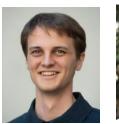


Surprising phenomena of

$\max -\ell_p$ -margin classifiers in high dimensions

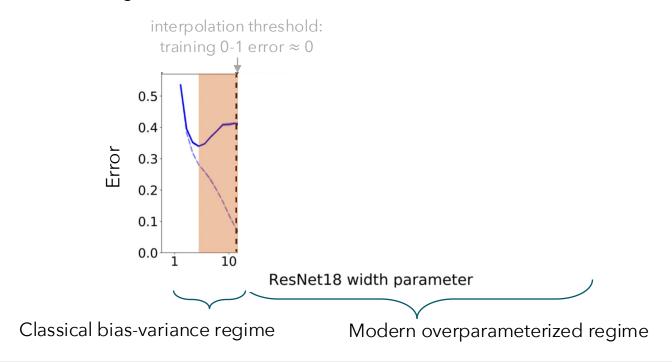
October 17th 2024, IPAM Workshop

Fanny Yang, K. Donhauser, S. Stojanovic, N. Ruggeri



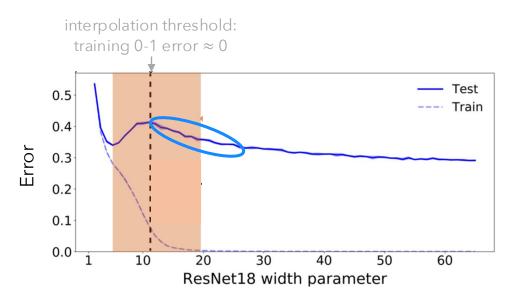
Double descent on neural networks

Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise



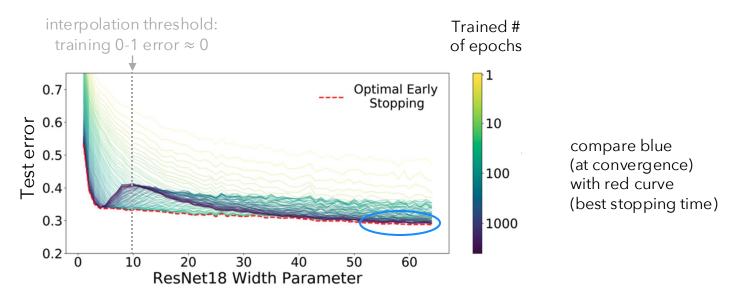
Interpolation and double descent on neural networks

Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise



Harmless interpolation on neural networks

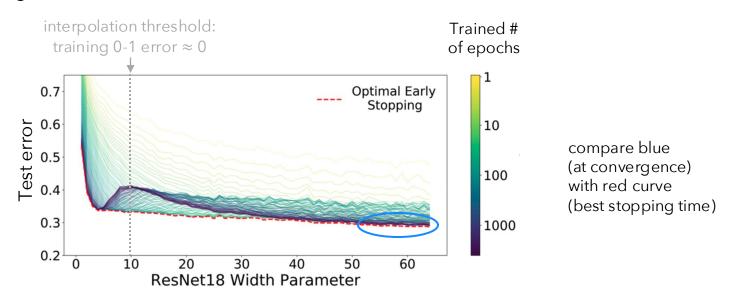
Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise



(2) For large models, training until "convergence" is not worse than stopping early

Good accuracy for non-early-stopped classifiers

Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise



3

For large models, interpolating models achieve good test accuracy

Focus today, philosophically speaking...

Deep Learning experiments

uncovers

Empirical phenomena (counterintuitive to classical ML theory)

New statistical theory

uncovers

theoretical phenomena (too specific, not provable w/ "clean" classical techniques) inspires

Today

Fundamentally new proof techniques

(beyond uniform convergence)

Goal is **not to find** better interpolators in practice but trying **to understand when** interpolation is a good idea (out of intellectual curiosity)

Plan ahead

- Double descent motivates new angle on underdetermined linear models
- Setting: Sparse linear classification
- We study today: Max- ℓ_p -margin linear classifiers
 - o Q1: For noisy observations, what are (tight) rates?
 - \circ Q2: For noiseless observations, is it adaptive to sparsity for p=1?

Sparse linear classification

- Goal: Recovery of a sparse unit-norm w^* from $n \ll d$ measurements with with $||w^*||_0 = s \ll n$
- Measurements: via standard **Gaussian matrix** $X \sim N(0, I)$ with labels y that are noisy versions of Xw^*
- Classification (1-bit compressed sensing): $y = \text{sign}(Xw^*) \odot \xi$ with label noise $\xi_i \in \{-1, +1\}$
 - o Noise model $\xi_i = -1 | x_i \sim \mathbb{P}_{\sigma} \left(.; \langle x_i, w^* \rangle \right)$ can only depend on x_i in the direction of w^* Examples: random label flips, logistic regression model
 - $\circ \text{ Performance measure } \left| \frac{\widehat{w}}{\left| |\widehat{w}| \right|_2} w^\star \right| \approx \pi \, \mathbb{E}_{x \sim N(0, I)} \mathbb{1}[\operatorname{sgn}(\langle w^*, x \rangle) \neq \operatorname{sgn}(\langle \widehat{w}, x \rangle)]$ for small error

Our focus today

Intermezzo: Classical intuition from sparse regression

Find \widehat{w} with small error $||\widehat{w} - w^*||_2$ from $y = Xw^* + \xi$ by inducing sparsity

perfect data fit

Noiseless $y = Xw^*$

Basis pursuit: $\operatorname{argmin}_{w} ||w||_{1} s.t. y = Xw$

Perfect recovery w.h.p. for $n \sim s \log d$

when observations are noisy

Noisy
$$y = Xw^* + \xi$$

Lasso: $\operatorname{argmin}_{\mathbf{w}} (|y - Xw||_2^2 + \lambda ||w||_1$

sacrificing data fit

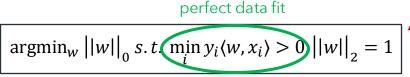
minimax rate
$$O\left(\sqrt{\frac{s \log d}{n}}\right)$$
 for optimal λ

Classical work on sparse classification

Find
$$\widehat{w}$$
 with small error $\left| \frac{\widehat{w}}{\left| |\widehat{w}| \right|_2} - w^* \right|_2$ from $y = \text{sign}(Xw^*) \odot \xi$ by inducing sparsity

Noiseless
$$y = sign(Xw^*)$$

Noisy
$$y = sign(Xw^*) \odot \xi$$



when observations are noisy

$$\operatorname{argm} ax_{w} y^{\mathsf{T}} X w : t. ||w||_{1} \le \sqrt{s}, ||w||_{2} \le 1$$

"sacrificing" data fit (max-average-margin)

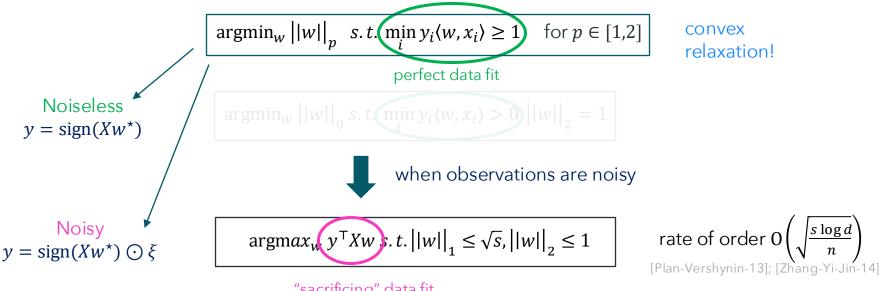
minimax rate
$$O\left(\frac{s \log d}{n}\right)$$

[Jacques-Laska-Boufounos-Baraniuk-13, Matsumoto-Mazumdar-22 for BIHT]

rate of order
$$0\left(\sqrt{\frac{s \log d}{n}}\right)$$
[Plan-Vershynin-13]; [Zhang-Yi-Jin-14]

11

Classical work on sparse classification



"sacrificing" data fit

This talk: For minimizer of a Q1: How about perfect data fit of noisy data? **convex** problem w/ **perfect** fit: Q2: How about the performance on noiseless data?

Focus in this work: Maximum ℓ_p -margin classifiers

$$\left[\operatorname{argmin}_{w} \left| |w| \right|_{p} \ s. t. \left(\min_{i} y_{i} \langle w, x_{i} \rangle \ge 1 \right) \ \text{for } p \in [1,2] \right]$$

• Natural motivation: Steepest descent on logistic loss $w^{t+1} = w^t - \eta_t d^t$ with

$$d^{t} = \operatorname{argmin}_{v} \langle \nabla L(w^{t}), v \rangle + \frac{1}{2} ||v||_{p}^{2}$$

converges to maximum ℓ_p -margin classifiers [Telgarsky '13, Gunasekar-Lee-Soudry-Srebro '20]

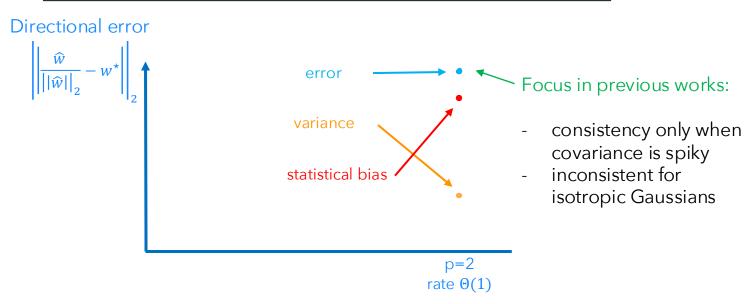
For p=1, can view it as a convex ℓ_1 -relaxation of ℓ_0 —objective for perfect fit (optimal for noiseless) $\operatorname{argmin}_w \big| |w| \big|_0 s.t. \, \min_i y_i \langle w, x_i \rangle > 0, \big| |w| \big|_2 = 1 \to \operatorname{argmin}_w \big| |w| \big|_1 \, s.t. \, \min_i y_i \langle w, x_i \rangle \geq 1$

Plan ahead

- Double descent motivates new angle on underdetermined linear models
- Setting: Sparse linear classification
- We study today: Max- ℓ_p -margin linear classifiers
 - o Q1: For noisy observations, what are (tight) rates?
 - \circ Q2: For noiseless observations, is it adaptive to sparsity for p=1?

Noisy data: Previous work p = 2

 $\operatorname{Max-}\ell_p\operatorname{-margin classifier}\widehat{w} = \underset{w}{\operatorname{argmin}} \ \|w\|_p \ \text{s.t.} \ \min_i y_i \langle w, x_i \rangle \geq 1$



p = 1 is consistent but still slow

Previous non-asymptotic bounds for the i.i.d. noise case:

$$\Theta\left(\sqrt{\sigma^2/\log\left(\frac{d}{n}\right)}\right)$$
 tight bounds for min- ℓ_1 -norm vs. $O(1)$ upper bounds [Chinot-Loeffler-Kuchelmeister-vandeGeer '22], interpolator for regression [Wang-Donhauser-Y.'21] [Wojtaszczyk '10] (for adversarial, vanishing noise)

Theorem [Stojanovic-Donhauser-Y' 24] (simplified) – Tight bounds for max- ℓ_1 -margin classifiers

Suppose $\|w^*\|_0 \lesssim \frac{n}{\log\left(\frac{d}{n}\right)^5}$. Assume $c_1 n \leq d \leq \exp(c_2 n^{1/5})$ for some constants c_1, c_2 . Then

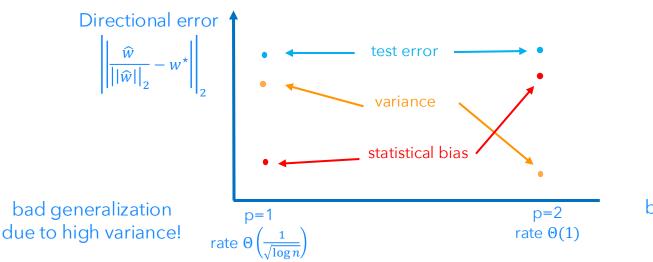
$$\left| \left| \frac{\widehat{w}}{\left| |\widehat{w}| \right|_2} - w^* \right| \right|_2 = \frac{\kappa_\sigma}{\sqrt{\log(d/n)}} + O\left(\frac{1}{\log^{3/4}(d/n)}\right)$$

where κ_{σ} only depends on the label noise distribution \mathbb{P}_{σ}

Plugging in $d = n^{\beta}$ with $\beta > 1$ yields a rate of $\frac{1}{\sqrt{\log n}}$ other algorithms can achieve lower bound* $O\left(\frac{1}{\sqrt{n}}\right)!$

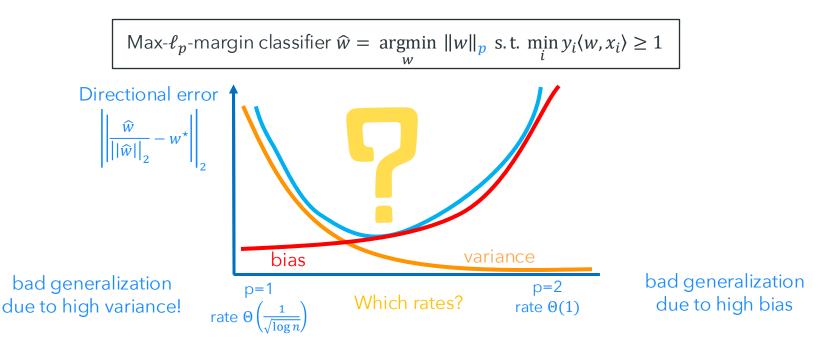
So far: Max- ℓ_p -margin classifiers poor for p = 1, 2

 $\operatorname{Max-}\ell_p\operatorname{-margin classifier} \widehat{w} = \underset{w}{\operatorname{argmin}} \ \|w\|_p \ \text{s.t.} \ \min_i y_i \langle w, x_i \rangle \geq 1$

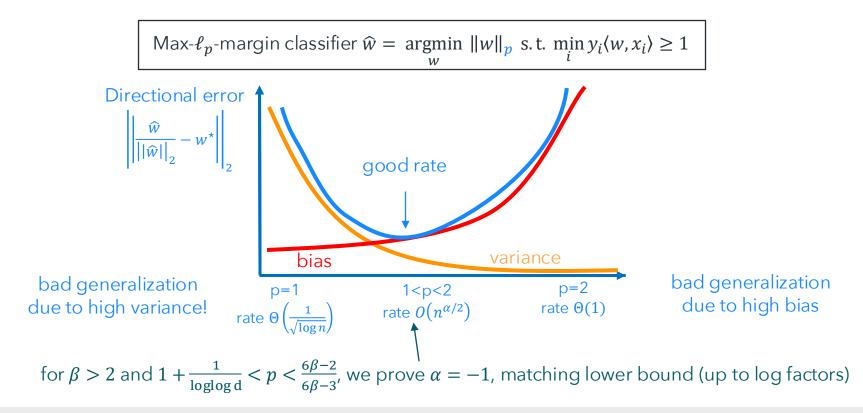


bad generalization due to high bias

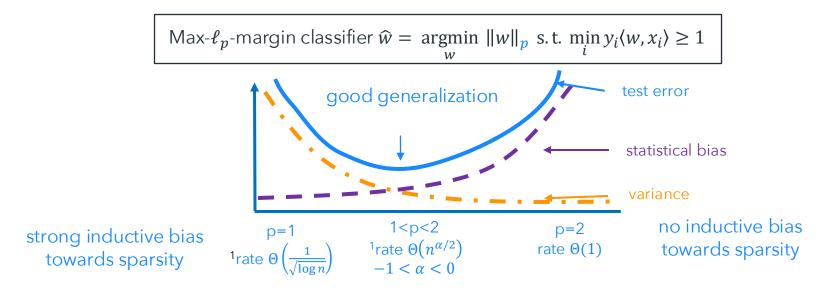
A new bias-variance trade-off for interpolators



A new bias-variance trade-off for interpolators



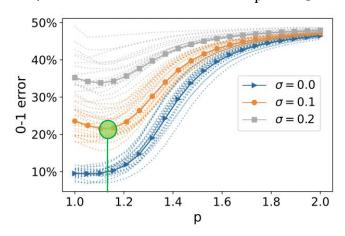
A new bias-variance trade-off for interpolators



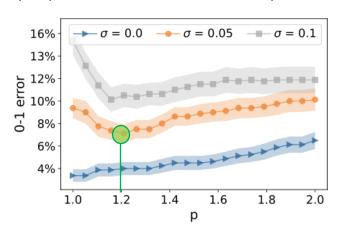
High-level take-away²: whatever strongest inductive bias is best to interpolate noiseless data medium strength of inductive bias is better when interpolating noise

Experimental results (real-world)

Experimental results: hard- ℓ_p -margin SVM for σ : proportion of random label flips



Synthetic experiment: Isotropic Gaussians with $d \sim 5000, n \sim 100$



Real-world experiment: Leukemia dataset with $d \sim 7000$, $n \sim 70$

Strong ind. bias best to interpolate noiseless data, medium ind. bias best to interpolate **noisy** data!

Plan ahead

- Double descent motivates new angle on underdetermined linear models
- Setting: Sparse linear classification
- We study today: Max- ℓ_p -margin linear classifiers
 - o Q1: For noisy observations, what are (tight) rates?
 - \circ Q2: For noiseless observations, is it adaptive to sparsity for p=1?

Noiseless case: A fundamental question for ℓ_1 -relaxations

For sparse regression $y = Xw^*$

 $\operatorname{argmin}_{w} ||w||_{0} s.t. y = Xw$

0-error for $n \sim s \log d$

 $\operatorname{argmin}_{w} ||w||_{1} s.t. y = Xw$

KNOWN:

0-error for $n \sim s \log d$

 ℓ_1 -relaxations behave like ℓ_0 (adaptive for hard-sparse w^*)

For sparse classification $y = sign(Xw^*)$

$$\underset{i}{\operatorname{argmax}_{w} \min_{i} y_{i} \langle w, x_{i} \rangle s. t. \ \left| |w| \right|_{0} \leq s, \left| |w| \right|_{2} \leq 1} o\left(\frac{s \log d}{n}\right)$$

$$convex \ relaxation$$

 $\underset{w}{\operatorname{argmax}} \min_{i} y_{i} \langle w, x_{i} \rangle \quad s. t. ||w||_{1} \leq 1$

UNKNOWN

?

Open: Do ℓ_1 -relaxations behave like ℓ_0 also for classification?

Surprisingly: No adaptivity to sparsity

[Chinot-Loeffler-Kuchelmeister-vandeGeer '22], [Wojtaszczyk '10] show an upper bound of order $\tilde{O}\left(\frac{\|w^*\|_1^2}{n}\right)^{1/3}$ for any w^* and conjectured faster rate for sparse w^* should be possible

Theorem [Stojanovic-Donhauser-**Y**' 24] - Noiseless classification (informal)

Suppose
$$\|w^*\|_0 \lesssim n^{\frac{2}{3}} \log(d)^{-5}$$
. For any $n \geq \kappa_1$, and $\kappa_1 n^{\frac{2}{3}} \leq d \leq \exp(\kappa_3 n^{1/12})$, w.h.p.

$$\left\| \frac{\widehat{w}}{\|\widehat{w}\|_{2}} - w^{*} \right\|_{2} = c \left(\frac{\|w^{*}\|_{1}^{2}}{n \operatorname{polylog}(d/n)} \right)^{1/3} + O \left(\frac{\|w^{*}\|_{1}^{2}}{n \operatorname{polylog}(d/n)} \right)^{1/3}$$

For
$$y = sign(Xw^*)$$

$$\underset{w}{\operatorname{argmax}} \min_{i} y_{i} \langle w, x_{i} \rangle \quad s. \, t. \, \big| |w| \big|_{1} \leq 1$$

error
$$\widetilde{\Theta}\left(\frac{\|w^*\|_1^2}{n}\right)^{1/3}$$
 even slower than what's possible for noisy data!

Conclusion in the **noiseless** case: A fundamental gap

For sparse regression $y = Xw^*$

 $\operatorname{argmin}_{w} ||w||_{0} s.t. y = Xw$

0-error for $n \sim s \log d$

 $\operatorname{argmin}_{w} ||w||_{1} s.t. y = Xw$

KNOWN:

0-error for $n \sim s \log d$

 ℓ_1 -relaxations behave like ℓ_0 (adaptive for hard-sparse w^*)

For sparse classification $y = sign(Xw^*)$

$$\underset{i}{\operatorname{argm}} ax_{w} \min_{i} y_{i} \langle w, x_{i} \rangle s. t. \left| |w| \right|_{0} \leq s, \left| |w| \right|_{2} \leq 1$$

$$O\left(\frac{s \log d}{n}\right)$$

convex relaxation

$$\underset{w}{\operatorname{argmax}} \min_{i} y_{i} \langle w, x_{i} \rangle \quad s. \, t. \, \big| |w| \big|_{1} \leq 1$$

 $\begin{array}{c} \text{OUR WORK} \\ \text{error} \\ \text{e} \left(\|w^*\|_1^2 \right)^{1/3} \end{array}$

error¹

 ℓ_1 relaxations worse than ℓ_0 and not adaptive to hard-sparse w^* (same dependence on n as for non-sparse w^*)

What's the intuition behind the "bad" ℓ_1 -relaxation?

The ground truth has an order smaller margin than the max-l1-margin solution

- [Chinot-Loeffler-Kuchelmeister-vandeGeer-'22] prove $\max_{||w||_1 \le 1} \min_i y_i \langle w, x_i \rangle \ge \Omega(n^{-\frac{1}{3}})$
- Take simple ground truth $w^*=(1,0,0,...,0)$ Then for our specific distribution w.h.p. $\min_i y_i \langle w^*, x_i \rangle \leq O\left(n^{-\frac{1}{2}}\right)$
- Since $n^{-1/2} \ll n^{-1/3}$ the ground truth is not close to maximizing max margin

Our findings suggest many interesting open questions...

How to save the ℓ_1 -relaxation for classification?

$$\operatorname{argm} ax_{w} \min_{i} y_{i} \langle w, x_{i} \rangle s. t. \left| |w| \right|_{0} \leq s, \left| |w| \right|_{2} \leq 1 \qquad \Longrightarrow \quad O\left(\frac{s \log d}{n}\right)$$

[Plan-Vershynin-13]; [Zhang-Yi-Jin-14]

even in noisy case

 $\operatorname{argm} ax_w y^{\mathsf{T}} X w s. t. ||w||_1 \leq \sqrt{s}, ||w||_2 \leq 1$

convex relaxation \downarrow

much better than

 $O\left(\frac{\sqrt{s}}{n^{1/3}}\right)$ in noiseless case

 $\operatorname{argmax} \min_{i} y_i \langle w, x_i \rangle \quad s.t. ||w||_1 \le 1$

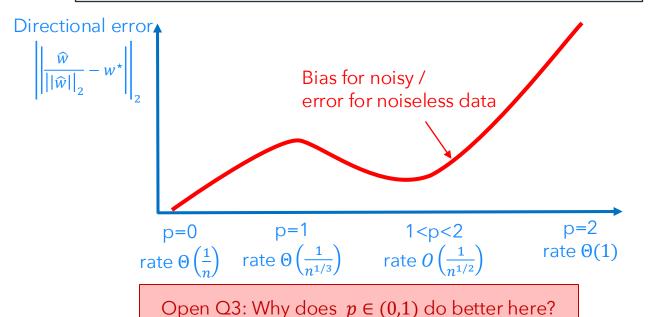
swap min-margin for average-margin

Open Q1: Does max-average-margin perform better for the noiseless case?

Open Q2: Could the max-average-margin solution be reached via steepest descent?

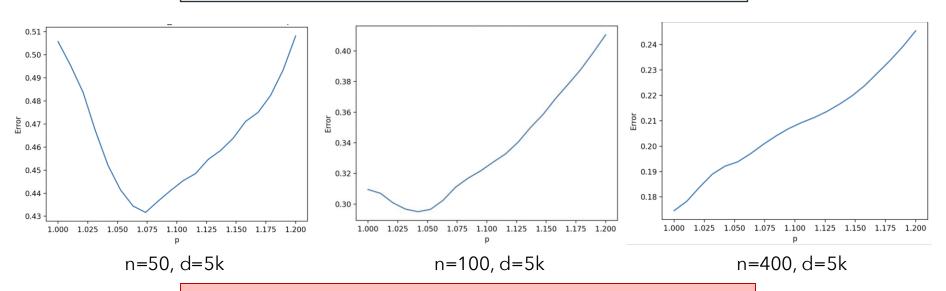
Understanding the landscape for all p

 $\text{Max-}\ell_p\text{-margin classifier }\widehat{w} = \underset{w}{\operatorname{argmin}} \ \|w\|_p \ \text{s.t.} \ \min_i y_i \langle w, x_i \rangle \geq 1$



Understanding the landscape for all p

 $\operatorname{Max-}\ell_p\operatorname{-margin classifier} \widehat{w} = \underset{w}{\operatorname{argmin}} \ \|w\|_p \ \text{s.t.} \ \min_i y_i \langle w, x_i \rangle \geq 1$



Open Q4: Why is p > 1 better than p = 1 in the noiseless case?

Papers discussed in the talk

Results discussed in the talk:

- Donhauser, Ruggeri, Stojanovic, Yang "Fast rates for noisy interpolation require rethinking the effects of inductive bias", ICML '22
- Stojanovic, Donhauser, Yang "Tight bounds for maximum l1-margin classifiers", ALT '24

Kernel results and neural network experiments:

 Aerni*, Milanta*, Donhauser, Yang "Strong inductive biases provably prevent harmless interpolation", ICLR '23