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Robust prediction for safety purposes
training distributionpossible 

test distributions 𝒫!"#!

ℙ
Model
𝛽ℙ!"#!
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Robust prediction for safety purposes
training distributionpossible 

test risks on 𝒫!"#!

ℙ
Model
𝛽𝑅(𝛽; ℙ!"#!)
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Robust prediction for safety purposes
training distributionpossible 

test risks on 𝒫!"#!

ℙ
Model
𝛽

𝑅$%& 𝛽 = 𝑠𝑢𝑝
ℙ∈𝒫!"#!

𝑅 𝛽;ℙ

worst-case
risk in 𝒫!"#! for 𝛽

• A model 𝛽 is more robust if it has smaller 𝑅$%& 𝛽
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Robust prediction for safety purposes

ℙ* ℙ+

ℙ,

training distributions 𝒫!$'()possible 
test risks on 𝒫!"#!

unanswered questions:

• A model 𝛽 is more robust if it has smaller 𝑅$%& 𝛽

• Any robustness gains from observing multiple heterogeneous training distributions?

Model
𝛽

𝑅$%& 𝛽 = 𝑠𝑢𝑝
ℙ∈𝒫!"#!

𝑅 𝛽;ℙ

worst-case
risk in 𝒫!"#! for 𝛽
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Robustness analysis of methods – what’s missing?

ℙ* ℙ+

ℙ,

training distributions 𝒫!$'()possible 
test risks on 𝒫!"#!

unanswered questions:

Model
𝛽

𝑅$%& 𝛽 = 𝑠𝑢𝑝
ℙ∈𝒫!"#!

𝑅 𝛽;ℙ

So far: Given a method returning 𝛽, for known 𝒫!"#!, how large 𝑅$%& 𝛽 ?

Problem: 𝒫!"#!, hence 𝑅$%& ⋅ , usually not fully known (partially identifiable) 

Neglected question: Given partial knowledge about 𝒫!"#!, 
• how robust can any algorithm be, i.e. what is the “information-theoretic” (population) limit? 

• how well do existing algorithms perform, and how close to optimal/adaptive are they?
our work

worst-case
risk in 𝒫!"#! for 𝛽
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How can we model partial knowledge of 𝒫!"#!/ 𝑅$%&
via its relationship to 𝒫!$'()?

• Setting up unified shift robustness view via invariance (+ one example)

• From fully identifiable (prior work) to partially identifiable (our work) 𝑅$%&
• Measure of robustness and hardness in partially identifiable case
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Unified view of shift robustness using invariance

ℙ*

ℙ+

ℙ,

possible test distributions
𝒫!"#! = 𝒫(𝜃⋆, Θ!"#!)

training 
shifts Θ!$-./

possible 
set Θ!"#! of 
test shifts

• Assume that (𝜃⋆, 𝜃") parameterize distributions ℙ" with 𝜃⋆ invariant and 𝜃" varying with 𝑒

• Viewpoint includes traditional shift concepts (covariate shift, spurious correlations, 

domain mixtures, neighborhood) & causality-based ones (IRM-related or next slide)

𝜃⋆
true invariant

training distributions
𝒫!$'() = 𝒫(𝜃⋆, Θ!$'())

𝜃*

𝜃+

𝜃,
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Imagine simple linear example for concreteness…
Possible underlying causal model
(most simplified version)

𝐻

𝑋 𝑌

𝜃"
shift

𝑋" = 𝜃" + 𝜂
𝑌" = 𝛽⋆+𝑋" + 𝜉

Assume that joint distributions in each “environment” 𝑒

in train and test environments are defined by

with invariant 𝜃⋆ = 𝛽⋆, Σ⋆ same across environments

exogeneous noise
𝜂, 𝜉 ∼ 𝑁 0, Σ⋆

invariant covariance

mean shifts varying with 𝑒
(assume ref. env has 𝜃" = 0)

We allow cross-covariance Σ⋆,-. ≠ 0 corresponding to confounding 

⟹ allows not only covariate shift, but also shift in 𝔼[𝑌|𝑋]!

unobs.

*our calculations also incorporate covariance shifts and beyond Gaussians
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Unified view of shift robustness using invariance

ℙ*

ℙ+

ℙ,

possible test distributions
𝒫!"#! = 𝒫(𝜃⋆, Θ!"#!)

training 
shifts Θ!$-./

possible 
set Θ!"#! of 
test shifts

𝜃⋆
true invariant

training distributions
𝒫!$'() = 𝒫(𝜃⋆, Θ!$'())

𝜃*

𝜃+

𝜃,

Remember: we’re interested in answering, given some invariance assumption & any Θ1231, Θ!$-./
• how robust can any algorithm be, i.e. what is the “information-theoretic” (population) limit? 

• how do existing algorithms perform, and how close to optimal/adaptive are they?
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Measuring robustness via robust risk

𝑅(𝛽; ℙ*)

𝑅(𝛽; ℙ+)

𝑅(𝛽; ℙ,)

possible test risks 𝑅(𝛽; ℙ)
for ℙ ∈ 𝒫 𝜃⋆, Θ!"#!

𝜃*

𝜃+

𝜃,

possible 
set Θ!"#! of 
test shifts

worst-case
risk in 𝒫!"#!

for 𝛽

robust risk
𝑅$%& 𝛽; 𝜃⋆, Θ!"#!

training risks
𝑅 𝛽, ℙ : ℙ ∈ 𝒫 𝜃⋆, Θ!$'()

𝜃⋆
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Measuring robustness via robust risk

𝑅(𝛽; ℙ*)

𝑅(𝛽; ℙ+)

𝑅(𝛽; ℙ,)

𝜃*

𝜃+

𝜃,

One fixed 𝜃⋆ and test shift set Θ!"#!
induces one robust risk!

Invariant parameter is unknown/unobserved!

invariant
parameter

𝜃⋆

robust risk
𝑅$%& 𝛽; 𝜃⋆, Θ!"#!

training risks
𝑅 𝛽, ℙ : ℙ ∈ 𝒫 𝜃⋆, Θ!$'()
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Prior work: Assuming identifiable robust risk

Previous work on robustness only considers identifiable case

• for invariance-based shift models this only holds for 

specific combinations of Θ!"#!, Θ!$'()
• any other combination naturally corresponds to some kind 

of partial knowledge of 𝒫!"#!

robust risk
𝑅$%& 𝛽; 𝜃⋆, Θ!"#!

training distributions
𝒫!$'() = 𝒫(𝜃⋆, Θ!$'())

ℙ*

ℙ+

ℙ,

(always true for DRO/mixture of domains with no 𝜃⋆ such as in e.g. Mansour et al. ’08, Sagawa et al. ’19)

Robust risk identifiable, i.e. computable

using observed 𝒫!$'() , Θ!$'() and Θ!"#!?
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Prior work I: Identifiable invariant mechanism 𝜃⋆

e.g. Peters et al. ‘16, Rojas-Carulla et al. ’18, Arjovsky et al. ‘19, Krueger ‘20 

robust risk
𝑅$%& 𝛽; 𝜃⋆, Θ!"#!

possible invariant
parameter 𝜃⋆

𝜃⋆

training distributions
𝒫!$'() = 𝒫(𝜃⋆, Θ!$'())

ℙ*

ℙ+

ℙ,

One fixed 𝜃⋆ and test shift set Θ!"#!
induces one robust risk!

Using Θ!$-./ &
invariance ass.

The robust risk is identifiable…

• when Θ!$'() is heterogeneous enough to identify 𝜃⋆

not generally
identifiable!
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Prior work II: Only identifiable robust risk

e.g. Rothenhaeusler et al. ’21, Shen et al. ‘23

robust risk
𝑅$%& 𝛽; 𝜃⋆, Θ!"#!

training distributions
𝒫!$'() = 𝒫(𝜃⋆, Θ!$'())

Θ"4 ℙ*

ℙ+

ℙ,

possible 
set Θ!"#! of 
test shifts

worst-case
risk in 𝒫!"#!s

for 𝛽

possible invariant
parameter 𝜃⋆

Using Θ!$-./ &
invariance ass.

The robust risk is identifiable…

• when Θ!$'() is heterogeneous enough to identify 𝜃⋆

• when Θ!"#! similar to Θ!$'() if one can’t identify 𝜃⋆

possible
𝒫!"#! = 𝒫(𝜃⋆, Θ!"#!)

not generally true
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Our work: general partially identifiable robust risk

ℙ*

multiple robust risks
𝑅$%& 𝛽; 𝜃, Θ!"#!

for 𝜃 ∈ Θ"/

possible invariant
parameter 𝜃⋆

ℙ+

ℙ,

Θ"4

multiple 
possible 𝒫!"#!* 

possible 
set Θ!"#! of 
test shifts

worst-case
risk in 𝒫!"#!s

for 𝛽

training distributions
𝒫!$'() = 𝒫(𝜃⋆, Θ!$'())

In general, given invariance model, for arbitrary Θ!"#!, Θ!$'()
we end up only with partially/set-identifying the robust risk!

Using Θ!$-./ &
invariance ass.
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Our work: general partially identifiable robust risk

ℙ*

multiple robust risks
𝑅$%& 𝛽; 𝜃, Θ!"#!

for 𝜃 ∈ Θ"/

possible invariant
parameter 𝜃⋆

ℙ+

ℙ,

Θ"4

training distributions
𝒫!$'() = 𝒫(𝜃⋆, Θ!$'())

In general, given invariance model, for arbitrary Θ!"#!, Θ!$'()
we end up only with partially/set-identifying the robust risk!

Using Θ!$-./ &
invariance ass.

How do we even measure robustness in this case?

Train shifts Θ!$'() and test shift set Θ!"#!
induces multiple robust risks
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Quantifying robustness in partial identifiable setting

Train shifts Θ!$'() and test shift set Θ!"#!
induces multiple robust risks

…want small robust risk even 
for the hardest true 𝜃 ∈ Θ"/ that 
could have induced 𝒫!$'()

worst-case robust risk
ℜ$%& 𝛽; Θ!$'() , Θ!"#! =
max
0∈2!"

𝑅$%& 𝛽; 𝜃, Θ!"#!

possible invariant
parameter 𝜃⋆

Θ"4 ℙ*

ℙ+

ℙ,

Using Θ!$-./ &
invariance ass.

training distributions
𝒫!$'() = 𝒫(𝜃⋆, Θ!$'())

multiple robust risks
𝑅$%& 𝛽; 𝜃, Θ!"#!

for 𝜃 ∈ Θ"/
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Achievable robustness in partial identifiable setting

worst-case robust risk
ℜ$%& 𝛽; Θ!$'() , Θ!"#! =
max
0∈2!"

𝑅$%& 𝛽; 𝜃, Θ!"#!

possible invariant
parameter 𝜃⋆

Θ"4

and achievable worst-case robust risk
𝔐 Θ!$'() , Θ!"#! = min

3
ℜ$%& 𝛽; Θ!$'() , Θ!"#!

= min
3

max
0∈2!"

𝑅$%& 𝛽; 𝜃, Θ!"#!

ℙ*

ℙ+

ℙ,

training distributions
𝒫!$'() = 𝒫(𝜃⋆, Θ!$'())

allow us to quantify
robustness in the
non-identifiable case

Train shifts Θ!$'() and test shift set Θ!"#!
induces multiple robust risks

multiple robust risks
𝑅$%& 𝛽; 𝜃, Θ!"#!

for 𝜃 ∈ Θ"/

Using Θ!$-./ &
invariance ass.
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Summary of differences in identifiability
Identifiable case (prior work): 
• robust risk 𝑅$%& 𝛽; 𝜃⋆, Θ!"#! identified
• best achievable: min

3
𝑅$%& 𝛽; 𝜃⋆, Θ!"#!

Partially identifiable case (ours): 
• only worst-case robust risk ℜ$%& 𝛽; Θ!$'() , Θ!"#! = max

0∈2!"
𝑅$%& 𝛽; 𝜃, Θ!"#! identified

• best-achievable: 𝔐 Θ!$'() , Θ!"#! = min
3

ℜ$%& 𝛽; Θ!$'() , Θ!"#!

ℙ*

ℙ+

ℙ,

training distributions
𝒫!$'() = 𝒫(𝜃⋆, Θ!$'())

Θ"4

𝜃⋆

𝑅$%& 𝛽; 𝜃⋆, Θ!"#!

ℜ$%&(𝛽; Θ!$-./, Θ!"#!)

Using Θ!$-./ &
invariance ass.
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We quantify for invariance-based methods in this general setting 

• the best achievable robustness 𝔐 Θ!$'() , Θ!"#!
• how ranking of different methods wrt ℜ$%& 𝛽; Θ!$'() , Θ!"#! changes drastically 

with varying Θ!"#! , Θ!$'()
theoretically for linear model
empirically for real data

Remember: we’re interested in answering, given some invariance assumption & any Θ1231, Θ!$-./
• how robust can any algorithm be, i.e. what is the “information-theoretic” (population) limit? 

• how do existing algorithms perform, and how close to optimal/adaptive are they?
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Simple linear example for concreteness

• 𝜃⋆ = 𝛽⋆, Σ⋆ invariant and 

• 𝜃" = 𝜇4" , Σ4" = 𝔼 A" , Cov A" varies with 𝑒

Mean shifts during test time assumed to lie in Θ!"#! = {𝜃!"#!: 𝜃!"#!𝜃!"#!+ ≼ 𝛾𝑀#"") + 𝛾5𝑀6)#"") }

Case of 𝛾5 = 0 in Rothenhaeusler et al. ‘21

Test time shifts assumptions

𝑀#""/: covariance with range 

in span of seen shift directions 

𝑟𝑎𝑛𝑔𝑒 𝑀#""/ ⊂ 𝑠𝑝𝑎𝑛 𝜃" "∈ 6

𝑀7/#""/: projection matrix onto
unseen directions with 

𝑟𝑎𝑛𝑔𝑒 𝑀#""/ ⊥ 𝑠𝑝𝑎𝑛 𝜃" "∈ 6

𝑋" = 𝜃" + 𝜂
𝑌" = 𝛽⋆+𝑋" + 𝜉

Assume that joint distributions in each “environment” 𝑒

in train and test environments are defined by

with invariant 𝜃⋆ = 𝛽⋆, Σ⋆ same across environments

exogeneous noise
𝜂, 𝜉 ∼ 𝑁 0, Σ⋆

invariant covariance

mean shifts varying with 𝑒
(assume ref. env has 𝜃" = 0)

shift strengths



Achievable and achieved robustness

Corollary [KGY’ 24] (informal) – Performance comparison in the partially identifiable setting 

For large 𝛾5 fixed 𝛾, 𝔐 Θ!$'() , Θ!"#! = min
3

ℜ$%& 𝛽; Θ"/ , Θ!"#! = 𝐶7𝛾5 + 𝑐8

vs. Anchor regression*: ℜ$%& 𝛽')9:%$; Θ!$'() , Θ!"#! = 𝐶 + ℎ 𝛾 7𝛾5 + 𝑐7

vs. Ordinary least squares: ℜ$%& 𝛽;<=; Θ!$'() , Θ!"#! = 𝐶 + ℎ 1
7
𝛾5 + 𝑐>

(ℎ is decreasing 
function, 𝑐 are
constant in 𝛾5)

𝑋$ = 𝐴$ + 𝜂
𝑌$ = 𝛽⋆&𝑋$ + 𝜉
Θ'$(' = {𝜃'$(': 𝜃'$('𝜃'$('& ≼
𝛾𝑀($$) + 𝛾*𝑀+)($$) }

Trends concluded from formal statement

In partially identifiable case & new test shift directions 𝛾5 large, anchor regression and OLS

• are far from achievable robustness 𝔐 Θ!$'() , Θ!"#! = min
3

ℜ$%&(𝛽; Θ"/ , Θ!"#!)

• have similar linear robustness when term with unseen directions 𝛾5 dominates

* Rothenhaeusler et al. ‘21



Experimental comparison in linear setting

• Using correct Θ!"#!
• Average over random

draws of 𝜃⋆

Partially identifiable caseIdentifiable case (𝛾5 = 0)

W
or

st
-c

as
e 

M
SE

increasing 𝛾5, fixed 𝛾 ≠ 0increasing 𝛾

Trends concluded from formal statement

In partially identifiable case & new test shift directions 𝛾5 large, anchor regression and OLS

• are far from achievable robustness 𝔐 Θ!$'() , Θ!"#! = min
3

ℜ$%&(𝛽; Θ"/ , Θ!"#!)

• have similar linear robustness when term with unseen directions 𝛾5 dominates

ℜ
$%
&(
𝛽;
Θ !
$-
./
,Θ

!"
#!
)

No new test shift directions Some new test shift directions

0.0 2.5 5.0 7.5 10.0 0.0 0.5 1.0 1.5 2.0
0

5

10

0.50

0.75

1.00

1.25

Perturbation strength

Te
st

 M
S

E

Methods:

Rob-ID

Anchor

OLS

Lower bound

Lower bound 
estimate

𝔐 Θ!"#$% , Θ!&'!

𝑋$ = 𝐴$ + 𝜂
𝑌$ = 𝛽⋆&𝑋$ + 𝜉
Θ'$(' = {𝜃'$(': 𝜃'$('𝜃'$('&

≼ 𝛾𝑀($$) + 𝛾*𝑀+)($$) }
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Real-world data setting
Single—cell gene expression dataset with

• prediction task: expression of one gene (target) as a function of expressions of 3 others

• per target, 3 different environments (≜ individual gene knocked out) + observational

o training environments: observational + 1 knocked-out environment

o shift strengths 𝛾, 𝛾5 ≜ distance of covariates to mean in observational environment

o partially identified setting: test data also includes some percentage of samples from 

knock-out environments not seen during training

• Results are averaged across these scenarios

*[Replogle, et al., 2022]
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Experimental comparison in real-world setting
partially identifiable case (𝛾5 ≠ 0)

0% unseen directions 33% unseen directions 67% unseen directions 100% unseen directions

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

0.1

0.2

0.3

0.4

0.5

Perturbation strength

Te
st

 M
S

E

Methods: Rob-ID Anchor DRIG ICP OLS

increasing shift strength 𝛾 = 𝛾5

argmin
;

Jℜ$%& 𝛽; Θ!$-./, Θ!"#! assuming previous synthetic setting where M7/#""/

is most conservatively chosen to be entire 𝑠𝑝𝑎𝑛 𝜃" "∈ 6
< (no reason to do well!)

identifiable case (𝛾′ = 0)

0% unseen directions 33% unseen directions 67% unseen directions 100% unseen directions

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

0.1

0.2

0.3

0.4

0.5

Perturbation strength

Te
st

 M
S

E

Methods: Rob-ID Anchor DRIG ICP OLSDifferent invariance-based

0% unseen directions 33% unseen directions 67% unseen directions 100% unseen directions

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

0.1

0.2

0.3

0.4

0.5

Perturbation strength

Te
st

 M
S

E

Methods: Rob-ID Anchor DRIG ICP OLS

increasing shift strength 𝛾

Test set here consists of:

• 67% from knock-outs

unseen during training
• 33% held-out data from

seen knock-out env

vs.



27

Summary

J. Kostin, N. Gnecco, F. Yang “Achievable distributional robustness when the robust

risk is only partially identified”, NeurIPS 2024

• Apply on other types of invariant mechanisms 

(see e.g. Francesco’s, Arthur’s talk, and 

beyond causality)

• Use achievable robustness for

active selection of training distributions

Future work
How analyze the more general partially identifiable 

setting (vs. focusing on identifiable vs. non-identifiable)

• introduced measures of (achievable) robustness 

• computed them for a linear example and 

compared achievable robustness with prior methods


