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MOTIVATION

▶ Privacy concerns are a limitation when sharing sensitive
data, e.g., medical and census

▶ Differential privacy (DP)(1) safeguards against privacy at-
tacks. An algorithm A is (ϵ, δ)-DP if for any set S and
neighboring dataset D,D′:

P (A (D) ∈ S) ≤ exp(ϵ)P (A (D′) ∈ S) + δ (1)

▶ This paper develops a novel methodology for high-quality
DP data sanitation of large-scale tabular datasets

SOTA: MARGINAL-BASED APPROACHES

Algorithm: SOTA marginal-based DP data synthesis

Require Dataset D, privacy parameters ϵ and δ

1. select set S of subsets of {1, . . . , d}

2. privatize (discretized) marginals νS [D]: obtain (ϵ, δ)-
DP copies ν̂S using e.g., the Gaussian mechanism

3. generate data from privatized marginals ν̂S

return the DP dataset DDP

Step 3: graphical models (PGM)(2) are the backbone of SOTA
methods. Finds prob. dist. p̂ by approximately minimizing

min
p̂

∑
S∈S,x∈XS

(p̂S({x})− ν̂S({x}))2 then DDP ∼ (p̂)n

▶ ✓ robust and sample efficient, suitable for small ϵ and sam-
ple sizes n

▶ ✗ run-time increases exponentially in dimension d when
selecting “too many” marginals!

▶ ✗ squared loss does not capture the “geometry” of the data,
e.g., ordering

▶ ✗ limited abilities to incorporate additional domain-
specific constraints

PRIVPGD OUTPERFORMS BASELINES IN A WIDE RANGE OF SETTINGS

Benchmark against SOTA methods on 9 real-world
datasets (ϵ = 2.5 and δ = 1e− 5)

▶ PGM+AIM/MST (marginal-based), Private GSD,
RAP (query-based), and GEM (generator-based)

Diverse set of metrics:

1. Downstream classification error

2. Frobenius norm of differences of covariance ma-
trix of data embedded in hypercube

3. Error rate on 3-sparse counting queries

4. Error rate on 3-sparse linear thresholding queries

Emp. (n=1503938, d=17) Inc. (n=760157, d=11) Tra. (n=667132, d=17) Pub. (n=583545, d=20) Mob. (n=318332, d=22)

-2.0

-1.0

0.0

1.0

2.0

3.0

>3

lo
g 2

(ra
tio

)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Taxi (n=465468, d=9) Fri. (n=133456, d=9) Med. (n=130452, d=3) Diab. (n=56872, d=7)
-1.0

0.0

1.0

2.0

3.0

>3

lo
g 2

(ra
tio

)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

PRIVATE PARTICLE GRADIENT DESCENT

Algorithm: Private Particle Gradient Descent (PrivPGD)

Require: DP marginals {ν̂S}S∈S , additional (differen-
tiable) loss R̂ capturing domain-specific constraints

1. project: construct probability measures µ̂S from
noisy marginals ν̂S

2. optimize: run gradient descent for particles Z(0) ∈
Ωm on squared sliced Wasserstein distance SW2

2:∑
S∈Sbatch

SW2
2(µS[Z], µ̂S) + λR̂(Z) (2)

construct DP dataset DDP from Z(T )

▶ Only linear run-time complexity in # marginals and # parti-
cles (up to log ) ⇒ allows to synthesize large scale datasets

▶ Efficient implementation of SW2
2 using few random proj.

⇒ generate datasets of 15+ dim within minutes

▶ Captures the geometry of the original space and respects
orderings of the data

INCORPORATING DOMAIN-SPEC. CONSTRAINTS

▶ Gradient descent-based generation offers great flexibility

▶ Example: achieve poor probing accuracy in spec. direction

domain-specific query
test error

counting queries
thresholding queries
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