Privacy-preserving data release leveraging optimal transport and particle gradient descent

ETHzürich

MOTIVATION

- Privacy concerns are a limitation when sharin data, e.g., medical and census
- Differential privacy (DP)⁽¹⁾ safeguards against tacks. An algorithm \mathcal{A} is (ϵ, δ) -DP if for any neighboring dataset D, D':

 $\mathbb{P}\left(\mathcal{A}\left(D\right)\in S\right)\leq\exp(\epsilon)\mathbb{P}\left(\mathcal{A}\left(D'\right)\in S\right)+$

This paper develops a novel methodology for hi DP data sanitation of large-scale tabular dataset

SOTA: MARGINAL-BASED APPROACH

Algorithm: SOTA marginal-based DP data syntl

Require Dataset D, privacy parameters ϵ and δ

- 1. select set S of subsets of $\{1, \ldots, d\}$
- 2. **privatize** (discretized) marginals $\nu_{\mathcal{S}}[\mathcal{D}]$: obt DP copies $\hat{\nu}_{S}$ using e.g., the Gaussian mech
- 3. generate data from privatized marginals $\hat{\nu}_{\mathcal{S}}$

return the DP dataset \mathcal{D}_{DP}

Step 3: graphical models (PGM)⁽²⁾ are the backbor methods. Finds prob. dist. \hat{p} by approximately m

$$\min_{\hat{p}} \sum_{S \in \mathcal{S}, x \in \mathcal{X}_S} \left(\hat{p}_S(\{x\}) - \hat{\nu}_S(\{x\}) \right)^2 \quad \text{then} \quad \mathcal{D}_{\mathrm{DP}}$$

- robust and sample efficient, suitable for small ple sizes n
- run-time increases exponentially in dimension selecting "too many" marginals!
- Squared loss does not capture the "geometry" e.g., ordering
- Iimited abilities to incorporate additional specific constraints

Konstantin Donhauser^{*1}, Javier Abad^{*1}, Neha Hulkund², Fanny Yang¹ ¹ETH Zürich, ²MIT

	PRIVPGD OUTPERFORMS BAS
ng sensitive	<i>Benchmark</i> against SOTA methods datasets ($\epsilon = 2.5$ and $\delta = 1e - 5$)
privacy at- set S and	 PGM+AIM/MST (marginal-bas RAP (query-based), and GEM (§
-δ (1)	Diverse set of metrics :
igh-quality ts	1. Downstream classification error
	2. Frobenius norm of differences of trix of data embedded in hyperc
ES	3. Error rate on 3-sparse counting
hesis	4. Error rate on 3-sparse linear three
tain (ϵ, δ) - anism	PRIVATE PARTICLE GRADIEN
	Algorithm: Private Particle Gradier
	Require: DP marginals $\{\hat{\nu}_S\}_{S\in\mathcal{S}}$, tiable) loss $\hat{\mathcal{R}}$ capturing domain-spectrum.
	1. project: construct probability noisy marginals $\hat{\nu}_S$
ne of SOTA inimizing	2. optimize: run gradient descen Ω^m on squared sliced Wassers
$\sim (\hat{p})^n$	$\sum_{S \in S_{\text{batch}}} \mathrm{SW}_2^2(\mu_S[Z], \hat{\mu}_S)$
ϵ and sam-	construct DP dataset $\mathcal{D}_{\mathrm{DP}}$ from $Z^{(T)}$
on d when	• Only linear run-time complexity in cles (up to log) \Rightarrow allows to synthe
of the data,	• Efficient implementation of SW_2^2 u \Rightarrow generate datasets of 15+ dim wi
al domain-	Captures the geometry of the orig orderings of the data

4. Liu, T., Vietri, G., Wu, S. Z. (2021). Iterative methods for private synthetic data: Unifying framework and new methods. NeurIPS.

