

PHENOMENON 1: DOUBLE DESCENT

Observed empirically for neural networks and theoretically e.g. for highly overparameterized ($d \gg n$) linear models [1].

- Regularization does not improve generalization, compared to interpolating the training data.
- Overparameterization implicitly controls the variance. \rightarrow Regularization is **redundant**.

PHENOMENON 2: ROBUST OVERFITTING

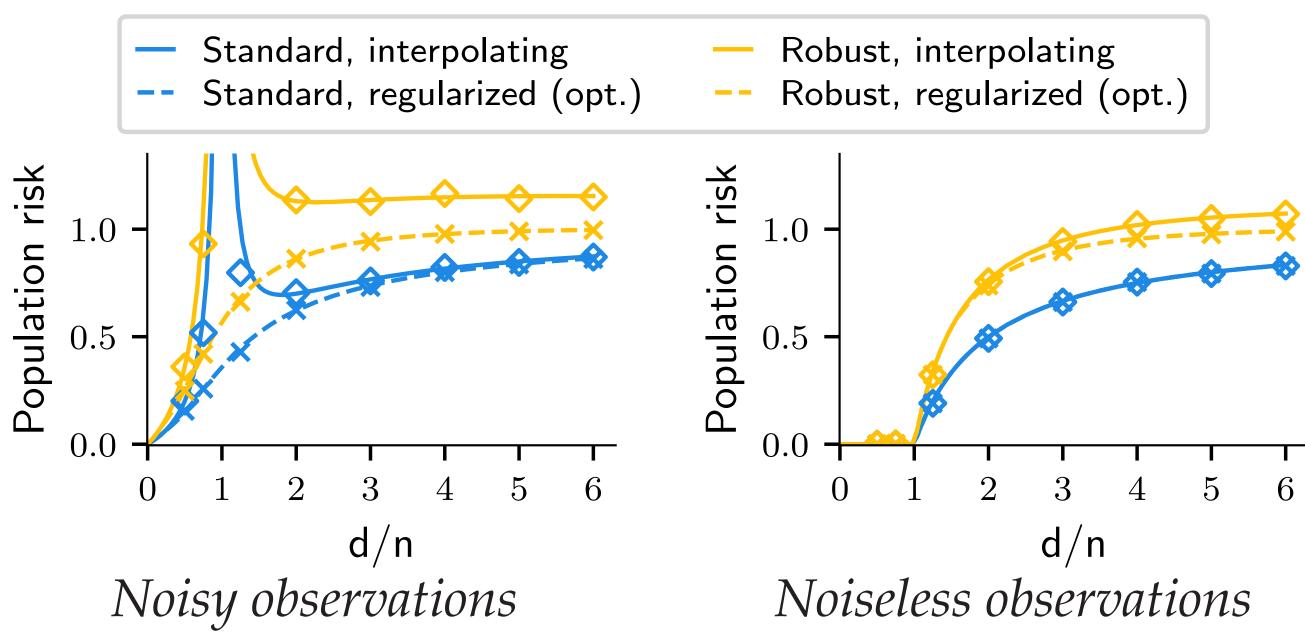
Observed empirically for neural networks on image data [2]. *Robust* generalization benefits greatly from regularization.

- Prior work has attributed this phenomenon to:
 - noise in the training data
 - non-smooth predictors

Does robust overfitting occur on noiseless data? Does this provably happen even for linear models?

ROBUST LINEAR REGRESSION

Ridge regularization avoids the min-norm interpolator.



- The lowest robust risks are not obtained by the min-norm interpolators, but by the regularized estimators.
 - holds true even for noiseless data!

Interpolation can hurt robust generalization even when there is no noise

Konstantin Donhauser^{*,†}, Alexandru Țifrea^{*,†}, Michael Aerni[†], Reinhard Heckel^{o,§}, Fanny Yang[†] ETH Zurich[†], Rice University[°], TU Munich[§]

ROBUST LINEAR CLASSIFICATION

Evaluation with the **robust risk** wrt ℓ_{∞} -perturbations:

 $\mathbf{R}_{\epsilon}(\theta) := \mathbb{E}_{X \sim \mathbb{P}} \max_{\delta \in \mathcal{U}_{\epsilon}(\epsilon)} \mathbb{1}_{\operatorname{sgn}(\langle \theta, X + \delta \rangle) \neq \operatorname{sgn}(\langle \theta^{\star}, X \rangle)}$

We use adversarial training to obtain a robust estimator:

$$\hat{\theta}_{\lambda} := \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \max_{\delta \in \mathcal{U}_{c}(\epsilon)} \ell(\langle \theta, \rangle)$$

For $\lambda \to 0$, it maximizes the robust margin of the data:

 $\hat{\theta}_0 := \arg\min_{\theta} \|\theta\|_2$ such that for all i, $\max_{\delta \in \mathcal{U}_c(\epsilon)} y_i \langle \theta, x_i + \delta \rangle \ge 1$.

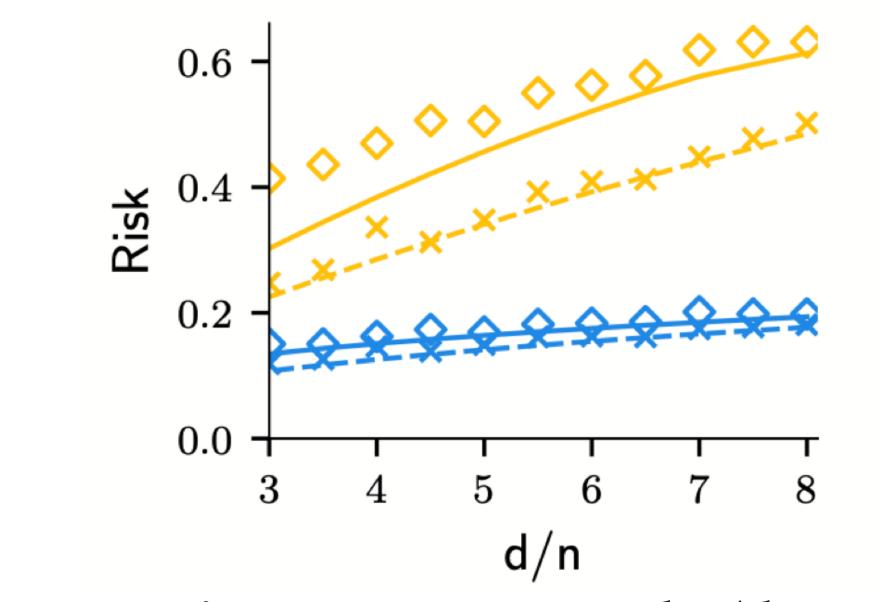
CLASSIFICATION IHEORETICAL RESULT FOR **Problem setting:**

- Data model: covariates $x \sim \mathcal{N}(0, I_d)$, deterministic labels given by $y = \operatorname{sgn}\langle \theta^{\star}, x \rangle \in \{-1, +1\}. \rightarrow \text{Noiseless data}$
- We consider **linear classifiers** trained with the logistic loss.

Theorem. For a sparse ground truth, we derive the limit $\mathcal{R}_{\lambda}(\epsilon, \gamma)$ of the robust risk as $d, n \to \infty$ and $d/n \to \gamma$:

 $\mathbf{R}_{\epsilon}(\hat{\theta}_{\lambda}) \xrightarrow{\text{prob}} \mathcal{R}_{\lambda}(\epsilon,$

In particular, for some $\lambda_{opt} > 0$: $\mathcal{R}_{\lambda_{opt}}(\epsilon,$

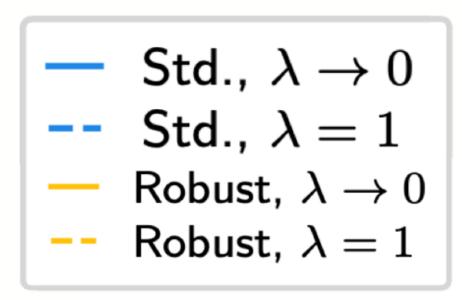


Lines: asymptotic risks (theory) **Markers:** risks for finite *d*, *n* (simulations)

 $, x_i + \delta \langle y_i \rangle + \lambda \|\theta\|_2^2.$

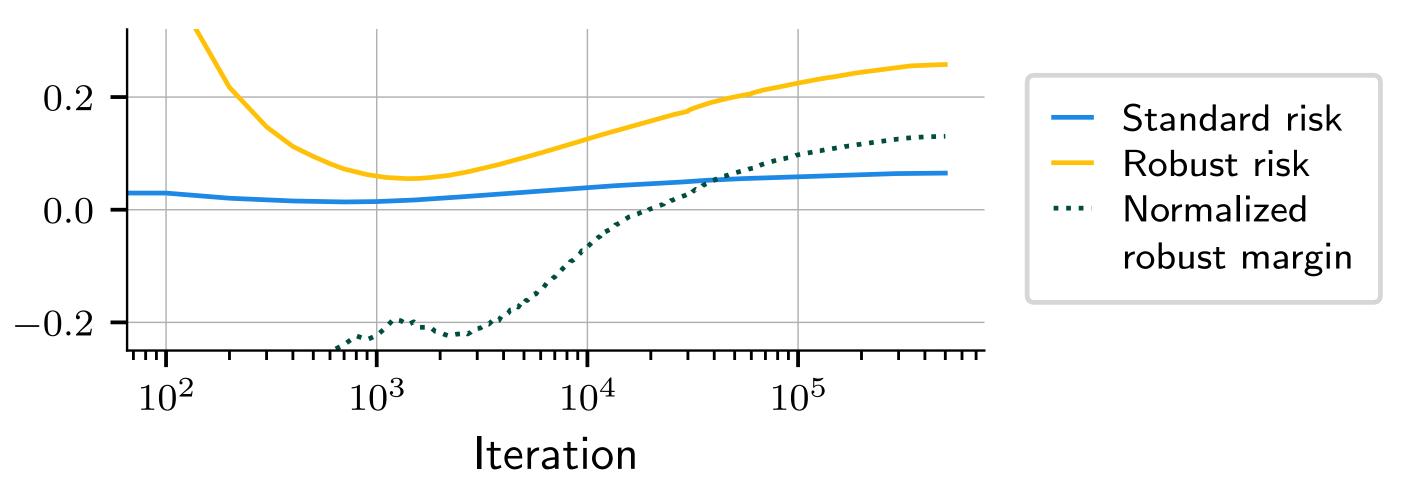
$$(\gamma, \gamma)$$

 $(\gamma, \gamma) < \lim_{\lambda \to 0} \mathcal{R}_{\lambda}(\epsilon, \gamma).$
 (γ)
 (γ)
 (γ)
 (γ)



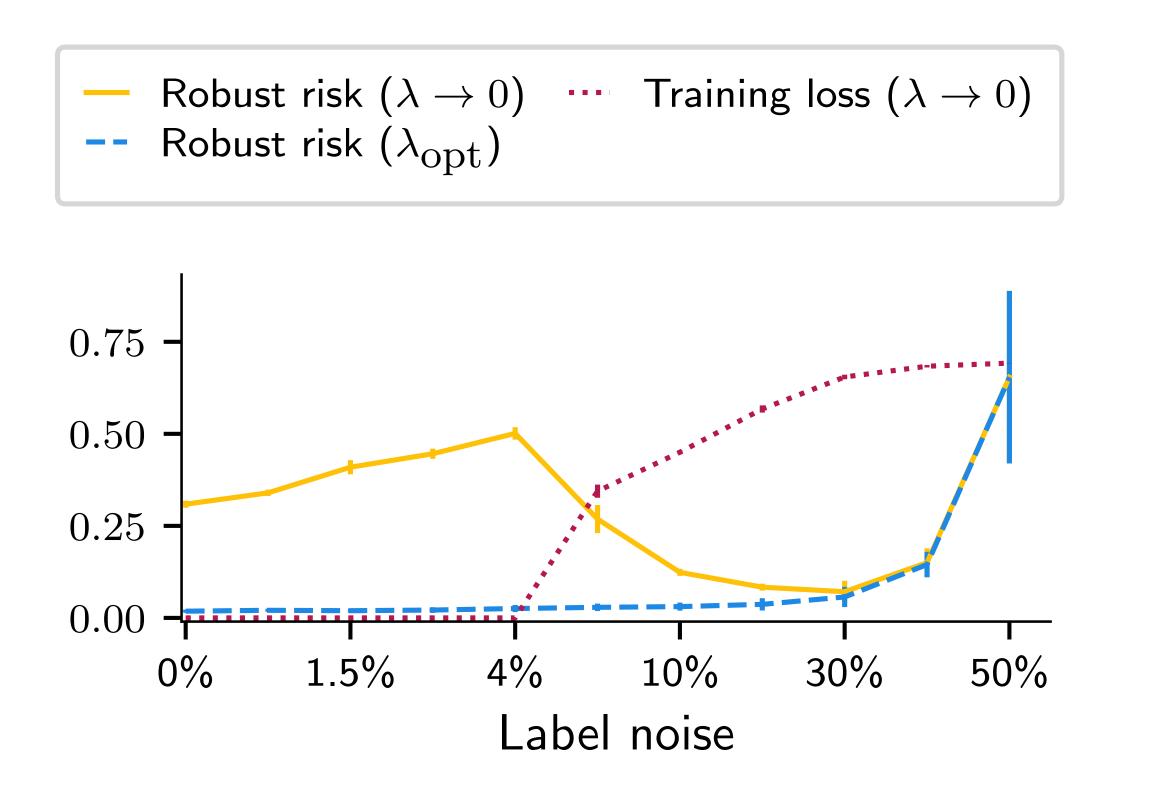
Ridge regularization **avoids the max-margin estimator**.

1. Early stopping avoids the max-margin estimator and achieves a lower robust risk.



loss and avoids the max-margin estimator.

Surprising consequence: Smaller robust risk, compared to the max-margin interpolator of the original clean data.



Remark: Regularization still leads to smaller robust risk, even in the presence of noise.

REFERENCES

- arXiv:1903.08560, 2019.
- deep learning," in ICML, 2020.
- gression: A precise analysis of the estimation error," in COLT, 2015.

2. Adding artificial label noise prevents a vanishing training

T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani, "Surprises in high-dimensional ridgeless least squares interpolation," [2] L. Rice, E. Wong, and Z. Kolter, "Overfitting in adversarially robust [3] C. Thrampoulidis, S. Oymak, and B. Hassibi, "Regularized linear re-