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Role of regularization: Classical narrative
Classical regime (underparameterized)
• Regularization reduces variance ⇒ regularization leads to better generalization

Recent works (overparameterized)
• Variance of the interpolator found by GD vanishes ⇒ regularization is redundant
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Second descent of the risk
Empirically: double descent for DNNs (Nakkiran et al)

Theoretically: double descent for linear, random feature models (Hastie et al; Mei et al etc) or 
kernel methods (e.g. Liang et al)
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But all these works use the standard test risk for evaluation!

Empirically: regularization improves the adversarially robust test risk, even for overparameterized 
models (Rice et al)

Theoretically: ? ? ?



“Robust overfitting”
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Prior explanations for robust overfitting

1) Due to complexity of neural networks (Wu et al)

2) Amplified by noise (Sanyal et al)
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No! Robust overfitting still occurs!

⇒ robust overfitting does not occur for linear models

⇒ robust overfitting does not occur for noiseless data



Robust overfitting for linear models and no noise

Linear regression Linear classification

2𝜃( = argmin' ℒ!(𝜃) + 𝜆𝑅(𝜃)
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1) Robust overfitting 
for linear models?

2) Robust overfitting
for noiseless data?
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Risk(𝝀𝒐𝒑𝒕): Robust risk of ridge estimator (𝜆 > 0)
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Risk(𝝀 → 𝟎): Robust risk of interpolating GD solution

y-axis: Gap (i.e. positive gap = regularization helps robustness)
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Can we prove that robust overfitting occurs?

Yes! For linear regression and classification with 
noiseless data.



Data model for classification

High-dimensional data (𝑑 > 𝑛)          interpolation is possible

• 𝑛 i.i.d. covariates 𝑥)~𝒩(0, 𝐼*)

• deterministic labels (like e.g. Salehi et al, Sur et al)
𝑦) = sgn 𝜃∗, 𝑥) ∈ {−1,+1}
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⇒ noiseless data
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Max-margin interpolator
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#𝜃! = argmin" ∑#$%& max
' ! ()

ℓ 𝑦# 𝑥# + 𝛿, 𝜃 + 𝜆 𝜃 *
* , with ℓ the logistic loss

Standard training (i.e. 𝛜 = 𝟎)

• unregularized predictor (i.e. 𝜆 → 0) converges to max-

margin estimator

#𝜃+ = argmin" 𝜃 * such that y, 𝑥# , 𝜃 ≥ 1

• the limit of GD on standard training loss (Soudry et al)



Robust max-margin interpolator
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#𝜃! = argmin" ∑#$%& max
' ! ()

ℓ 𝑦# 𝑥# + 𝛿, 𝜃 + 𝜆 𝜃 *
* , with ℓ the logistic loss

ℓ--adversarial training (i.e. 𝝐 > 𝟎)

• unregularized predictor (i.e. 𝜆 → 0) converges to        robust

max-margin estimator wrt ℓ--perturbations

#𝜃+ = argmin" 𝜃 * such that y,⟨𝑥# , 𝜃⟩ − 𝜖 𝜃 % ≥ 1

• the limit of GD on adversarial training loss



Main result for linear classification
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Proof: Uses the Convex Gaussian Minimax Theorem and Gaussian concentration.
scalar optimization problem → original optimization problem (i.e. minimize training loss) 

Theorem DTAHY’21 (informal) – better robustness with ridge regularization

For a sparse ground truth, we derive the limit of the robust risk as 𝑑, 𝑛 → ∞ and 𝑑/𝑛 → 𝛾:

𝑅) #𝜃!
./01

ℛ! 𝜖, 𝛾

In particular, for some λ0.2 > 0: 

ℛ3"#$ 𝜖, 𝛾 < lim
!→+

ℛ! 𝜖, 𝛾

regularized interpolating

2𝜃( = argmin' ℒ!(𝜃) + 𝜆 𝜃 ,

𝜖-adv. loss



Main result for linear classification
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Lines: asymptotic risks (theory)
Markers: risks for finite d, n (simulations)

⇒ regularization reduces the 
robust risk even for d > n

⇒ trend persists also for
finite d, n simulations



Preventing interpolation ⇒ lower robust risk
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Interpolation No interpolation Interpolation No interpolation 

Regularize enough to prevent interpolation ⇒ lower robust risk

• negative robust margin ~ no interpolation ⇒ minimum robust risk

• What if we use other means to prevent interpolation?

Robust
margin 



An unorthodox way to prevent interpolation
Introduce a small amount of artificial label noise in the training data
→ avoids the robust max-margin estimator!
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Remark: not advocating for label noise as a method to improve robustness
• regularization still leads to smaller robust risk

Interpolation No interpolation Minimum
robust risk



Conclusion & Future work
Summary: We show that avoiding the GD interpolating solution can be beneficial in the 
high-dimensional regime even for noiseless data and linear function classes.
• first formal proof of robust overfitting

Future work:

• extend proof to early stopping regularization for logistic regression
• extend our theoretical analysis to more complex model classes (e.g. random feature 

regression, shallow NNs etc)
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Thank you!
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