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PROBLEM SETTING

▶ P⋄ over (X,U, Y (0), Y (1), Y, T ) for ⋄ ∈ {rct, os}
▶ We observe D⋄ = {(Xi, Yi, Ti)}ni=1 sampled i.i.d from P⋄

Trade-off between randomized and observational data:

▶ Prct satisfies internal validity: T ⊥⊥ (Y (1), Y (0))

▶ =⇒ we can estimate the ATE µrct := EPrct [Y (1)− Y (0)]
▶ but the support of Prct

X is limited (e.g. no children)

▶ Pos covers a broader population: supp(Prct
X ) ⊂ supp(Pos

X)

▶ but hidden confounding =⇒ ATE µos is not identifiable

How strong is hidden confounding?

▶ Pos has confounding strength(1) Γ⋆ if

dOR (P
os(T | X,U),Pos(T | X)) = Γ⋆

▶
(2)
=⇒ EPos [Y (1)− Y (0)|X] ∈ [µ−

Γ (X), µ+
Γ (X)] if Γ ≥ Γ⋆

Goal: Can we detect if Γ⋆ is large enough
to affect our conclusions derived from obs. data?

PRIOR WORKS
▶ without rct(3): Sensitivity analysis and its critical value Γ̂CT

▶ ✗ no relation to the true confounding strength Γ⋆

▶ ✓ our work: provides a lower bound on Γ⋆

▶ with rct(4): Tests for the null H0 : Γ
⋆ > 1

▶ ✗ reject if Γ⋆ is small =⇒ too sensitive
▶ ✓ our work: test that rejects only if Γ⋆ is large

▶ with rct(5): Estimate the bias and correct for it

▶ ✗ requires parametric assumptions on the bias structure
▶ ✓ our work: no assumptions on the bias structure

OUR DECISION-MAKING PIPELINE

Our proposal: lower bounding confounding strength
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METHOD: DETECTING HIDDEN CONFOUNDING

▶ Goal: Design a test ϕα(Γ) for

H0(Γ) : Pos has confounding strength ≤ Γ

▶ How: H0(Γ)
transportability

=⇒ µrct ∈
[
EPrct [µ−

Γ (X)],EPrct [µ+
Γ (X)]

]
1. Estimate: µ̂ using Drct , µ̂−

Γ and µ̂+
Γ using Dos

2. Bootstrap the estimates to obtain the resp. variances
3. Construct an asymptotically valid two-sided t-test

Corollary: A lower bound for confounding strength

We can then estimate a lower bound for Γ⋆:

Γ̂LB = inf
Γ
{Γ : ϕ̂α(Γ) = 0}

that is asymptotically valid: P(Γ⋆ ≥ Γ̂LB) ≥ 1− α + oP(1)
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REAL-WORLD EXPERIMENTS

▶ Data: Women’s Health Initiative

▶ T := hormone therapy
▶ Y := coronary heart disease
▶ U := time since treatment
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Evaluation on real-world data (WHI)

treated    as trial started     before trial 

Different paradigms for “flagging” confounding: 

• Compute  that changes ATE sign and 

compare let “expert” assess “likeliness” 

• : tests for existence, e.g. check  

•  (ours): check whether too large 

Γ̂𝐶𝑇

𝜓𝑏𝑖𝑛 Γ̂𝐿𝐵 > 1
𝜓𝑠𝑒𝑛𝑠 Γ̂𝐿𝐵 > Γ̂𝐶𝑇

‣ Randomized trial and observational study run by the NHLBI (1993-2005) 
‣ Treatment: hormone replacement therapy  

‣ Outcomes: coronary heart disease 

‣ hidden confounder (revealed later): start of treatment
rct
os

time since treatment started

start of WHI

▶ Goal: Detect absence and presence of hidden confounding
▶ Our procedure: flag := I{Γ̂LB > Γ̂CT}

▶ where e.g. Γ̂CT := inf{Γ : 0 ∈ [EPos [µ̂−
Γ (X)],EPos [µ̂+

Γ (X)]}

▶ Baseline procedure: flag-binary = I{Γ̂LB > 1}

Coronary heart disease
treatment started with the study before the study

Γ̂CT 1.017 1.164
Γ̂LB 1.009 1.224

flag-binary 1 1
flag (ours) 0 1

BONUS: FUTURE WORK
▶ Kernelized test to detect

confounding even
in small subgroups!
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