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Motivation

Randomized experiments are costly and time-consuming

$40,000 average cost per participant of clinical trials
80% of clinical trials fail to reach enrollment targets on time

Can we utilize (multiple) foundation models trained on (multiple)
external data sources?

Examples: language models trained on large corpuses,
clinical models trained on observational data
Could be helpful if external data has relevant information
But... inferences may not be valid if model predictions are inaccurate

Our goal: Reduce required sample size of randomized trials with
externally trained models while guaranteeing valid statistical inference

2 / 20



Motivation

Randomized experiments are costly and time-consuming

$40,000 average cost per participant of clinical trials
80% of clinical trials fail to reach enrollment targets on time

Can we utilize (multiple) foundation models trained on (multiple)
external data sources?

Examples: language models trained on large corpuses,
clinical models trained on observational data
Could be helpful if external data has relevant information
But... inferences may not be valid if model predictions are inaccurate

Our goal: Reduce required sample size of randomized trials with
externally trained models while guaranteeing valid statistical inference

2 / 20



Motivation

Randomized experiments are costly and time-consuming

$40,000 average cost per participant of clinical trials
80% of clinical trials fail to reach enrollment targets on time

Can we utilize (multiple) foundation models trained on (multiple)
external data sources?

Examples: language models trained on large corpuses,
clinical models trained on observational data
Could be helpful if external data has relevant information
But... inferences may not be valid if model predictions are inaccurate

Our goal: Reduce required sample size of randomized trials with
externally trained models while guaranteeing valid statistical inference

2 / 20



Problem Setting

Distribution: P over (X ,Y (0),Y (1),Y ,A)

X ∈ Rd are covariates
Y ∈ R is the observed outcome (bounded)
Y (0),Y (1) ∈ R are potential outcomes
A ∈ {0, 1} is the treatment indicator

Data: Tuples Zi = (Xi ,Yi ,Ai )
n
i=1 drawn i.i.d. from P

Task: Efficiently estimate θ := E[Y (1)− Y (0)]
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Simple unbiased mean estimators for RCT

In RCT, the treatment probability is known: π = P(A = 1)

Simplest difference-in-mean estimator

θ̂dm =
1

n1

∑
i :Ai=1

Yi −
1

n0

∑
i :Ai=0

Yi , where na = |{i : Ai = a}|

basically equivalent to IPW estimator (with known π)

θ̂IPW =
1

n

n∑
i=1

[
YiAi

π
− Yi (1− Ai )

1− π

]
where na = |{i : Ai = a}|

Leverage availability of covariates and multiple data sources in
practice → smaller but (asymptotically) valid confidence intervals?

4 / 20



Simple unbiased mean estimators for RCT

In RCT, the treatment probability is known: π = P(A = 1)

Simplest difference-in-mean estimator

θ̂dm =
1

n1

∑
i :Ai=1

Yi −
1

n0

∑
i :Ai=0

Yi , where na = |{i : Ai = a}|

basically equivalent to IPW estimator (with known π)

θ̂IPW =
1

n

n∑
i=1

[
YiAi

π
− Yi (1− Ai )

1− π

]
where na = |{i : Ai = a}|

Leverage availability of covariates and multiple data sources in
practice → smaller but (asymptotically) valid confidence intervals?

4 / 20



Simple unbiased mean estimators for RCT

In RCT, the treatment probability is known: π = P(A = 1)

Simplest difference-in-mean estimator

θ̂dm =
1

n1

∑
i :Ai=1

Yi −
1

n0

∑
i :Ai=0

Yi , where na = |{i : Ai = a}|

basically equivalent to IPW estimator (with known π)

θ̂IPW =
1

n

n∑
i=1

[
YiAi

π
− Yi (1− Ai )

1− π

]
where na = |{i : Ai = a}|

Leverage availability of covariates and multiple data sources in
practice → smaller but (asymptotically) valid confidence intervals?

4 / 20



Imputing missing data with predictive models

Main idea: If we had a predictive model ĥ, we can apply it to predict
the counterfactuals / unobserved outcomes for each i

θ̂aipw(ĥ) =
1

n

n∑
i=1

Ai

π
(Yi − ĥ(Xi , 1)) +

1

n

n∑
i=1

ĥ(Xi , 1)

−

[
1

n

n∑
i=1

(1− Ai )

(1− π)
(Yi − ĥ(Xi , 0)) +

1

n

n∑
i=1

ĥ(Xi , 0)

]

Introduced as Augmented Inverse Propensity Weighted (AIPW)
estimator by Robins et al. ’94 where ĥ are trained on RCT

Similar to PPI-style estimators as in Angelopoulos et al. ’23
when ĥ can be any model

In the analysis we use the influence function ψ defined as
θ̂aipw(g) = 1

n

∑n
i=1 ψ(Zi ; g) where Z = (X ,Y ,A).
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when ĥ can be any model

In the analysis we use the influence function ψ defined as
θ̂aipw(g) = 1

n

∑n
i=1 ψ(Zi ; g) where Z = (X ,Y ,A).

5 / 20



Imputing missing data with predictive models

Main idea: If we had a predictive model ĥ, we can apply it to predict
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Standard AIPW using in-trial data

In practice, standard AIPW is used with a simple outcome model ĥ
(e.g. linear) learned on RCT data

ĥ(·, a) ∈ arg min
h∈H

1

na

∑
i :Ai=a

L(Yi , h(Xi , a))

If fit using cross-fitting instead of the whole data-set, we have both

unbiasedness, i.e.
E[θ̂aipw(ĥ)] = θ

and if ĥ asymptotically converges to some h†, we have with
Vh† = E[ψ(Z ; h†)− θ)2]

√
n(θ̂aipw(ĥ)− θ) N (0,Vh†)

Limitations:
Small trial sample size means limited data for learning
Simple models have high variance Vh†
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(e.g. linear) learned on RCT data
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Using external data and foundation models

What if we have more ĥ candidates (e.g. trained on other data)?

Opportunity: Leverage outcome regressors trained on external data

For medical applications:

Electronic Health Records (EHR)
Large observational studies
Historical clinical trials

For social sciences (results in this paper):

Foundation models trained on publicly available texts

What guarantees can we still have if we use externally trained ĥ without
requiring any assumptions on external data?
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What if we have more ĥ candidates (e.g. trained on other data)?

Opportunity: Leverage outcome regressors trained on external data

For medical applications:

Electronic Health Records (EHR)
Large observational studies
Historical clinical trials

For social sciences (results in this paper):

Foundation models trained on publicly available texts

What guarantees can we still have if we use externally trained ĥ without
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Related Work

Method Unbiased
for finite
samples

can be asympt.
more eff. than
standard AIPW

Asympt. no
worse than

standard AIPW

Standard AIPW X N/A N/A
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Our method: Hybrid-AIPW

In-Trial Model

External Models

AIPW Estimators

Final Estimator

RCT

(Xi ,Yi ,Ai )
n
i=1

External Data 1

External Data k

...

ĥ

f1

fk

...

ĥ(Xi , ·)

f1(Xi , ·)

fk(Xi , ·)

...

θ̂(ĥ)

θ̂(f1)

θ̂(fk)

...

+ θ̂H-AIPW

(Xi)
n
i=1

(Yi ,Ai )
n
i=1

λ̂
1

λ̂2

λ̂ k+1

with
∑k+1

j=1 λ̂j = 1
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ĥ

f1

fk

...
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How to choose λ?

True optimal weights minimize the variance of the combined estimator

λ∗ = arg min
λ∈Λ

λTΣλ subject to
k+1∑
j=1

λj = 1

Σ ∈ R(k+1)×(k+1) is the covariance matrix with elements:

Σjl = Cov(ψ(Z , gj), ψ(Z , gl))

where ψ(Z , g) is the influence function corresponding to θ̂AIPW (g)
g1 = ĥ is estimated from the RCT and gj+1 = fj for j = 1, . . . , k

Closed-form solution:

λ∗ =
Σ−11

1TΣ−11
and in practice: λ̂ =

Σ̂−11

1T Σ̂−11
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Statistical Guarantees

With this choice of weights λ, we obtain the asymptotic guarantees:

Theorem (H-AIPW Guarantees) in BAWDDYD ’25:

(a) Consistency and Asymptotic Normality:

√
n(θ̂λ̂ − θ) N (0,Vλ∗)

(b) Efficiency Guarantee: The asymptotic variance is no greater
than any individual estimator:

Vλ∗ ≤ min
j=1,...,k+1

Vj

where Vj is the asymptotic variance of the j-th estimator.

Asymptotic efficiency never worse than standard AIPW!

If models are accurate, may have smaller asymptotic variance!
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Evaluation of effectiveness of H-AIPW on real data

Till now: social science experiments. (Plan: extend to clinical trials)

Evaluate H-AIPW on multiple randomized experiments:
Foreign Policy (Silverman, 2022)
Sociology (Melin, 2022; Kennedy, 2020; Caprariello, 2013)
Political Science (Fahey, 2023)
Psychology (Brandt, 2021)
Economics (Haaland, 2022)

Foundation models used:
GPT-4o, Claude 3.5 Haiku, LLaMA 3 70B
Multiple prompts (10 per model) to improve accuracy

We compare against:
Difference in means estimator
Standard AIPW with (linear) outcome regression from trial data
PPI based PPCT (Poulet, 2025) also leveraging foundation models
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Concrete Example: LLM Predictions for Political Science

A=0: ”protests banned due to safety concerns”,

A=1: ”Protests banned safety concerns & cancel culture”

Outcome: Degree of agreement with ”Cancel culture is a problem”

LLM Prompt (with A=1):

You are a 35-year-old female Democrat with liberal views and $75k
income. A university banned an Antifa protest citing safety concerns

and that such protests contribute to cancel culture.

How much do you agree: "Cancel culture is a big problem in today’s

society"? (1-5 scale)

LLM Response:

As someone with liberal views, I’m skeptical of the university’s framing. While I be-
lieve in maintaining safety, linking Antifa protests to ”cancel culture” seems politically
motivated.
I’d rate my agreement as 2 - Disagree.
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Sample Size Reductions
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Performance and Validity: Melin Study
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Conclusion

H-AIPW improves efficiency of randomized experiments by integrating
predictions from multiple foundation models

Provides substantial precision gains (up to 20% sample size reduction)

Maintains valid statistical inference without additional assumptions

Limitations: Success depends on foundation models being well-aligned
with the experimental domain

GitHub repository: https://github.com/jaabmar/HAIPW
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Thank You!

Questions?

Piersilvio De Bartolomeis Javier Abad Guanbo Wang Konstantin Donhauser

Raymond Duch Fanny Yang Issa Dahabreh
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Identification Assumptions

Consistency: Y = Y (A)

Treatment is well-defined (e.g., protocol-driven interventions)
Observed outcome is one of the potential outcomes

Randomization: A ⊥⊥ (Y (0),Y (1))

Directly supported by the study design
Treatment is independent of potential outcomes

Positivity: πa = P(A = a) > 0 for a ∈ {0, 1}
Both treatment and control have non-zero probability
In (most) randomized experiments, πa is known by design

Under these assumptions:

θ = E[Y (1)− Y (0)] = E[Y |A = 1]− E[Y |A = 0]
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Impact of Model Scale

LLaMA 3 70B

GPT-4o

Claude 3.5

Gemini 1.5 Flash
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Gemma 2 9B
Phi-4

Variance

Gemma 2 27B

LLaMA 3 8B

Grok 2

DeepSeek-V3

Larger models consistently achieve lower MSE and lower variance

LLaMA 3 70B performs exceptionally well despite fewer parameters
than some competitors

Clear relationship between prediction accuracy and variance reduction
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Impact of Inference-Time Compute

1 2 3 4 5 6 7 8 9 10

1.4

1.5

1.6

1.7

1.8

1.9

Number of prompts

Averaging over multiple prompts consistently reduces MSE

Lower MSE is associated with higher precision
Using more prompts improves H-Aipw precision across studies
Diminishing returns after approximately 10-15 prompts
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