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MOTIVATION

In high dimensions, models that interpolate noisy training
data can still generalize well [1]. How come?

“Benign overfitting” explanation [2]: min-ℓ2-norm inter-
polation is consistent when covariates are effectively low-
dimensional, i.e. deff = tr(Σ)/ ∥Σ∥op ≪ n.

▶ What about effectively high-dimensional covariates
deff = d ≫ n?

▶ What about other interpolating models?

Can we consistently learn sparse ground truths with
minimum-norm interpolators on high-dimensional features?

This work: YES for isotropic covariates x ∼ N (0, Id), sparse
ground truth ∥w∗∥0 ≤ Õ(n), and min-ℓ1-norm interpola-
tion.

PREVIOUS RESULTS

Min-ℓ1-norm interpolation (Basis Pursuit) in our setting was
known to

▶ achieve consistency for zero noise σ = 0;

▶ have statistical rate ∥ŵ − w∗∥22 ≤ O(σ2) as d/n → ∞ [3];

▶ have statistical rate ∥ŵ − w∗∥22 ≥ Ω
(

σ2

log(d/n)

)
[4].

We close the gap between upper and lower bound, showing
∥ŵ − w∗∥22 ∼ σ2

log(d/n) . In particular, Basis Pursuit is consis-
tent even in the presence of noise.

Remark. In practice, ℓ1-norm penalization (LASSO) is preferable
to interpolation when noise is present.

MAIN RESULT

Problem setting:
▶ Data model: covariates x ∼ N (0, Id), noisy observations
y = ⟨w∗, x⟩+ ξ where ξ ∼ N (0, σ2).

▶ Prediction error Ex,y(⟨ŵ, x⟩ − y)2 = ∥ŵ − w∗∥22 + σ2.

▶ We study the min-ℓ1-norm interpolator defined by

ŵ = argmin
w

∥w∥1 such that ∀i, ⟨xi, w⟩ = yi.

Main result: Non-asymptotic matching upper and lower
bounds for prediction error of min-ℓ1-norm interpolator.

Theorem. Suppose ∥w∗∥0 ≤ κ1
n

log(d/n)5 for some constant
κ1 > 0. There exist constants κ2, κ3, κ4, c1, c2, c3 > 0 such that,
if n ≥ κ2 and κ3n log(n)2 ≤ d ≤ exp(κ4n

1/5),∣∣∣∣∥ŵ − w∗∥22 −
σ2

log(d/n)

∣∣∣∣ ≤ c1
σ2

log(d/n)3/2

with probability ≥ 1− c2 exp
(
− n

log(d/n)5

)
−d exp (−c3n).

EXPERIMENTAL VALIDATION

Dashed curve: theoretical rate
Orange squares: experimental rate for Normal-distributed

features (our setting)
Conjecture: min-ℓ1-norm interpolation also has statistical
rate ∼ σ2

log(d/n) for certain heavy-tailed feature distributions.

COMPARISON TO MIN-ℓ2 INTERPOLATION

Min-ℓ1-norm interpolation is sensitive to the noise level σ2;
min-ℓ2-norm interpolation has similar (non-vanishing) pre-
diction error across all values of σ2.

Trade-off between structural bias vs. sensitivity to noise:

▶ Min-ℓ1-norm interpolation (squares):

✓ strong structural bias,

✓ efficient noiseless recovery of sparse signals,

✗ but poor rate in the presence of noise.
▶ Min-ℓ2-norm interpolation (diamonds):

✗ no structural bias (except towards zero),

✗ fails to recover any non-zero signal even in the ab-
sence of noise,

✓ but does not suffer from overfitting of the noise.

REFERENCES
[1] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever,

“Deep double descent: Where bigger models and more data hurt,”
Journal of Statistical Mechanics: Theory and Experiment, 2021.

[2] P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler, “Benign overfitting
in linear regression,” PNAS, 2020.

[3] G. Chinot, M. Löffler, and S. van de Geer, “On the robustness of
minimum-norm interpolators,” arXiv:2012.00807, 2021.

[4] V. Muthukumar, K. Vodrahalli, V. Subramanian, and A. Sahai, “Harm-
less interpolation of noisy data in regression,” IEEE Journal on Selected
Areas in Information Theory, 2020.


