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. Robust risk (r.r.) &, (J; 0, M,.,) - worst-case error w.r.t.
- distribution shift.
-+ Case 1: range M., C &, robust risk is identifiable:

Theoretical result 2: Performance of existing methods

. » For large new shifts, empirical risk minimization (OLS)

. yields error akin to known invariance-based methods, e.g.:
* Anchor regression [Rothenhausler et al. 2021] or
 DRIG [Shen et al. 2023]).

* They are provably worse than the minimax predictor

Given: pxY

- Multi-environment training data { P*-'}
« Some knowledge of the test distribution shift

Questions:
1. How well can any algorithm generalize to PX - diven a
collection of different training distributions?

. Experiments confirm theoretical conclusions:

test

left: case 1, identifiable. right: case 2, partially identifiable

2_ What can we do if there iS nOt enough data No new test shift directions Some new test shift directions
heterogeneity for generalization on test data? Methods:
9 y 9 . id. robust risk LB 1 10 0= Rob-ID
' % 1.00 -~ Anchor
Our work: B0 ; o
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performance gquantification in this more realistic scenario
* Quantifies minimal identifiable robust risk (i.r.r.) ,
achievable by any algorithm (introduced for linear setting,
applicable more generally) '
* Evaluates existing robustness methods in the harder
scenario of insufficient heterogeneity / non-identifiability

Linear setting Our notion of identifiable robust risk (i.r.r.):

%rob,ID(ﬁ : ®eq9 Mtest) .= Sup ‘%rob(ﬁ : 6’9 Mtest)'

 Case 2: range Mtest 7¢_ CSj, r.r. only partially identifiable: Perturbation strength

where Rob-ID is empirical minimizer of the identifiable r.r.

Comparison on real-world dataset

Performance of various invariance-based OOD methods,
. evaluated on real-world gene expression dataset [Replogle
et al. 2022] in 1) identifiable case (left) vs. 2) partially

Training distribution P! for environment e defined by § 00, Identifiable case (others)
Xe — Ae _|_ r]; i Then, minimax identifiable robust riSk E 0 0% unseen directions 33% unseen directions 67% unseen directions 100% unseen directions
_ ,BTXe . . reveals achievable performance by any algorithm: L o4
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where (17, &) ~ A(0,2,) and
0, =(,,p,) € O areinvariant.

At test time, we observe test shift A¢ = A'"°St with

SJﬁ(@eqﬂ test) — ﬂlnf ‘%rob ID(:B @eq’ Mtest)'

o
—

Res u ItS fo r th e I i n ear Setti n g 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Perturbation strength

' Theoretical result 1: Lower bound for minimax IL.r.r. § Methods: -O- Rob-D O~ Anchor - DRIG 7 ICP - OLS
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Shift directions

Allows to incorporate dlfferent granularities of knowledge:

- Know E[A"A™"] ~ have PX_ (domain adaptation)

- Use .7/ C R ~ some knowledge of distribution shift
- Use ./ = R’ ~no knowledge (most conservative)

R'p=0

where §, R: orthogonal decomposition of M,., such that
‘range S C & andrange R C §.

= For large y > Y, OPtimal predictors refrain in span(R);
—> Risk grows linearly w.r.t. unobserved shift strength y.

MO, v11 ) = vC ker + min &%, (3;0,,7SS"), ify > Vhi * Ranking of robust prediction methods changes

in partially identifiable settings!

* Minimizer of the i.r.r. outperforms existing methods despite

possible assumption violations in real data.

Call to evaluate robustness methods on partially
identifiable scenarios theoretically & experimentally!



