

Achievable distributional robustness when the robust risk is only partially identified

Julia Kostin¹, Nicola Gnecco², Fanny Yang¹

¹Department of Computer Science, ETH Zurich ²Gatsby Computational Neuroscience Unit, UCL

Given:

1 2 3

- Multi-environment training data $\{P_e^{X,Y}\}_e$
- Some knowledge of the test distribution shift

Questions:

- 1. How well can any algorithm generalize to $P_{\text{test}}^{X,Y}$ given a collection of different training distributions?
- 2. What can we do if there is not enough data heterogeneity for generalization on test data?

Our work:

- Introduces a framework that allows well-defined performance quantification in this more realistic scenario
- Quantifies minimal identifiable robust risk (i.r.r.)
 achievable by any algorithm (introduced for linear setting, applicable more generally)
- Evaluates existing robustness methods in the harder scenario of insufficient heterogeneity / non-identifiability

Linear setting

Training distribution $P_e^{X,Y}$ for environment e defined by

$$X^{e} = A^{e} + \eta;$$
$$Y^{e} = \beta_{\star}^{\mathsf{T}} X^{e} + \xi,$$

where $(\eta, \xi) \sim \mathcal{N}(0, \Sigma_{\star})$ and $\theta_{\star} = (\Sigma_{\star}, \beta_{\star}) \in \Theta$ are invariant.

At **test time**, we observe **test shift** $A^e = A^{\text{test}}$ with

$$\mathbb{E}[A^{\text{test}}A^{\text{test}^{\mathsf{T}}}] \leq M_{\text{test}} = \gamma \Pi_{\bullet}.$$
Shift strength Shift directions

Allows to incorporate different granularities of knowledge:

- Know $\mathbb{E}[A^{\operatorname{test}}A^{\operatorname{test}}]$ ~ have $P^X_{\operatorname{test}}$ (domain adaptation)
- Use $\mathcal{M} \subseteq \mathbb{R}^d \sim some knowledge$ of distribution shift
- Use $\mathcal{M} = \mathbb{R}^d \sim no \ knowledge$ (most conservative)

Partially identifiable robustness

Span of shifts seen in training: $S = \text{range}\left(\sum_{e \in \mathcal{E}_{\text{train}}} \mathbb{E}[A^e A^{e^{\top}}]\right)$

Robust risk (**r.r.**) $\mathcal{R}_{\text{rob}}(\beta;\theta,M_{\text{test}})$ - worst-case error w.r.t. distribution shift.

• Case 1: range $M_{\text{test}} \subseteq \mathcal{S}$, robust risk is identifiable:

• Case 2: range $M_{\text{test}} \nsubseteq \mathcal{S}$, r.r. only partially identifiable:

set of robust risks of β

Our notion of identifiable robust risk (i.r.r.):

model parameter space Θ

$$\mathscr{R}_{\text{rob,ID}}(\beta; \Theta_{\text{eq}}, M_{\text{test}}) := \sup_{\theta \in \Theta_{\text{eq}}} \mathscr{R}_{\text{rob}}(\beta; \theta, M_{\text{test}}).$$

Then, minimax identifiable robust risk reveals achievable performance by any algorithm:

$$\mathfrak{M}(\Theta_{\text{eq}}, M_{\text{test}}) = \inf_{\beta \in \mathbb{R}^d} \mathcal{R}_{\text{rob,ID}}(\beta; \Theta_{\text{eq}}, M_{\text{test}}).$$

Results for the linear setting

Theoretical result 1: Lower bound for minimax i.r.r.

$$\mathfrak{M}(\Theta_{\mathrm{eq}}, \gamma \Pi_{\mathcal{M}}) = \gamma C_{\mathrm{ker}}^2 + \min_{R^{\mathsf{T}}\beta = 0} \mathscr{R}_{\mathrm{rob}}(\beta; \theta_{\star}, \gamma SS^{\mathsf{T}}), \text{ if } \gamma \geq \gamma_{\mathrm{th}}$$

where S, R: orthogonal decomposition of M_{test} such that range $S \subset \mathcal{S}$ and range $R \subset \mathcal{S}^{\perp}$.

- \Longrightarrow For large $\gamma \geq \gamma_{\text{th}}$, optimal predictors refrain in span(R);
- \Longrightarrow Risk **grows linearly w.r.t.** unobserved shift strength γ .

Theoretical result 2: Performance of existing methods

- For large new shifts, empirical risk minimization (OLS) yields error akin to known invariance-based methods, e.g.:
- Anchor regression [Rothenhäusler et al. 2021] or
- DRIG [Shen et al. 2023]).
- They are provably worse than the minimax predictor

Experiments confirm theoretical conclusions:

left: case 1, identifiable.

right: case 2, partially identifiable

where Rob-ID is empirical minimizer of the identifiable r.r.

Comparison on real-world dataset

Performance of various invariance-based OOD methods, evaluated on real-world gene expression dataset [Replogle et al. 2022] in 1) *identifiable case* (left) vs. 2) *partially identifiable case* (others)

- Ranking of robust prediction methods changes in partially identifiable settings!
- Minimizer of the i.r.r. outperforms existing methods despite possible assumption violations in real data.

Call to evaluate robustness methods on partially identifiable scenarios theoretically & experimentally!