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Objective I: Robustness against outliers

Example: high-dimensional robust mean estimation under additive contamination 

non-robust estimate robust estimate (by filtering outliers)

samples ∼
𝑖𝑖𝑑

𝑃

samples ∼
𝑖𝑖𝑑

𝑄

*classical robust statistics problem, pioneered ‘60s by Anscombe, Huber, Tukey etc.

samples ∼
𝑖𝑖𝑑

𝑃

samples ∼
𝑖𝑖𝑑

𝑄
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Objective II: Good small group performance

fair fair

Example: preserving minority group representation (“group fairness” in this talk) 

list that represents minoritieslist that ignores minorities

samples ∼
𝑖𝑖𝑑

σ𝑖𝑤𝑖𝑃𝑖 samples ∼
𝑖𝑖𝑑

σ𝑖𝑤𝑖𝑃𝑖

prior work does what
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How about robustness and ”group fairness”?

robust for some 𝑖, but “unfair”:
ignores some subpopulation

To obtain robustness

filter out 
points that look different

To preserve minority groups:

keep 
points that look different

samples∼𝑖𝑖𝑑 σ𝑖𝑤𝑖𝑃𝑖

Contradicting objectives:

includes both outlier and minority groups
- indistinguishable to algorithm!

Joint problem: Minority group preservation under large additive contamination

samples ∼
𝑖𝑖𝑑

𝑄
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How about robustness and ”group fairness”?

To obtain robustness

filter out 
points that look different

To preserve minority groups:

keep 
points that look different

Contradicting objectives:

Joint problem: Minority group preservation under large additive contamination

How to formally quantify this “trade-off”? 

Goal: Quantify the cost of preserving 

small groups under adversarial corruptionsrobust for some 𝑖, but “unfair”:
ignores some subpopulation

samples∼𝑖𝑖𝑑 σ𝑖𝑤𝑖𝑃𝑖

samples ∼
𝑖𝑖𝑑

𝑄
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Setup: Mixture learning with adversarial corruptions

k: #components

𝒫𝑋 = σ
𝑖=1

𝑘

𝑤𝑖𝒩(𝜇𝑖 , 𝐼) + 𝜀𝑄

true signal

*Gaussian inliner components for simplicity of presentation, paper considers distributions with subgaussian moments

𝑄: arbitrary,
adversarial

adv. corruption

𝑤𝑖 ≈ frequency of 
group 𝑖 in dataset 𝜀 ∈ 0,1 : corruption 

proportion

Sampled 
distribution

𝑘 = 3

Goal: Given 𝑋1, … , 𝑋𝑛 ∼
𝑖𝑖𝑑

𝒫𝑋 , recover all 𝜇𝑖 with 𝑤𝑖 > 𝑤𝑙𝑜𝑤

with 𝜀 > 𝑤𝑙𝑜𝑤

Q1. How to recover all means under corruptions?

Q2. What’s the cost of choosing small wlow < 𝜀?

(w.l.o.g. consider 𝑤𝑙𝑜𝑤 = min
𝑖
𝑤𝑖)
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Q1: How to recover all means under corruptions?

Problem: 

For large 𝜀 > 𝑤𝑙𝑜𝑤, outliers indistinguishable from true minority 

→ filtering and outputting a list of fixed size 𝑘 won’t work!

List-decodable paradigm comes to the rescue: 

Idea: Output more candidates of means than # true means!

(originated from error-correcting codes Elias ‘1957)

𝑘 = 3
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Answer: List-decodable mixture learning

𝑘 = 3

𝒫𝑋 = σ
𝑖=1

𝑘

𝑤𝑖𝒩(𝜇𝑖, 𝐼) + 𝜀𝑄

List-decodable mixture learning goal:

Given 𝑤𝑙𝑜𝑤 < 𝜀, data points from 𝒫𝑋

output list 𝐿 = { Ƹ𝜇1, Ƹ𝜇2 … } with 𝐿 > 𝑘 such that:

• for any component 𝑖 with 𝑤𝑖 > 𝑤𝑙𝑜𝑤, there is 

an element Ƹ𝜇 in list 𝐿 with small estimation error ||𝜇𝑖 − Ƹ𝜇||2

• list size is small / has small list-size overhead 𝐿 − 𝑘
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Q2: What’s the cost of small 𝑤𝑙𝑜𝑤

List-decodable mixture learning goal:

Given 𝑤𝑙𝑜𝑤 < 𝜀, data points from 𝒫𝑋

output list 𝐿 = { Ƹ𝜇1, Ƹ𝜇2 … } with 𝐿 > 𝑘 such that:

• for any component 𝑖 with 𝑤𝑖 > 𝑤𝑙𝑜𝑤, there is 

an element Ƹ𝜇 in list 𝐿 with small estimation error ||𝜇𝑖 − Ƹ𝜇||2

• list size is small / has small list-size overhead 𝐿 − 𝑘

Goal: Quantify cost of 

preserving small groups 

under adversarial corruptions

Goal: Quantify how much 

estimation error on large groups

and list size increase with 𝑤𝑙𝑜𝑤

for poly-time algorithms

𝒫𝑋 = σ
𝑖=1

𝑘

𝑤𝑖𝒩(𝜇𝑖, 𝐼) + 𝜀𝑄
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Q2: What’s the cost of small 𝑤𝑙𝑜𝑤

Goal: Quantify cost of 

preserving small groups 

under adversarial corruptions

Goal: Quantify how much 

estimation error on large groups

and list size increase with 𝑤𝑙𝑜𝑤

for poly-time algorithms

𝒫𝑋 = σ
𝑖=1

𝑘

𝑤𝑖𝒩(𝜇𝑖, 𝐼) + 𝜀𝑄

What can be achieved

by a poly-time algorithm

and how “optimal” is it?
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Naïve approach: list-decodable mean estimation (LD-ME)

𝒫𝑋 = 𝑤𝑗𝒩 𝜇𝑗 , 𝐼 + 1 − 𝑤𝑗 ෨𝑄

true signal𝑄: arbitrary,
adversarial effective large corruption

𝒫𝑋 = σ
𝑖=1

𝑘

𝑤𝑖𝒩(𝜇𝑖 , 𝐼) + 𝜀𝑄

For each component j, can view as mean estimation problem with large corruption proportion

making 
problem
“harder”

෨𝑄: arbitrary,
adversarial

“Recovery” of 𝜇𝑗 in this setting “Recovering” 𝜇𝑗 in this setting 
implies

Solved by list-decodable mean estimation algorithms

rest of the mixture can be
(conservatively) viewed as adversarial



12

Caveats of existing poly-time algorithms

Algorithm 
outputs

Prior work 
using LD-ME

Our algorithm
(arbitrary sep.)

Our algorithm
(well-separated)

Lower bounds*
(well-separated)

List of size 𝑂(1/𝑤low) 𝑂(1/𝑤low) 𝑘 + 𝑂(𝜀/𝑤low) 𝑘 + ⌊𝜀/𝑤low⌋

Estimation error
ො𝜇 − 𝜇𝑖 2

w.h.p.
for 𝑤𝑖 > 𝑤𝑙𝑜𝑤

𝑂( log
1

𝑤low
) 𝑂( log

1

𝑤𝑖
) 𝑂( log

𝑤𝑖 + 𝜀

𝑤𝑖
) Ω( log

𝑤𝑖 + 𝜀

𝑤𝑖
)

𝒫𝑋 = σ
𝑖=1

𝑘

𝑤𝑖𝒩(𝜇𝑖 , 𝐼) + 𝜀𝑄
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Caveats of existing poly-time algorithms

Big components suffer same
large error as small ones!

*Diakonikolas, Kane, Stewart. “List-decodable robust mean estimation and learning mixtures of spherical Gaussians”, ‘18

Algorithm 
outputs

Prior work 
using LD-ME

Our algorithm
(arbitrary sep.)

Our algorithm
(well-separated)

Lower bounds*
(well-separated)

List of size 𝑂(1/𝑤low) 𝑂(1/𝑤low) 𝑘 + 𝑂(𝜀/𝑤low) 𝑘 + ⌊𝜀/𝑤low⌋

Estimation error
ො𝜇 − 𝜇𝑖 2

w.h.p.
for 𝑤𝑖 > 𝑤𝑙𝑜𝑤

𝑂 log
1

𝑤low
𝑂 log

1

𝑤𝑖
𝑂 log

𝑤𝑖 + 𝜀

𝑤𝑖
Ω log

𝑤𝑖 + 𝜀

𝑤𝑖

Challenges in this setting: 

1. 𝑤𝑙𝑜𝑤 too small as an estimate for weight of big clusters 

2. Other inlier clusters unnecessarily treated as outliers by many clusters

DKS ‘18

𝒫𝑋 = σ
𝑖=1

𝑘

𝑤𝑖𝒩(𝜇𝑖 , 𝐼) + 𝜀𝑄



14

Guarantees for our poly-time algorithm in a nutshell

Algorithm 
outputs

Prior work 
using LD-ME

Our algorithm
(arbitrary sep.)

Our algorithm
(well-separated)

Lower bounds*
(well-separated)

List of size 𝑂(1/𝑤low) 𝑂(1/𝑤low) 𝑘 + 𝑂(𝜀/𝑤low) 𝑘 + ⌊𝜀/𝑤low⌋

Estimation error
ො𝜇 − 𝜇𝑖 2

w.h.p.
for 𝑤𝑖 > 𝑤𝑙𝑜𝑤

𝑂 log
1

𝑤low
𝑂 log

1

𝑤𝑖
𝑂 log

𝑤𝑖 + 𝜀

𝑤𝑖
Ω log

𝑤𝑖 + 𝜀

𝑤𝑖

error depends 
on cluster size

𝒫𝑋 = σ
𝑖=1

𝑘

𝑤𝑖𝒩(𝜇𝑖 , 𝐼) + 𝜀𝑄

DBTWNSSY ‘24

Challenges in this setting: 

1. 𝑤𝑙𝑜𝑤 too small as an estimate for weight of big clusters

2. Other inlier clusters unnecessarily treated as outliers by many clusters

*Dmitriev, Buhai et al. “Robust Mixture Learning when Outliers Overwhelm Small Groups”, 2024
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Guarantees for our poly-time algorithm in a nutshell

Algorithm 
outputs

Prior work 
using LD-ME

Our algorithm
(arbitrary sep.)

Our algorithm
(well-separated)

Lower bounds*
(well-separated)

List of size 𝑂(1/𝑤low) 𝑂(1/𝑤low) 𝑘 + 𝑂(𝜀/𝑤low) 𝑘 + ⌊𝜀/𝑤low⌋

Estimation error
ො𝜇 − 𝜇𝑖 2

w.h.p.
for 𝑤𝑖 > 𝑤𝑙𝑜𝑤

𝑂 log
1

𝑤low
𝑂 log

1

𝑤𝑖
𝑂 log

𝑤𝑖 + 𝜀

𝑤𝑖
Ω log

𝑤𝑖 + 𝜀

𝑤𝑖

𝜇𝑖 − 𝜇𝑗
2

large
DBTWNSSY ‘24

Challenges in this setting: 

1. 𝑤𝑙𝑜𝑤 too small as an estimate for weight of big clusters 

2. Other inlier clusters unnecessarily treated as outliers by many clusters

*Dmitriev, Buhai et al. “Robust Mixture Learning when Outliers Overwhelm Small Groups”, 2024

𝒫𝑋 = σ
𝑖=1

𝑘

𝑤𝑖𝒩(𝜇𝑖 , 𝐼) + 𝜀𝑄

”oracle error” as if it’s LD-ME
excluding other inlier clusters 
i.e. 𝒫𝑋 ∝ 𝑤𝑗𝒩(𝜇𝑗, 𝐼) + 𝜀𝑄
leveraging separation

much better
when 𝑤𝑖 ≈ 𝜀
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Guarantees for our poly-time algorithm in a nutshell

Algorithm 
outputs

Prior work 
using LD-ME

Our algorithm
(arbitrary sep.)

Our algorithm
(well-separated)

Lower bounds*
(well-separated)

List of size 𝑂(1/𝑤low) 𝑂(1/𝑤low) 𝑘 + 𝑂(𝜀/𝑤low) 𝑘 + ⌊𝜀/𝑤low⌋

Estimation error
ො𝜇 − 𝜇𝑖 2

w.h.p.
for 𝑤𝑖 > 𝑤𝑙𝑜𝑤

𝑂 log
1

𝑤low
𝑂 log

1

𝑤𝑖
𝑂 log

𝑤𝑖 + 𝜀

𝑤𝑖
Ω log

𝑤𝑖 + 𝜀

𝑤𝑖

𝜇𝑖 − 𝜇𝑗
2

large
DBTWNSSY ‘24

*Dmitriev, Buhai et al. “Robust Mixture Learning when Outliers Overwhelm Small Groups”, 2024

𝒫𝑋 = σ
𝑖=1

𝑘

𝑤𝑖𝒩(𝜇𝑖 , 𝐼) + 𝜀𝑄

Goal: Quantify how much 

estimation error on large groups

and list size increase with 𝑤𝑙𝑜𝑤

Estimation error: No cost for large groups to preserve small groups

List size: overhead increase as 1/𝑤𝑙𝑜𝑤
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How optimal? Simple lower bound on the list size

Samples from 𝒫𝑋 = σ
𝑖=1

3

𝑤𝑖𝒩(𝜇𝑖 , 𝐼) + 𝜀𝑄 with 𝜖 = 3𝑤𝑙𝑜𝑤

• Using budget 𝜖 = 3𝑤𝑙𝑜𝑤, adversary can place 

3 (outlier/fake) clusters of weight 𝑤𝑙𝑜𝑤 with 𝜀𝑄

• We can’t tell apart the true vs. fake clusters

⇒ need to output 𝜖

𝑤𝑙𝑜𝑤
= 3 more means to capture true+fake

⇒ total list size 𝐿 > 𝑘 +
𝜖

𝑤𝑙𝑜𝑤

weight 𝑤𝑙𝑜𝑤
weight 𝑤𝑙𝑜𝑤

weight 𝑤𝑙𝑜𝑤

weight 𝑤𝑙𝑜𝑤



18

Lower bound and interpretation

Lower bound interpretation for

• List size: smaller list would miss a small true component if 
all of adversarial proportion 𝜀 used to place clusters of size 𝑤𝑙𝑜𝑤

• Estimation error: smaller order for all 𝑤𝑖 > 𝑤𝑙𝑜𝑤 would require exponential list size

Prior work 
using LD-ME

Our algorithm
(arbitrary sep.)

Our algorithm
(well-separated)

Lower bounds
(well-separated)

List size 𝑂(1/𝑤low) 𝑂(1/𝑤low) 𝑘 + 𝑂(𝜀/𝑤low) 𝑘 + ⌊𝜀/𝑤low⌋

Estimation error
ො𝜇 − 𝜇𝑖 2

for 𝑤𝑖 > 𝑤𝑙𝑜𝑤

𝑂 log
1

𝑤low
𝑂 log

1

𝑤𝑖
𝑂 log

𝑤𝑖 + 𝜀

𝑤𝑖
Ω log

𝑤𝑖 + 𝜀

𝑤𝑖

*Dmitriev, Buhai et al. “Robust Mixture Learning when Outliers Overwhelm Small Groups”, 2024

𝜇𝑖 − 𝜇𝑗
2

large

𝒫𝑋 = σ
𝑖=1

𝑘

𝑤𝑖𝒩(𝜇𝑖 , 𝐼) + 𝜀𝑄
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Our meta-algorithm framework for LD-ML

Outer stage: separates dataset into sets 𝑇1, 𝑇2, … exploiting separation 
(reduces LD-mixture learning to LD-mean estimation)

Inner stage: For each set 𝑇𝑖, run list-codable mean estimation 
(LD-ME) with unknown weights via a wrapper that uses

base learner as black-box:

given data from adv. corrupted model
with known 𝜖 > 1

2
, outputs small list

Error guarantees of meta-algorithm inherits error guarantees of base learners! 

*for large clusters can improve error further using RME base learner designed for 𝜖 < 1

2



Algorithm: Outer stage (cluster isolation)
inlier cluster

outlier samples

Goal: split inlier clusters into separate sets

Approach: finding and isolating regions of high concentration

Set of all data points

𝑇1

Sets 𝑇𝑖 of points from at most 1 inlier cluster + 𝑇𝑙𝑎𝑠𝑡 with rest

𝑇2 𝑇3

𝑇4

𝑇5

𝑇last

(for 𝜇𝑖 − 𝜇𝑗
2

large)



{ ො𝜇1, ො𝜇2, … , ො𝜇ℓ1}

{ ො𝜇ℓ1+1, … , ො𝜇ℓ2}

{ ො𝜇ℓ2+1, … , ො𝜇ℓ3}

…

Goal for each 𝑻𝒊: small list & error for the inlier components

Approach: list-decodable mean-estimation base learners (𝑘 = 1)
with different inlier weight proportion 𝛼 & filter

Algorithm: Inner stage (mean estimation)

𝛼 = 𝑤low

LD-ME 

𝛼 = 2𝑤low

LD-ME 

𝛼 = 3𝑤low

LD-ME 

Final small list L
{ Ƹ𝜇1, Ƹ𝜇2, … , Ƹ𝜇|𝐿|}

Filter

based on
concentration
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Empirical performance compared to LD-ME
Comparison with LD-ME algorithm* (the only baseline with worst-case guarantees)

smallest inlier mean becomes recoverable

weights
0.045

weights
0.2

weight
0.2

Estimation error of large component mean List size

Takeaway: Large clusters estimation and list size do not suffer as much 
from attending to rare minorities (i.e. choosing small 𝑤𝑙𝑜𝑤)

* Diakonikolas, Kane, Kongsgaard, Li, Tian. “Clustering mixture models in almost-linear time via list-decodable mean estimation” 2022
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Empirical performance compared to heuristics
• Comparison with popular clustering heuristic with more inlier components

• Attack 1: Adversarial cluster; Attack 2: adversarial points connecting two inliers

Takeaways: • For same list size, we achieve smaller small-group error 
• Need smaller list to achieve same small-group error
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Summary

• Studied cost of recovering small groups in the presence of large outlier proportion

o no cost in estimation error (of larger groups)

o list size grows with “group size” you care about as 1/𝑤𝑙𝑜𝑤

• Achieved by concrete poly-time algorithm for list-decodable mixture learning

where we can plug in black-box LD-ME and RME

o guarantees for LD-ML inherit guarantees of black box learners 

o there is optimal algorithm for Gaussian mixture

• In some preliminary experiments empirically matches heuristics like DBSCAN
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D. Dmitriev, R. Buhai, S. Tiegel, A. Wolters, G. Novikov, A. Sanyal, D. Steurer, F. Yang. 

“Robust Mixture Learning when Outliers Overwhelm Small Groups”, NeurIPS 2024

SML group at ETH Zurich:
sml.inf.ethz.ch
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