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MOTIVATION

In high dimensions, models that interpolate noisy training
data can still generalize well [1]. How come?

“Benign overfitting” explanation [2]: min-/o-norm inter-
polation is consistent when covariates are effectively low-
dimensional, i.e. deg = tr(X)/ ||X||,, < n.

» What about effectively high-dimensional covariates
dog = d > n?

> What about other interpolating models?

This work: YES for isotropic covariates x ~ N (0, I;), sparse

ground truth ||[w*||, < O(n), and min-{;-norm interpola-
tion.

PREVIOUS RESULTS

Min-/;-norm interpolation (Basis Pursuit) in our setting was
known to

» achieve consistency for zero noise o = 0;

> have statistical rate ||w — w*H% < O(0?)asd/n — oo [3];

2

~ have statistical rate || — w*||5 > (log?d/n)) 14].

We close the gap between upper and lower bound, showing
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|w — w*||5 ~ —=%7=. In particular, Basis Pursuit is consis-
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tent even in the presence of noise.

Remark. In practice, {1-norm penalization (LASSO) is preferable
to interpolation when noise is present.
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Problem setting:

> Data model: covariates x ~ N (0, I;), noisy observations
y = (w*, z) + £ where £ ~ N (0, 0%).
> Prediction error E, ,((10, z) — y)? = || — w*||5 + o>

> We study the min-¢;-norm interpolator defined by

w = argmin ||wl||; such that Vi, (x;,w) = ;.
w

Main result: Non-asymptotic matching upper and lower
bounds for prediction error of min-/;-norm interpolator.

Theorem. Suppose |w*|, < k1 10g(c?/n)5 for some constant
k1 > 0. There exist constants ko, k3, K4, C1, Co, c3 > 0 such that,
if n > ko and rkanlog(n)? < d < exp(ran'/?),
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log(d/n)| = ! log(d/n)3/2

with probability > 1 — ¢ exp ( 1og(§/n)5> —dexp (—c3n).
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EXPERIMENTAL VALIDATION
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Dashed curve: theoretical rate
Orange squares: experimental rate for Normal-distributed
features (our setting)

Conjecture: min-/1-norm interpolation also has statistical
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rate ~ - for certain heavy-tailed feature distributions.
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COMPARISON TO MIN-{5 INTERPOLATION
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Min-/;-norm interpolation is sensitive to the noise level o*;
min-{o-norm interpolation has similar (non-vanishing) pre-
diction error across all values of o~.

Trade-off between structural bias vs. sensitivity to noise:

> Min-/;-norm interpolation
v/ strong structural bias,

V' efficient noiseless recovery of sparse signals,
X but poor rate in the presence of noise.

> Min-/o-norm interpolation (diamonds):
X no structural bias (except towards zero),

X fails to recover any non-zero signal even in the ab-
sence of noise,

v/ but does not suffer from overfitting of the noise.
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