

Robust prediction beyond the identifiable case

Oberwolfach Workshop January 2025 on Overparameterization, **Regularization, Identifiability** and Uncertainty

Fanny Yang, joint with Julia Kostin, Nicola Gnecco

Statistical Machine Learning group, Department of Computer Science, ETH Zurich

Robust prediction for safety purposes

Robust prediction for safety purposes

• A model β is more robust if it has smaller $R_{rob}(\beta)$

Robust prediction for safety purposes

• Any robustness gains from observing multiple heterogeneous training distributions?

Robustness analysis of methods - what's missing?

• how well do *existing algorithms perform*, and how close to optimal/adaptive are they?

our work

How can we model partial knowledge of $\mathcal{P}_{test}/R_{rob}$ via its relationship to \mathcal{P}_{train} ?

- Setting up unified shift robustness view via invariance (+ one example)
- From fully identifiable (prior work) to partially identifiable (our work) R_{rob}
- Measure of robustness and hardness in partially identifiable case

Unified view of shift robustness using invariance

- Assume that (θ^*, θ_e) parameterize distributions \mathbb{P}_e with θ^* invariant and θ_e varying with e
- Viewpoint includes traditional shift concepts (covariate shift, spurious correlations, domain mixtures, neighborhood) & causality-based ones (IRM-related or next slide)

Imagine simple linear example for concreteness...

Assume that joint distributions in each "environment" *e* in train and test environments are defined by

with invariant $\theta_{\star} = (\beta_{\star}, \Sigma_{\star})$ same across environments

Possible underlying causal model (most simplified version)

We allow cross-covariance $\Sigma_{\star,\eta\xi} \neq 0$ corresponding to confounding

 \Rightarrow allows not only covariate shift, but also shift in $\mathbb{E}[Y|X]!$

Unified view of shift robustness using invariance

Remember: we're interested in answering, given some invariance assumption & any Θ_{test} , Θ_{train}

- how robust can any algorithm be, i.e. what is the "information-theoretic" (population) limit?
- how do *existing algorithms perform*, and how close to optimal/adaptive are they?

Measuring robustness via robust risk

Measuring robustness via robust risk

Invariant parameter is unknown/unobserved!

Prior work: Assuming identifiable robust risk

training distributions

 \mathbb{P}_1

 $\mathcal{P}_{train} = \mathcal{P}(\theta^{\star}, \Theta_{train})$

robust risk $R_{rob}(\beta; \theta^*, \Theta_{test})$

Robust risk identifiable, i.e. computable

using observed \mathcal{P}_{train} , Θ_{train} and Θ_{test} ?

Previous work on robustness only considers identifiable case

- for invariance-based shift models this only holds for specific combinations of Θ_{test} , Θ_{train}
- any other combination naturally corresponds to some kind of partial knowledge of \mathcal{P}_{test}

Prior work I: Identifiable invariant mechanism θ^*

• when Θ_{train} is heterogeneous enough to identify θ^*

Prior work II: Only identifiable robust risk

- when Θ_{train} is heterogeneous enough to identify θ^*
- when Θ_{test} similar to Θ_{train} if one can't identify θ^*

Our work: general partially identifiable robust risk

we end up only with partially/set-identifying the robust risk!

Our work: general partially identifiable robust risk

Quantifying robustness in partial identifiable setting

Achievable robustness in partial identifiable setting

Summary of differences in identifiability

Partially identifiable case (ours):

- only worst-case robust risk $\Re_{rob}(\beta; \Theta_{train}, \Theta_{test}) = \max_{\theta \in \Theta_{eq}} R_{rob}(\beta; \theta, \Theta_{test})$ identified
- best-achievable: $\mathfrak{M}(\Theta_{train}, \Theta_{test}) = \min_{\beta} \mathfrak{R}_{rob}(\beta; \Theta_{train}, \Theta_{test})$

Remember: we're interested in answering, given some invariance assumption & any Θ_{test} , Θ_{train}

- how robust can any algorithm be, i.e. what is the "information-theoretic" (population) limit?
- how do existing algorithms perform, and how close to optimal/adaptive are they?

We quantify for invariance-based methods in this general setting

- the best achievable robustness $\mathfrak{M}(\Theta_{train}, \Theta_{test})$
- how ranking of different methods wrt $\Re_{rob}(\beta; \Theta_{train}, \Theta_{test})$ changes drastically with varying $\Theta_{test}, \Theta_{train}$

theoretically for linear model empirically for real data

Simple linear example for concreteness

Assume that joint distributions in each "environment" *e* in train and test environments are defined by

mean shifts varying with e(assume ref. env has $\theta_e = 0$) $X^e = \theta_e + \eta$ exogeneous noise $Y^e = \beta_{\star}^{\top} X^e + \xi$ invariant covariance

with invariant $\theta_{\star} = (\beta_{\star}, \Sigma_{\star})$ same across environments

Test time shifts assumptions

 M_{seen} : covariance with range in span of seen shift directions $range(M_{seen}) \subset span \{\theta_e\}_{e \in [k]}$

 M_{unseen} : projection matrix onto unseen directions with $range(M_{seen}) \perp span \{\theta_e\}_{e \in [k]}$

Mean shifts during test time assumed to lie in $\Theta_{test} = \{\theta_{test}: \theta_{test}\theta_{test}^{T} \leq \gamma M_{seen} + \gamma' M_{unseen}\}$ shift strengths

Case of $\gamma' = 0$ in Rothenhaeusler et al. '21

Achievable and achieved robustness

Trends concluded from formal statement

In partially identifiable case & new test shift directions γ' large, anchor regression and OLS

- are far from achievable robustness $\mathfrak{M}(\Theta_{train}, \Theta_{test}) = \min_{\beta} \mathfrak{R}_{rob}(\beta; \Theta_{eq}, \Theta_{test})$
- have similar linear robustness when term with unseen directions γ' dominates

Corollary [KGY' 24] (informal) - Performance comparison in the partially identifiable setting

For large
$$\gamma'$$
 fixed γ , $\mathfrak{M}(\Theta_{train}, \Theta_{test}) = \min_{\beta} \mathfrak{R}_{rob}(\beta; \Theta_{eq}, \Theta_{test}) = C^2 \gamma' + c_1$

vs. Anchor regression*: $\Re_{rob}(\beta_{anchor}; \Theta_{train}, \Theta_{test}) = (C + h(\gamma))^2 \gamma' + c_2$ vs. Ordinary least squares: $\Re_{rob}(\beta_{OLS}; \Theta_{train}, \Theta_{test}) = (C + h(1))^2 \gamma' + c_3$

(*h* is decreasing function, *c* are constant in γ')

* Rothenhaeusler et al. '21

Experimental comparison in linear setting

 $\begin{aligned} X^{e} &= A^{e} + \eta \\ Y^{e} &= \beta_{\star}^{\top} X^{e} + \xi \\ \Theta_{test} &= \{\theta_{test} \colon \theta_{test} \theta_{test}^{\top} \\ &\leq \gamma M_{seen} + \gamma' M_{unseen} \, \} \end{aligned}$

Trends concluded from formal statement

In partially identifiable case & new test shift directions γ' large, anchor regression and OLS

- are far from achievable robustness $\mathfrak{M}(\Theta_{train}, \Theta_{test}) = \min_{\beta} \mathfrak{R}_{rob}(\beta; \Theta_{eq}, \Theta_{test})$
- have similar linear robustness when term with unseen directions γ' dominates

Real-world data setting

Single-cell gene expression dataset with

- prediction task: expression of one gene (target) as a function of expressions of 3 others
- per target, 3 different environments (≜ individual gene knocked out) + observational
 - training environments: observational + 1 knocked-out environment
 - ∘ shift strengths $\gamma, \gamma' \triangleq$ distance of covariates to mean in observational environment
 - partially identified setting: test data also includes some percentage of samples from knock-out environments not seen during training
- Results are averaged across these scenarios

Experimental comparison in real-world setting

Summary

How analyze the more general partially identifiable setting (vs. focusing on identifiable vs. non-identifiable)

- introduced measures of (achievable) robustness
- computed them for a linear example and

compared achievable robustness with prior methods

Future work

- Apply on other types of invariant mechanisms (see e.g. Francesco's, Arthur's talk, and beyond causality)
- Use achievable robustness for

active selection of training distributions

J. Kostin, N. Gnecco, F. Yang "Achievable distributional robustness when the robust risk is only partially identified", NeurIPS 2024