 5 <1 - > > 5 (1 4) g

where the last inequality follows from n < m/1024e2. Combining the two, we get that
. 13(2)—oll, _ 1\ _4(, 3)\_5
P < = “(1-2) =2,
e ( a ~1)°3 8) "6
That concludes the proof by contradiction. O




