ETHzürich

PROBLEM SETTING • \mathbb{P}^{\diamond} over (X, U, Y(0), Y(1), Y, T) for $\diamond \in \{ \operatorname{rct}, \operatorname{os} \}$ • We observe $D_{\diamond} = \{(X_i, Y_i, T_i)\}_{i=1}^n$ sampled i.i.d from \mathbb{P}^{\diamond} **Trade-off between randomized and observational data:** • \mathbb{P}^{rct} satisfies internal validity: $T \perp (Y(1), Y(0))$ • \implies we can estimate the ATE $\mu^{\text{rct}} := \mathbb{E}_{\mathbb{P}^{\text{rct}}}[Y(1) - Y(0)]$ • but the support of $\mathbb{P}_X^{\text{rct}}$ is limited (e.g. no children) • \mathbb{P}^{os} covers a broader population: $\operatorname{supp}(\mathbb{P}_X^{\text{rct}}) \subset \operatorname{supp}(\mathbb{P}_X^{\text{os}})$ • but hidden confounding \implies ATE μ^{os} is not identifiable How strong is hidden confounding? • \mathbb{P}^{os} has confounding strength⁽¹⁾ Γ^* if $d_{\mathsf{OR}}\left(\mathbb{P}^{\mathsf{os}}(T \mid X, U), \mathbb{P}^{\mathsf{os}}(T \mid X)\right) = \Gamma^{\star}$

 $\stackrel{(2)}{\Longrightarrow} \mathbb{E}_{\mathbb{P}^{os}}[Y(1) - Y(0)|X] \in [\mu_{\Gamma}^{-}(X), \mu_{\Gamma}^{+}(X)] \text{ if } \Gamma \geq \Gamma^{\star}$

Goal: Can we detect if Γ^* **is large enough** to affect our conclusions derived from obs. data?

PRIOR WORKS

- without rct⁽³⁾: Sensitivity analysis and its critical value $\hat{\Gamma}_{CT}$ • X no relation to the true confounding strength Γ^* • \checkmark our work: provides a lower bound on Γ^* with rct⁽⁴⁾: Tests for the null H_0 : $\Gamma^* > 1$ \checkmark reject if Γ^* is small \implies too sensitive • \checkmark our work: test that rejects only if Γ^* is large with rct⁽⁵⁾: Estimate the bias and correct for it
 - X requires parametric assumptions on the bias structure
 - ✓ our work: no assumptions on the bias structure

Hidden yet quantifiable: A lower bound for confounding strength using randomized trials

Piersilvio De Bartolomeis^{*}, Javier Abad^{*}, Konstantin Donhauser, Fanny Yang Department of Computer Science, ETH Zürich

OUR DECISION-MAKING PIPELINE

Goal: Design a test $\phi_{\alpha}(\Gamma)$ for

REFERENCES

- served confounding.
- inference approach.
- studies via conditional moment restrictions.
- Kallus et al. 2018. Removing hidden confounding by experimental grounding.

