papers

publications by categories in reversed chronological order. [*] denotes equal contribution.

preprints

              1. Counterfactual Spaces
                Junhyung Park, Fanny Yang, and Thomas Icard
                arXiv preprint, 2026
              1. ROC-n-reroll: How verifier imperfection affects test-time scaling
                Florian E. Dorner, Yatong Chen, André F. Cruz, and Fanny Yang
                arXiv preprint, 2025


                              recent conference publications

                                            1. On the sample complexity of semi-supervised multi-objective learning
                                              Tobias Wegel, Geelon So, Junhyung Park, and Fanny Yang
                                              Neural Information Processing Systems (NeurIPS), Spotlight, 2025
                                            2. Efficient Randomized Experiments Using Foundation Models
                                              Piersilvio De Bartolomeis, Javier Abad, Guanbo Wang, Konstantin Donhauser, Raymond M. Duch, Fanny Yang, and Issa J. Dahabreh
                                              Neural Information Processing Systems (NeurIPS), 2025
                                            3. Learning Pareto fronts in high dimensions: How can regularization help?
                                              Tobias Wegel, Filip Kovačević, Alexandru Tifrea, and Fanny Yang
                                              International Conference on Artificial Intelligence and Statistics (AISTATS), 2025
                                            4. Doubly robust identification of treatment effects from multiple environments
                                              Piersilvio De Bartolomeis, Julia Kostin, Javier Abad, Yixin Wang, and Fanny Yang
                                              International Conference on Learning Representations (ICLR), 2025
                                            5. Copyright-Protected Language Generation via Adaptive Model Fusion
                                              Javier Abad, Konstantin Donhauser, Francesco Pinto*, and Fanny Yang*
                                              International Conference on Learning Representations (ICLR), Oral, 2025
                                            1. Achievable distributional robustness when the robust risk is only partially identified
                                              Julia Kostin, Nicola Gnecco, and Fanny Yang
                                              Neural Information Processing Systems (NeurIPS), 2024
                                            2. Robust Mixture Learning when Outliers Overwhelm Small Groups
                                              Daniil Dmitriev*, Rares-Darius Buhai*, Stefan Tiegel, Alexander Wolters, Gleb Novikov, Amartya Sanyal, David Steurer, and Fanny Yang
                                              Neural Information Processing Systems (NeurIPS), 2024
                                            3. Minimum Norm Interpolation Meets The Local Theory of Banach Spaces
                                              Gil Kur, Pedro Abdalla*, Pierre Bizeul*, and Fanny Yang
                                              International Conference on Machine Learning (ICML), 2024
                                            4. Privacy-preserving data release leveraging optimal transport and particle gradient descent
                                              Konstantin Donhauser*, Javier Abad*, Neha Hulkund, and Fanny Yang
                                              International Conference on Machine Learning (ICML), 2024
                                            5. Detecting critical treatment effect bias in small subgroups
                                              Piersilvio De Bartolomeis, Javier Abad, Konstantin Donhauser, and Fanny Yang
                                              Conference on Uncertainty in Artificial Intelligence (UAI), 2024
                                            6. Hidden yet quantifiable: A lower bound for confounding strength using randomized trials
                                              Piersilvio De Bartolomeis*, Javier Abad*, Konstantin Donhauser, and Fanny Yang
                                              International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
                                            7. Certified private data release for sparse Lipschitz functions
                                              Konstantin Donhauser, Johan Lokna, Amartya Sanyal, March Boedihardjo, Robert Hoenig, and Fanny Yang
                                              International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
                                            8. PILLAR: How to make semi-private learning more effective
                                              Francesco Pinto, Yaxi Hu, Fanny Yang, and Amartya Sanyal
                                              IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), 2024
                                            9. Tight bounds for maximum l1-margin classifiers
                                              Stefan Stojanovic, Konstantin Donhauser, and Fanny Yang
                                              Algorithmic Learning Theory (ALT), 2024
                                            1. Can semi-supervised learning use all the data effectively? A lower bound perspective
                                              Alexandru Ţifrea*, Gizem Yüce*, Amartya Sanyal, and Fanny Yang
                                              Neural Information Processing Systems (NeurIPS), Spotlight, 2023
                                            2. Margin-based sampling in high dimensions: When being active is less efficient than staying passive
                                              Alexandru Tifrea*, Jacob Clarysse*, and Fanny Yang
                                              International Conference on Machine Learning (ICML), 2023
                                            3. Strong inductive biases provably prevent harmless interpolation
                                              Michael Aerni*, Marco Milanta*, Konstantin Donhauser, and Fanny Yang
                                              International Conference on Learning Representations (ICLR), 2023
                                            4. Why adversarial training can hurt robust accuracy
                                              Jacob Clarysse, Julia Hörrmann, and Fanny Yang
                                              International Conference on Learning Representations (ICLR), 2023
                                            1. How unfair is private learning?
                                              Amartya Sanyal*, Yaxi Hu*, and Fanny Yang
                                              Conference on Uncertainty in Artificial Intelligence (UAI), Oral, 2022
                                            2. Semi-supervised novelty detection using ensembles with regularized disagreement
                                              Alexandru Țifrea, Eric Stavarache, and Fanny Yang
                                              Conference on Uncertainty in Artificial Intelligence (UAI), 2022
                                            3. Fast rates for noisy interpolation require rethinking the effects of inductive bias
                                              Konstantin Donhauser, Nicolo Ruggeri, Stefan Stojanovic, and Fanny Yang
                                              International Conference on Machine Learning (ICML), 2022
                                            4. Tight bounds for minimum l1-norm interpolation of noisy data
                                              Guillaume Wang*, Konstantin Donhauser*, and Fanny Yang
                                              International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
                                            1. Self-supervised Reinforcement Learning with Independently Controllable Subgoals
                                              Andrii Zadaianchuk, Georg Martius, and Fanny Yang
                                              Conference on Robot Learning (CoRL), 2021
                                            2. How rotational invariance of common kernels prevents generalization in high dimensions
                                              Konstantin Donhauser, Mingqi Wu, and Fanny Yang
                                              International Conference on Machine Learning (ICML), 2021
                                            3. Interpolation can hurt robust generalization even when there is no noise
                                              Konstantin Donhauser*, Alexandru Tifrea*, Michael Aerni, Reinhard Heckel, and Fanny Yang
                                              Neural Information Processing Systems (NeurIPS), 2021
                                            1. Understanding and Mitigating the Tradeoff between Robustness and Accuracy
                                              Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John Duchi, and Percy Liang
                                              International Conference on Machine Learning (ICML), 2020
                                            1. Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness
                                              Fanny Yang, Zuowen Wang, and Christina Heinze-Deml
                                              Neural Information Processing Systems (NeurIPS), 2019


                                                workshop papers

                                                                    1. How robust accuracy suffers from certified training with convex relaxations
                                                                      Piersilvio De Bartolomeis, Jacob Clarysse, Amartya Sanyal, and Fanny Yang
                                                                      NeurIPS Workshop on empirical falsification (Long Talk) 2022
                                                                    2. Provable concept learning for interpretable predictions using variational inference
                                                                      Armeen Taeb, Nicolo Ruggeri, Carina Schnuck, and Fanny Yang
                                                                      ICML Workshop AI4Science 2022

                                                                              More publications can be found on the respective individual pages