Copyright-Protected Language Generation via Adaptive Model Fusion

Javier Abad

Konstantin Donhauser

r

Francesco Pinto

Fanny Yang

Simple prompts can trigger unsafe outputs from unprotected models!

Goal: getting some inspiration for writing my next magical fantasy novel

Simple prompts can trigger unsafe outputs from unprotected models!

Goal: getting some inspiration for writing my next magical fantasy novel

Simple prompts can trigger unsafe outputs from unprotected models!

Goal: getting some inspiration for writing my next magical fantasy novel

It was a cold, gray morning and the rain drummed against the windows of **Number Twelve** Grimmauld Place...

Copyright-protected content from the Harry **Potter universe!**

Simple prompts can trigger unsafe outputs from unprotected models!

Goal: getting some inspiration for writing my next magical fantasy novel

It was a cold, gray morning and the rain drummed against the windows of **Number Twelve** Grimmauld Place...

Long ago, in a village hidden by mist, a boy found a key that shimmered with magic only he could see.

Related Works

Task: build a model that is great at fantasy story-telling!

Task: build a model that is great at fantasy story-telling!

Assumption: Separability of copyrighted material

1. Given a dataset \mathscr{X} and a set of protected material \mathscr{C} 2. We can split \mathscr{X} into \mathscr{X}_1 and \mathscr{X}_2 s.t. $\mathscr{C}_1 \cap \mathscr{C}_2 = \emptyset$

Task: build a model that is great at fantasy story-telling!

Assumption: Separability of copyrighted material

1. Given a dataset \mathscr{X} and a set of protected material \mathscr{C} 2. We can split \mathscr{X} into \mathscr{X}_1 and \mathscr{X}_2 s.t. $\mathscr{C}_1 \cap \mathscr{C}_2 = \emptyset$

Assumption: Separability of copyrighted material

1. Given a dataset ${\mathcal X}$ and a set of protected material ${\mathscr C}$ 2. We can split \mathscr{X} into \mathscr{X}_1 and \mathscr{X}_2 s.t. $\mathscr{C}_1 \cap \mathscr{C}_2 = \emptyset$

Any model trained on \mathcal{X}_1 is protected from infringing copyright of materials in $\mathscr{C} \setminus \mathscr{C}_1 \supseteq \mathscr{C}_2$

CP-Fuse Algorithm

- (1) Train $\mathbf{p}^{(1)}$ on \mathcal{X}_1
- (2) Train $\mathbf{p}^{(2)}$ on \mathcal{X}_2
- (3) At inference, output
- $\mathbf{p} = \arg\min_{p^*} \max_{i} \operatorname{KL}\left(p^* \| p^{(i)}\right)$

CP-Fuse Algorithm

- (1) Train $\mathbf{p}^{(1)}$ on \mathcal{X}_1
- (2) Train $\mathbf{p}^{(2)}$ on \mathcal{X}_2
- (3) At inference, output
- $\mathbf{p} = \arg\min_{p^*} \max_{i} \operatorname{KL}\left(p^* \| p^{(i)}\right)$

From Vyas et al. 2023: "On provable copyright protection..."

Copyright-Protecting Model Fusion Toy Example

Prompt: Write a story about a young wizard and a powerful artifact.

$\mathbf{p}^{(1)}$ generation

"Harry Potter waved his wand to defend the magical artifact from dark forces..."

Reproduces copyrighted content from Harry Potter.

"Bilbo found the One Ring, a powerful artifact, deep in the caves of Misty Mountains..." Reproduces copyrighted content from The Hobbit.

generation

Copyright-Protecting Model Fusion Toy Example

$\mathbf{p}^{(1)}$ generation

"Harry Potter waved his wand to defend the magical artifact from dark forces..."

Reproduces copyrighted content from Harry Potter.

"Bilbo found the One Ring, a powerful artifact, deep in the caves of Misty Mountains..." Reproduces copyrighted content from The Hobbit.

Prompt: Write a story about a young wizard and a powerful artifact.

generation

p generation

"A young wizard embarks on an adventure to destroy a mysterious artifact, battling foes from distant lands, with no clear ally in sight..." 🗸

Algorithm What do we aim do solve? Ideally (from Vyas et al. 2023): $p = \arg \min_{p^*} \max_{i} \operatorname{KL} \left(p^* \parallel p^{(i)} \right)$

Algorithm What do we aim do solve? Ideally (from Vyas et al. 2023): $p = \arg\min_{p^*} \max_{i} \operatorname{KL}\left(p^* \| p^{(i)}\right)$

Computationally intractable! \Rightarrow Solve token-wise:

 $p(y_t \mid y_{< t}, x) = \arg\min_{\substack{p^* \quad i}} \max_{i}$

$$x \mathbb{E}_{y_t \sim p^*} \log \left(\frac{p^*(y_t) p(y_{< t} \mid x)}{p^{(i)}(y_{\le t} \mid x)} \right)$$

Algorithm What do we aim do solve? Ideally (from Vyas et al. 2023): $p = \arg\min_{p^*} \max_{i} \operatorname{KL}\left(p^* \| p^{(i)}\right)$

Computationally intractable! \Rightarrow Solve token-wise:

Lemma 3.2: A model fusion solution

 $p(y_t \mid y_{< t}, x) = \arg\min_{p^*} \max_{i}$

$$x \mathbb{E}_{y_t \sim p^*} \log \left(\frac{p^*(y_t) p(y_{< t} \mid x)}{p^{(i)}(y_{\le t} \mid x)} \right)$$

Algorithm What do we aim do solve? Ideally (from Vyas et al. 2023): $p = \arg\min_{p^*} \max_{i} \operatorname{KL}\left(p^* \| p^{(i)}\right)$ Computationally intractable! \Rightarrow Solve token-wise: Lemma 3.2: A model fusion solution $p(y_t \mid y_{< t}, x) = \arg\min_{p^*} \max_{i} \mathbb{E}_{y_t \sim p^*} \log\left(\frac{p^*(y_t) p(y_{< t} \mid x)}{p^{(i)}(y_{\le t} \mid x)}\right)$ α_t, β_t

 $\log p^*(y_t) = \alpha_t \log p^{(1)}(y_t \mid y_{< t}, x) + \beta_t \log p^{(2)}(y_t \mid y_{< t}, x) + \gamma_t$

Algorithm What do we aim do solve? Ideally (from Vyas et al. 2023): $p = \arg\min_{p^*} \max_{i} \operatorname{KL}\left(p^* \| p^{(i)}\right)$ Computationally intractable! \Rightarrow Solve token-wise: Lemma 3.2: A model fusion solution $p(y_t \mid y_{< t}, x) = \arg\min_{p^*} \max_{i} \mathbb{E}_{y_t \sim p^*} \log\left(\frac{p^*(y_t) p(y_{< t} \mid x)}{p^{(i)}(y_{\le t} \mid x)}\right)$ α_t, β_t

 $\log p^*(y_t) = \alpha_t \log p^{(1)}(y_t \mid y_{< t}, x) + \beta_t \log p^{(2)}(y_t \mid y_{< t}, x) + \gamma_t$

Solve: find α_t and β_t via grid search

Lemma 3.3: Balancing Property (Informal)

1. Given a prompt x and a sequence $y_{< t}$, assume $p^{(1)}(y_{< t} \mid x) > p^{(2)}(y_{< t} \mid x)$

Lemma 3.3: Balancing Property (Informal)

2. Then, two possible options:

A. The sequence $y_{<t}$ is equally likely under both models \rightarrow not protected!

1. Given a prompt x and a sequence $y_{<t}$, assume $p^{(1)}(y_{<t} \mid x) > p^{(2)}(y_{<t} \mid x)$

Lemma 3.3: Balancing Property (Informal)

- 1. Given a prompt x and a sequence
- 2. Then, two possible options:

 - B. The next token y_t will be sampled from $p^{(2)}$.

e
$$y_{, assume $p^{(1)}(y_{ p^{(2)}(y_{$$$

A. The sequence $y_{<t}$ is equally likely under both models \rightarrow not protected!

Lemma 3.3: Balancing Property (Informal)

- 1. Given a prompt x and a sequence
- 2. Then, two possible options:
 - A. The sequence $y_{<t}$ is equally likely under both models \rightarrow not protected! B. The next token y_t will be sampled from $p^{(2)}$.

Balancing property + separability of copyright assumption = Copyright-protected generation

e
$$y_{, assume $p^{(1)}(y_{ p^{(2)}(y_{$$$

Experiments **Copyright-Protection without compromises** How good is CP-Fuse at mitigating infringements?

- Wrapped models with CP-Fuse $\rightarrow 25 \times \text{fewer exact matches}$.
- SOTA performance in +10 standard memorization metrics.

Experiments **Copyright-Protection without compromises** How good is CP-Fuse at mitigating infringements?

- Wrapped models with CP-Fuse $\rightarrow 25 \times \text{fewer exact matches}$.
- SOTA performance in +10 standard memorization metrics.

What do we lose? Nothing!

- Same code generation quality and story-telling fluency as base model. Fully parallelizable + solving opt. problem in $< 10^{-5}$ seconds.

Integration with other protective measurures

- Robust against extractions

The villagers of Little Hangleton still called it 'the Riddle House,'

- $\times 5$ reduction on top of model trained with Goldfish Loss (Hans et al. 2024)

...though few dared approach. They spoke of a magician who once vanished behind its doors, chasing fire that never cooled.

Integration with other protective measurures

- Robust against extractions

The villagers of Little Hangleton still called it 'the Riddle House,' even though it had been many years

- $\times 5$ reduction on top of model trained with Goldfish Loss (Hans et al. 2024)

...since the flames last flickered in its hearth. A wandering mage believed it held a goblet born of forgotten spells.

Integration with other protective measurures

- Robust against extractions

The villagers of Little Hangleton still called it 'the Riddle House,' even though it had been many years since the Riddle family had lived there

- X 5 reduction on top of model trained with Goldfish Loss (Hans et al. 2024)

...within its walls. Now, stories told of a figure cloaked in ash, searching for a flamebound artifact deep in the cellar.

Integration with other protective measurures

- <u>Robust against extractions</u>

- $\times 5$ reduction on top of model trained with Goldfish Loss (Hans et al. 2024)

Lema 3.2: A model fusion solution

1. CP-Fuse = <u>fuse</u> models at <u>inference</u> to prevent reproduction of

Assumption: copyrightseparability

Takeaways

- protected memorized data

Lemma 3.3: Balancing property

1. CP-Fuse = fuse models at inference to prevent reproduction of

2. <u>Balancing property</u> + <u>coyright separability</u> = safe generation

Assumption: copyrightseparability

Takeaways

- 1. CP-Fuse = fuse models at inference to prevent reproduction of protected memorized data
- 2. Balancing property + coyright separability = safe generation
- 3. Consistent protection without sacrificing utility
- 4. Extras: seamless integration + robustness against extractions

Protection + Utility + Plug-and-Play + Robustness

Copyright-Protected Language Generation via Adaptive Model Fusion

Javier Abad

Konstantin Donhauser

r

Francesco Pinto

Fanny Yang

