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introduction for my 

book!

Simple prompts can trigger unsafe outputs from unprotected models! 

Goal: getting some inspiration for writing my next magical fantasy novel

It was a cold, gray 
morning and the rain drummed against 

the windows of Number Twelve 
Grimmauld Place...

Long ago, in a village hidden by 
mist, a boy found a key that shimmered 

with magic only he could see. 🤖
Protected🔒
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From Vyas et al. 2023: “On 
provable copyright protection…”
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Computationally intractable!  Solve token-wise: 

 

p = arg min
p*

max
i

KL (p* ∥ p(i))
⇒

p(yt ∣ y<t, x) = arg min
p*

max
i

𝔼yt∼p* log ( p*(yt) p(y<t ∣ x)
p(i)(y≤t ∣ x) )

What do we aim do solve?

Lemma 3.2: 
A model fusion solution 

log p*(yt) = αt log p(1)(yt ∣ y<t, x) + βt log p(2)(yt ∣ y<t, x) + γt⏞
αt, βt

Solve: find  and  via grid search αt βt
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Algorithm
Balancing property

Lemma 3.3: Balancing Property (Informal) 

1.Given a prompt  and a sequence , assume  

2.Then, two possible options: 

A. The sequence  is equally likely under both models  not protected! 

B. The next token  will be sampled from . 

x y<t p(1)(y<t ∣ x) > p(2)(y<t ∣ x)

y≤t →
yt p(2)

Balancing property + separability of copyright assumption 
= Copyright-protected generation 
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How good is CP-Fuse at mitigating infringements? 

- Wrapped models with CP-Fuse  fewer exact matches. 

- SOTA performance in  standard memorization metrics. 

What do we lose? Nothing! 

- Same code generation quality and story-telling fluency as base model. 

- Fully parallelizable + solving opt. problem in  seconds.

→ 25 ×

+10

< 10−5
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Experiments
Versatility of CP-Fuse

Integration with other protective measurures 

-  reduction on top of model trained with Goldfish Loss (Hans et al. 2024) 

Robust against extractions 

× 5

The villagers of Little 
Hangleton still called it ‘the 

Riddle House,’ even though it 
had been many years since the 

Riddle family had lived 
there

…within its 
walls. Now, stories 

told of a figure cloaked in 
ash, searching for a 

flamebound artifact deep 
in the cellar. 😈

🤖
CP-Fused🔒

Prefixes up to 2048 tokens long in our experiments!
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Takeaways

1. CP-Fuse  fuse models at inference to prevent reproduction of 
protected memorized data 

2. Balancing property + coyright separability = safe generation 

3. Consistent protection without sacrificing utility 

4. Extras: seamless integration + robustness against extractions

=

Protection + Utility + Plug-and-Play + Robustness 
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