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ADVERSARIAL ROBUST CLASSIFICATION

Goal: Low robust test error for a class of perturbations T (x, εte)

I Most common approach: adversarial training. One minimizes

min
θ

E(x,y)∼P

[
max

x′∈T (x,ε)
L(fθ(x

′), y)

]
I Better than standard training in the high sample regime

Can adversarial training lead to a lower robust accuracy
than standard training?

FAILURE OF AT IN THE LOW SAMPLE REGIME
I Waterbirds dataset, CIFAR10, ResNets

I Motion blur, adversarial illumination and mask attack

Figure 1: Motion blur Figure 2: Adversarial illumination

Conclusion: AT can hurt robust accuracy in the low sample
size regime.

DIRECTED ATTACKS

Attacks that reduce the information about the object in the image.
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THEORETICAL RESULT

Setting: Binary classification; Gaussian mixture, linear separable;

I Logistic regression with n < d

I Directed attacks along signal θ∗

Theorem [informal] W.h.p. over draws of data, we prove

1. that the robust error is monotonically increasing with ε

2. a lower bound on the robust error gap−→ the robust error gap
increases for increasing d/n until AT classifier ≈ trivial

Robust error gap = robust error (AT) − robust error (ST)

PROOF INTUITION I

1. Training with points closer to θ? hurts robust generalization
when n < d

2. Directed attacks bring points closer to θ?

Take-away: Points close to the optimal decision boundary can
hurt robust generalization.

PROOF INTUITION II

The robust error can be decomposed in

I Standard error, i.e. classification accuracy

I Attack susceptibility, i.e. robustness against attacks

Commonly AT with increasing ε

↑ standard error� ∆ susceptibility −→↑ robust error

AT with directed attacks for increasing ε

↑ standard error� ↓ susceptibility −→↓ robust error
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RELATED WORK

For the low dimensional regime and `p-ball attacks, the literature
shows that

I AT can hurt standard accuracy, but improves robust accuracy

I Setting ε ≈ εte is the optimal setting

We show that in the low sample size regime for AT for directed
attacks

I can hurt robust accuracy compared to ST

I robust accuracy decreases with increasing ε

CONCLUSION

For directed attacks in the low sample size regime AT

I can hurt robust accuracy compared to ST.

I decreases attack-susceptibility but largely increases the stan-
dard error.


