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Robust prediction for safety purposes

possible training distribution
test distributions P;,.;
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Robust prediction for safety purposes

possible training distribution
test risks on P, .,
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Robust prediction for safety purposes

worst-case possible training distribution
risk in Peese for B test risks on P, ..,
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A model B is more robust if it has smaller R, , ()



Robust prediction for safety purposes

worst-case possible training distributions P;,,in
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« A model B is more robust if it has smaller R..,, () S __-

* Any robustness gains from observing multiple heterogeneous training distributions?



Robustness analysis of methods - what's missing?

worst-case possible training distributions P,
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Ryop(B) = sup R(B;P) ~_.__-" \
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So far: Given a method returning B, for known P,.s;, how large Ryop(B)? ; 7
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Problem: P;.,;, hence R, (:), usually not fully known (partially identifiable) ~~ o _ =~

Neglected question: Given partial knowledge about Py,
* how robust can any algorithm be, i.e. what is the “information-theoretic” (population) limit?

* how well do existing algorithms perform, and how close to optimal/adaptive are they? y
our wor




How can we model partial knowledge of P;..;/ R,
via its relationship to Py qin?

Setting up unified shift robustness view via invariance (+ one example)
From fully identifiable (prior work) to partially identifiable (our work) R,

Measure of robustness and hardness in partially identifiable case



Unified view of shift robustness using invariance

possible test distributions training distributions
j)test - ?(8*; ®test) Ptrain - ?(9*: G)train)
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« Assume that (8% 6,) parameterize distributions IP, with 8* invariant and 6, varying with e
« Viewpoint includes traditional shift concepts (covariate shift, spurious correlations,

domain mixtures, neighborhood) & causality-based ones (IRM-related or next slide)



Imagine simple linear example for concreteness...

Assume that joint distributions in each “environment” e | Possible underlying causal model

(most simplified version)

(&) /

We allow cross-covariance Z, ,z # 0 corresponding to confounding

in train and test environments are defined by

mean shifts varying with e
(assume ref. env has 6, = 0)

\

X¢=60,+n
Yé =/ X+ ¢

same across environments

= allows not only covariate shift, but also shift in E[Y|X]!

*our calculations also incorporate covariance shifts and beyond Gaussians 9



Unified view of shift robustness using invariance

possible test distributions training distributions
j)test - ?(8*; G)test) :Ptrain - ?(9*: ®train)
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Remember: we're interested in answering, given some invariance assumption & any Oest, Otrain
* how robust can any algorithm be, i.e. what is the “information-theoretic” (population) limit?

* how do existing algorithms perform, and how close to optimal/adaptive are they?
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Measuring robustness via robust risk

robust risk possible test risks R(S; ) training ri*sks
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Measuring robustness via robust risk

robust risk invariant training risks
R,op(B;0%,00st) parameter {R(B,P):IP € P(6%,044in)}
e - T T = N
One fixed 8* and test shift set O ;0 N
induces one robust risk! w \
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Invariant parameter is unknown/unobserved!
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Prior work: Assuming identifiable robust risk

robust risk training distributions
Rrob (,8, 9*, ®test) :Ptrain — ?(8*: ®train)
Robust risk identifiable, i.e. computable A h S
/
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Previous work on robustness only considers identifiable case ‘\ ﬁ P, ,’
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« forinvariance-based shift models this only holds for N ® /
~\ ]P)g //
specific combinations of Oest, Otrain T~ao -

* any other combination naturally corresponds to some kind

of partial knowledge of P,

(always true for DRO/mixture of domains with no 8* such as in e.g. Mansour et al. ‘08, Sagawa etal. '19) 13



Prior work I: Identifiable invariant mechanism 6*

robust risk possible invariant training distributions
Rrob (,8, 9*: ®test) parameter 0 :Ptrain - ?(8*: G)train)
P TS S
One fixed 8™ and test shift set 0.4 , N

induces one robust risk! I o \
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not generally / Using Oprgin & ﬁ P, !

- /
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The robust risk is identifiable... ~o__-~-

* when O4.4in is heterogeneous enough to identify 8*

e.g. Peters et al. '16, Rojas-Carulla et al. "18, Arjovsky et al. '19, Krueger ‘20 14



Prior work Il: Only identitiable robust risk

robust risk possible possible invariant training distributions
Ryob (,8, 0, ®test) Prest = :;D(Q*r Gtest) parameter 0" Ptrain = ?(8*' G)train)
-7 ~ ~
- not generally true ;7
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worst-case |V / possible | g
risk in Prests ~=7 set O, Of Using Otpqin & ‘\ ﬁ P,
for B test shifts invariance ass. '
N g ’
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The robust risk is identifiable... S < -

* when O4.4in is heterogeneous enough to identify 8*

*  when 0.4 similar to O4.4i if one can't identify 6*

e.g. Rothenhaeusler et al. ‘21, Shen et al. '23



Our work: general partially identitiable robust risk

multiple robust risks multiple possible invariant training distributions
. * — * )
R, (B;0,00c) possible P s * parameter 6 Pirain = P07, Otrain)
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In general, given invariance model, for arbitrary ©;es¢, O¢rain ~S—-=--

we end up only with partially/set-identifying the robust risk!
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Our work: general partially identitiable robust risk

multiple robust risks possible invariant training distributions
R, (B;0,00c) parameter 6* Pirain = P07, Otrgin)

0 e h ik

Train shifts 0,4, and test shift set O,,s;  Using Bgpqin & \ ﬁ P,
induces multiple robust risks invariance ass. |

In general, given invariance model, for arbitrary ©;es¢, O¢rain ~S—-=--

we end up only with partially/set-identifying the robust risk!

How do we even measure robustness in this case?




Quantitying robustness in partial identitiable setting

multiple robust risks possible invariant training distributions
Rrob (,8: 0, G')test) parameter 6* ?train - SD(H*: G)train)
N\
\

0 e h 2

I
Train shifts 0,4, and test shift set O,,s;  Using Bgpqin & \ ﬁ Pz,
induces multiple robust risks invariance ass. | /

\ g /
0o \\ ]P)g _ //
worst-case robust risk ...want small robust risk even
Rrob (B; Otrains Otest) = for the hardest true 6 € 0, that
Jnax Rrop(B; 8, Otest) could have induced P,, .1,
eq
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Achievable robustness in partial identitiable setting

multiple robust risks possible invariant training distributions
Rrob (,8: 0, G')test) parameter 6* ?train - P(Q*: ®train)
/ \\
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Train shifts 0,4, and test shift set O,,s;  Using Bgpqin & \ ﬁ Pz,
induces multiple robust risks invariance ass. | /
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worst-case robust risk and achievable worst-case robust risk
Rrob (B; Otrains Otest) = M(Otrqins Otest) = mﬁin Roron (B3 Otrain, Orest) | allow us to quantify
max R, (0; 0, Otest) . _ robustness in the
0€Beq - mﬁln grggil Rrob (B0, Orest) non-identifiable case
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Summary of differences in identitfiability

training distributions

Identifiable case (prior work): Prrain = P(0%, 01rqin)
* robustrisk R,,,(f;0%,0,..) identified =~
* bestachievable: min R,,,(5; 60", 005:) -~ >
B rob \pF» » Ytest y N\
® <« I/ \\
Ryop(B; 07, Orest) NI I; \
. I 1 1
Using O¢rain &, o |
invariance ass.\ P, 1
Rrob (B Otrain, Otest) \ ﬁ /I
o 4 e
\ - \]P)g _ P

s e

Partially identifiable case (ours):

« only worst-case robust risk R, (5; O 0in, Qo) = max R,y (B; 0, 0,.) identified
eq

* best-achievable: Di(0, 1, 0;05:) = mﬁ;n Rrob (B Otrain, Oest)
20



Remember: we're interested in answering, given some invariance assumption & any Oest, Otrain
* how robust can any algorithm be, i.e. what is the “information-theoretic” (population) limit?

* how do existing algorithms perform, and how close to optimal/adaptive are they?

o

We quantify for invariance-based methods in this general setting
* the best achievable robustness M(Orqin, Orest)

* how ranking of different methods wrt R, (5; Otruin, Orest) changes drastically

W|th Val’ylng ®t€St’ @train \

theoretically for linear model
empirically for real data
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Simple linear example for concreteness

Assume that joint distributions in each “environment” e

in train and test environments are defined by

mean shifts varying with e
(assume ref. env has 6, = 0)

X¢=60,+n

same across environments

Test time shifts assumptions
Mgeern: covariance with range

in span of seen shift directions

range(Mseen) C span {6, }eex]

Mynseen: Projection matrix onto

unseen directions with

range(Mgpen) L span {Qe}ee[k]

Mean shifts during test time assumed to lie in O;osr = {Orest: OrostOrest = y,l\\/lseen +]'Munseen }

Case of y' = 0 in Rothenhaeusler et al. ‘21

shift strengths
22



X¢=A®+n
Yée = IB;FXe + ¢
Otest = {Otest: etestggast <

Achievable and achieved robustness YMacon + ¥ Munseen )

Trends concluded from formal statement

In partially identifiable case & new test shift directions y’ large, anchor regression and OLS

« are far from achievable robustness 9i(0,, ,;,,, Opcr) = mﬁin o83 Cag Oase)

have similar linear robustness when term with unseen directions y’ dominates

- fove slrneo robusness wheh ey th unseen dnectons domnates |

Corollary [KGY’ 24] (informal) - Performance comparison in the partially identifiable setting

For Iarge }/’ fixed V. SI:R(@train: Gtest) = mﬂin mrob (ﬁ; G)eq; Gtest) = Czy, + ¢4

vs. Anchor regression*: R;.o, (Banchor; Ocrain Otest) = (C + h(y))zy, + C; (his decreasing
_ 2 function, c are
vs. Ordinary least squares: R, (BoLs; Otrains Otest) = (C + h(l)) Y tc3 constantiny’)

* Rothenhaeusler et al. ‘21



X¢=A®+n
Ye=pBIX®+¢

— . T
E')te'st - {etest- gtestgtest

Experimental comparison in linear setting  <7#sen 7 Musee )

Trends concluded from formal statement

In partially identifiable case & new test shift directions y' large, anchor regression and OLS

« are far from achievable robustness i (0, i, Oocr) = mﬁin Rrob (B Ocqs Otest)

* have similar linear robustness when term with unseen directions y’ dominates

Reob (B Otrain, Otest)

|dentifiable case (y' = 0) Partially identifiable case

Methods:

Lower bound .
=o- estimate * Usmg correct Gtest

-~ Anchor
OLS

- — Lower bound draws Of H*
gjt(@traiw G)test)

-
N
(6)]
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Real-world data setting

Single—cell gene expression dataset with

- prediction task: expression of one gene (target) as a function of expressions of 3 others

- pertarget, 3 different environments (£ individual gene knocked out) + observational
o training environments: observational + 1 knocked-out environment

o shift strengths y,y’' £ distance of covariates to mean in observational environment
o partially identified setting: test data also includes some percentage of samples from

knock-out environments not seen during training

- Results are averaged across these scenarios

25



Experimental comparison in real-world setting

identifiable case (y' = 0) partially identifiable case (y' # 0)

0% unseen directions 67% unseen directions

0.5

0.4 .
% VS.
S 0.3
— 0.2 5= gl ' o

__ O
| >

increasing shift strength y increasing shift strength y =y’

Different invariance-based Methods: =O= Rob-ID <~ Anchor 4~ DRIG -~ ICP -+ OLS

LS . . . . A\
argmin R,.;, (; Orrin Oresr) @ssuming previous synthetic setting where My ,iseen
i

: . . 1
is most conservatively chosen to be entire (span {HQ}QE[R]) (no reason to do well!)



Summary Future work

How analyze the more general partially identifiable *  Apply on other types of invariant mechanisms
setting (vs. focusing on identifiable vs. non-identifiable) (see e.g. Francesco's, Arthur’s talk, and
« introduced measures of (achievable) robustness beyond causality)

« computed them for a linear example and Use achievable robustness for

compared achievable robustness with prior methods active selection of training distributions

J. Kostin, N. Gnecco, F. Yang “Achievable distributional robustness when the robust

risk is only partially identified”, NeurlPS 2024
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